Two possibilities exist: Either we are alone in the Universe or we are not.
Both are equally terrifying.

— Arthur C. Clarke

Feed aggregator

NASA's Lucy Mission Reveals Asteroid's Strange Moon

Sky & Telescope Magazine - Wed, 05/29/2024 - 4:06pm

The asteroid Dinkinesh surprised NASA’s Lucy mission when it turned out to have a moon. Now, scientists are taking a closer look at the pair’s formation.

The post NASA's Lucy Mission Reveals Asteroid's Strange Moon appeared first on Sky & Telescope.

Categories: Astronomy

Watch Chinese company launch 4 satellites to orbit from ship at sea (video)

Space.com - Wed, 05/29/2024 - 4:00pm
The Chinese company Galactic Energy sent four satellites into orbit on Wednesday (May 29) with the second sea launch of the Ceres-1 solid rocket.
Categories: Astronomy

Unraveling NGC 3169

APOD - Wed, 05/29/2024 - 4:00pm

Spiral galaxy NGC 3169 looks to be unraveling like a ball of cosmic


Categories: Astronomy, NASA

25 Years Ago: STS-96 Resupplies the Space Station

NASA - Breaking News - Wed, 05/29/2024 - 3:45pm

On May 27, 1999, the second space station assembly and logistics mission began. The main goals of STS-96, designated as the 2A.1 mission in the overall assembly sequence, included resupplying and repairing the fledgling orbital facility, consisting of the Zarya and Node 1 modules assembled during STS-88 in December 1998. The multinational seven-member crew transferred nearly two tons of supplies from the shuttle’s Spacehab double module and water to the crew-tended space station. Two of the astronauts conducted a spacewalk to install equipment on the outside of the facility. The astronauts also conducted repairs inside the station. After six days of docked operations in low Earth orbit, the crew departed the repaired and resupplied space station, making a rare night landing.

Left: The STS-96 crew of Daniel T. Barry, left, Kent V. Rominger, Julie Payette of the Canadian Space Agency, Ellen Ochoa, Valeri I. Tokarev of Roscosmos, Rick D. Husband, and Tammy E. Jernigan. Right: The STS-96 crew patch.

Left: Launch of Discovery on Shuttle mission STS-96. Middle: View of the International Space Station from Discovery during the rendezvous maneuver. Right: The Node 1’s Pressurized Mating Adapter appears in on Discover’s overhead windows just before docking. 

The second space shuttle assembly and resupply mission to the space station lifted off just after sunrise on May 27, 1999, from Launch Pad 39B at NASA’s Kennedy Space Center (KSC) in Florida. Its multinational seven-person crew included Commander Kent V. Rominger, Pilot Rick D. Husband, and Mission Specialists Tamara “Tammy” E. Jernigan, Ellen Ochoa, Daniel T. Barry, Julie Payette of the Canadian Space Agency, and Valeri I. Tokarev representing Roscosmos. The flight marked the first time a space crew included three women since STS-40 in 1991. Less than two days after launch, Rominger guided Discovery to the first docking with the two-module space station at the Pressurized Mating Adapter-2 (PMA-2), attached to Node 1. In preparation for the next day’s spacewalk, the astronauts reduced the pressure in the shuttle’s cabin from the usual 14.7 pounds per square inch (psi) to 10.2 psi to reduce the time needed for spacewalkers Jernigan and Barry to breathe pure oxygen to purge their bodies of nitrogen to prevent decompression sickness, also called the bends.

Left: The Orbital Replacement Unit Transfer Device installed on the Pressurized Mating Adapter during the STS-96 spacewalk. Middle: Tamara E. Jernigan carries the Strela boom to the Zarya module. Right: Daniel T. Barry mounts a stowage bag on Node 1. 

The day after docking, Jernigan and Barry exited the Shuttle’s airlock to begin one of the flight’s major objectives. From inside the Shuttle, Payette coordinated the spacewalk activities and Ochoa operated the robotic arm to position Jernigan. Jernigan and Barry first installed the American crane, also known as the Orbital Replacement Unit (ORU) Transfer Device onto its socket on PMA-1, the tunnel joining Node 1 and Zarya. Then they moved the Russian Strela boom and installed it on PMA-2. Next, they installed a pair of foot restraints onto PMA-1 and then installed three large tool bags onto Node 1. Jernigan and Barry completed the spacewalk in 7 hours and 55 minutes.

Left: Ellen Ochoa inside the double Spacehab module. Right: Stowage bags transferred into Zarya. 

The day after the spacewalk, having repressurized the shuttle cabin to 14.7 psi, the astronauts opened the hatches between the shuttle and the station, first into the PMA-2, then into Node 1, and finally into Zarya. Jernigan and Tokarev entered the station first, and the rest of the crew followed shortly after. Over the course of flight days 5 and 6, Payette and Tokarev replaced all 18 charge/discharge units of Zarya’s six batteries, located under the floor of the module, to improve the batteries’ performance. Husband and Barry repaired the Node 1 S-band radio, part of the station’s early communications system. The entire crew spent the next few days transferring 3,567 pounds of supplies, clothing, sleeping bags, spare parts, medical equipment, and other hardware from the Spacehab double module into the station. They also transferred 84 gallons of water produced by the shuttle’s fuel cells for later use by the station’s first resident crew, then planned for arrival in early 2000. They returned about 200 pounds of items from the station to Discovery. They spent nearly 80 hours inside the station before closing the hatches on June 2, the eighth flight day of the mission. Rominger and Husband pulsed Discovery’s Reaction Control System (RCS) thrusters 17 times to raise the station’s orbit by six miles to 246 by 241 miles.

Left: Battery charge-discharge units in Zarya after replacement. Middle: Inflight photo of the STS-96 crew in Node 1. Right: A resupplied and refurbished space station as seen from Discovery during its departure. 

On June 3, with Husband at the controls, Discovery undocked from the space station and completed a 2.5-revolution fly around of the refurbished facility, with the crew taking photographs to document its condition. After departing from the station, Rominger and Husband practiced shuttle landings using a laptop-based simulator in preparation for the actual landing two days later. In addition, the astronauts added to their trove of Earth observation photos.  

On flight day 10, the astronauts’ last full day in space, they deployed the Student-Tracked Atmospheric Research Satellite for Heuristic International Networking Equipment (STARSHINE) satellite from Discovery’s payload bay. STARSHINE consisted of an 87-pound hollow aluminum sphere 19 inches in diameter covered with 878 mirrors. Thousands of students in 18 countries polished the mirrors. The Naval Research Laboratory in Washington, D.C. built the sphere and attached the mirrors. The students monitored sightings of the satellite as it orbited the Earth, the Sun reflecting off its multiple mirrors. The astronauts tested Discovery’s RCS thrusters, Auxiliary Power Units, and Flight Control Surfaces in preparation for the next day’s re-entry and landing. 

Earth observation photographs from STS-96. Left: The Manicougan impact feature in Québec, Canada. Middle: The Straits of Gibraltar. Right: Sunlit clouds over the Indian Ocean.

Left: Deployment of the STARSHINE student satellite. Right: Discovery makes a smooth night landing at NASA’s Kennedy Space Center in Florida. 

On June 6, the astronauts closed Discovery’s payload bay doors, put on their launch and entry suits, strapped into their seats, and fired the Shuttle’s engines for the trip back to Earth. Rominger guided Discovery to a smooth night landing on the Shuttle Landing Facility at KSC, ending a highly successful mission to prepare the space station for future occupants. The flight lasted 9 days 19 hours 13 minutes. 

Enjoy the crew narrate a video about the STS-96 mission. 

Explore More 6 min read 15 Years Ago: First Time all Partners Represented aboard the International Space Station Article 1 day ago 18 min read 40 Years Ago: NASA Selects its 10th Group of Astronauts Article 6 days ago 21 min read 55 Years Ago: Two Months Until the Moon Landing Article 1 week ago
Categories: NASA

A Mini-Neptune in the Habitable Zone in a Binary Star System

Universe Today - Wed, 05/29/2024 - 3:26pm

Sometimes, it seems like habitable worlds can pop up almost anywhere in the universe. A recent paper from a team of citizen scientists led by researchers at the Flatiron Institute might have found an excellent candidate to look for one – on a moon orbiting a mini-Neptune orbiting a star that is also orbited by another star.

That’s a lot of things orbiting each other, so let’s dive into some details of the star system known as TOI 4633. It has two potential planets. One has a relatively short 34-day orbit but whose existence was only found by radial velocity measurements, as it doesn’t cross between the Earth and its host star. It also has yet to be confirmed by exoplanet hunters.

Another planet, known for now at TOI 4633c, is much more intriguing. It falls into the size category of a “mini-Neptune,” meaning it is slightly smaller than the 8th planet in our solar system but is likely still a gas giant with a thick atmosphere. It orbits its host star once every 272 days – making it one of the 40 longest-orbiting planets out of the thousands discovered so far.

Binaries are just one of a class of multiple-star systems, as Fraser explains.

That long orbit also puts it in the habitable zone of its host star – about .85 AU away from the G-type star it is orbiting. Being in the habitable zone would imply that liquid water could exist on its surface. However, the size of the planet and the likely density of its atmosphere would rule out the possibility of surface water on the planet itself.

However, there is a relatively good chance that TOI 4633c could have a moon. Planets with longer orbits tend to accrue them (hence why Venus and Mercury don’t have any in our own solar system). Such a small world wouldn’t have the same restrictive constraints as its gas-giant host planet, meaning it could potentially be habitable, such as the moons Pandora in the Avatar franchise or Endor in Star Wars.

But what makes this system even more unique is that the star TOI 4633c is orbiting is itself being orbited by another star. It wasn’t long ago that we weren’t even sure if planets could exist in these “binary” systems, and how strange life might be on one has become prominent recently with the popularity of The Three-Body Problem. But in theory, binary systems have habitable zones, and planets can survive in a stable orbit around at least one of the stars.

TESS’ primary mission is compete, but its data is still a treasure trove of new discoveries, as Fraser covers.

The smaller star orbits around its larger binary companion only once every 230 years and gets close enough to the other star to be considered relatively close by interstellar standards. As of now, it’s unclear what, if any, effect this proximity to another star would have on TOI 4633c, but it’s doubtful that it would be a world like Tatooine. 

However, the system lacks similarities to famous fictional examples, and it makes up for its potential to solve some long-standing problems in planetary formation theory. In addition to searching for a potential exomoon around TOI 4633c, scientists will continue to monitor the system closely to see if it remains stable. They can also see how the current known (and theorized) planets fit into existing models of planetary system formation.

This is another feather in the cap of the Planet Hunters TESS citizen science collaboration. There are undoubtedly more strange star systems out there for them to find. If you’re interested in helping them, you can sign up here.

Learn More:
NASA – Discovery Alert: Mini-Neptune in Double Star System is a Planetary Puzzle
Eisner et al. – Planet Hunters TESS. V. A Planetary System Around a Binary Star, Including a Mini-Neptune in the Habitable Zone
UT – Marvel at the Variety of Planets Found by TESS Already
UT – A New Venus-Sized World Found in the Habitable Zone of its Star

Lead Image:
Artist’s depiction of the binary system TOI 4633 and its potentially habitable planet.
Credit – Ed Bell for Simons Foundation

The post A Mini-Neptune in the Habitable Zone in a Binary Star System appeared first on Universe Today.

Categories: Astronomy

Historic Marker Celebrates NASA Kennedy’s Old Center Headquarters 

NASA - Breaking News - Wed, 05/29/2024 - 3:11pm
A large bronze historical marker plaque is unveiled Tuesday, May 28, 2024, at the location of NASA Kennedy Space Center’s original headquarters building. Approved in April 2023 as part of the State of Florida’s Historical Markers program in celebration of National Historic Preservation Month, the marker commemorates the early days of space exploration and is displayed permanently just west of the seven-story, 200,000 square foot Central Campus Headquarters Building, which replaced the old building in 2019.Photo credit: NASA/Mike Chambers

A grass field and tile display of NASA’s iconic “meatball” is all that remains of the structure that stood for over 50 years during America’s most monumental launches to space. Now, a large bronze plaque at the agency’s Kennedy Space Center in Florida marks the location of this original headquarters building, commemorating the early days of space exploration. 

Approved in April 2023 as part of the State of Florida’s Historical Markers program, the marker was unveiled Tuesday, May 28, 2024, by center leaders during a ceremony attended by former and current NASA employees as part of National Historic Preservation Month. 

“As we surge into the future, it’s appropriate to take a moment and remember the past,” said Kennedy Space Center Director Janet Petro. “We wouldn’t be at the forefront of space exploration without those whose footsteps we followed and it’s important that their service be properly honored. But we also focus on the future of the spaceport so that it will always maintain our path to space.” 

The new marker will be displayed permanently just west of the seven-story, 200,000 square foot Central Campus Headquarters Building on NASA Parkway, which replaced the old building in 2019. The more modern headquarters was built with the center’s master plan in mind, prioritizing efficiencies in cost, energy, and land usage to ensure NASA puts as much resources as possible toward its mission. 

Various artifacts from the old building were removed before its demolition and are now displayed in the new headquarters, including its original sign and a bust of President John F. Kennedy, after whom the center is named. 

Wall tiles from Kennedy Space Center’s former headquarters building are presented to Kennedy Director Janet Petro inside the Florida spaceport’s Central Campus Headquarters Building on May 3, 2022. The two 15-pound sections from the building were preserved by Maverick Constructors LLC, the construction company that completed demolition of the structure. The company’s presentation of the tiles is in honor of the many civil servants and contractors who dedicated their lives to working for and supporting NASA in this building.Photo credit: NASA/Frank Michaux

Constructed in 1965, Kennedy’s original four-story headquarters building became the scientific, engineering, and administrative hub for three of NASA’s most iconic space programs: Gemini, Apollo, and Space Shuttle. Designed in the International Style, the 440,000 square foot structure had an intimate view of some of NASA’s grandest moments, including the launch of the Apollo 11 mission that successfully landed the first humans on the moon in 1969, fulfilling the goal famously set by President Kennedy seven years earlier. 

Other major NASA milestones accomplished during the building’s lifetime include the 1973 launch of Skylab, the first-ever space meeting of American astronauts and Russian cosmonauts in 1975, the 1990 launch of the Hubble Space Telescope, and the construction of the International Space Station in 1998. 

Prior to its demolition, the old headquarters was listed in the National Register of Historic Places in 2000. It is the first original NASA center headquarters building to be demolished. 

The original headquarters ground becomes the seventh location within the Merritt Island National Wildlife Refuge and Canaveral National Seashore to have a marker approved by the Florida Historic Marker Council. It joins three others within Cape Canaveral Space Force Station and three more located on Kennedy Parkway. It is the only one of the seven inside Kennedy’s secure area.  

Categories: NASA

Swarming for Success: Starling Completes Primary Mission

NASA - Breaking News - Wed, 05/29/2024 - 3:09pm

5 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) The four CubeSate spacecraft that make up the Starling swarm have demonstrated success in autonomous operations, completing all key mission objectives.

After ten months in orbit, the Starling spacecraft swarm successfully demonstrated its primary mission’s key objectives, representing significant achievements in the capability of swarm configurations. 

Swarms of satellites may one day be used in deep space exploration. An autonomous network of spacecraft could self-navigate, manage scientific experiments, and execute maneuvers to respond to environmental changes without the burden of significant communications delays between the swarm and Earth. 

“The success of Starling’s initial mission represents a landmark achievement in the development of autonomous networks of small spacecraft,” said Roger Hunter, program manager for NASA’s Small Spacecraft Technology program at NASA’s Ames Research Center in California’s Silicon Valley. “The team has been very successful in achieving our objectives and adapting in the face of challenges.”  

Sharing the Work

The Distributed Spacecraft Autonomy (DSA) experiment, flown onboard Starling, demonstrated the spacecraft swarm’s ability to optimize data collection across the swarm. The CubeSats analyzed Earth’s ionosphere by identifying interesting phenomena and reaching a consensus between each satellite on an approach for analysis.  

By sharing observational work across a swarm, each spacecraft can “share the load” and observe different data or work together to provide deeper analysis, reducing human workload, and keeping the spacecraft working without the need for new commands sent from the ground. 

The experiment’s success means Starling is the first swarm to autonomously distribute information and operations data between spacecraft to generate plans to work more efficiently, and the first demonstration of a fully distributed onboard reasoning system capable of reacting quickly to changes in scientific observations. 

Communicating Across the Swarm

A swarm of spacecraft needs a network to communicate between each other. The Mobile Ad-hoc Network (MANET) experiment automatically established a network in space, allowing the swarm to relay commands and transfer data between one another and the ground, as well as share information about other experiments cooperatively.  

The team successfully completed all the MANET experiment objectives, including demonstrating routing commands and data to one of the spacecraft having trouble with space to ground communications, a valuable benefit of a cooperative spacecraft swarm. 

“The success of MANET demonstrates the robustness of a swarm,” said Howard Cannon, Starling project manager at NASA Ames. “For example, when the radio went down on one swarm spacecraft, we ‘side-loaded’ the spacecraft from another direction, sending commands, software updates, and other vital information to the spacecraft from another swarm member.” 

Autonomous Swarm Navigation 

Navigating and operating in relation to one another and the planet is an important part of forming a swarm of spacecraft. Starling Formation-Flying Optical Experiment, or StarFOX, uses star trackers to recognize a fellow swarm member, other satellite, or space debris from the background field of stars, then estimate each spacecraft’s position and velocity. 

The experiment is the first-ever published demonstration of this type of swarm navigation, including the ability to track multiple members of a swarm simultaneously and the ability to share observations between the spacecraft, improving accuracy when determining each swarm member’s orbit. 

Near the end of mission operations, the swarm was maneuvered into a passive safety ellipse, and in this formation, the StarFOX team was able to achieve a groundbreaking milestone, demonstrating the ability to autonomously estimate the swarm’s orbits using only inter-satellite measurements from the spacecraft star trackers. 

Managing Swarm Maneuvers 

The ability to plan and execute maneuvers with minimal human intervention is an important part of developing larger satellite swarms. Managing the trajectories and maneuvers of hundreds or thousands of spacecraft autonomously saves time and reduces complexity. 

The Reconfiguration and Orbit Maintenance Experiments Onboard (ROMEO) system tests onboard maneuver planning and execution by estimating the spacecraft’s orbit and planning a maneuver to a new desired orbit. 

The experiment team has successfully demonstrated the system’s ability to determine and plan a change in orbit and is working to refine the system to reduce propellant use and demonstrate executing the maneuvers. The team will continue to adapt and develop the system throughout Starling’s mission extension. 

Swarming Together

Now that Starling’s primary mission objectives are complete, the team will embark on a mission extension known as Starling 1.5, testing space traffic coordination in partnership with SpaceX’s Starlink constellation, which also has autonomous maneuvering capabilities. The project will explore how constellations operated by different users can share information through a ground hub to avoid potential collisions.  

“Starling’s partnership with SpaceX is the next step in operating large networks of spacecraft and understanding how two autonomously maneuvering systems can safely operate in proximity to each other. As the number of operational spacecraft increases each year, we must learn how to manage orbital traffic,” said Hunter. 

NASA’s Small Spacecraft Technology program, based at Ames and within NASA’s Space Technology Mission Directorate (STMD), funds and manages the Starling mission. Blue Canyon Technologies designed and manufactured the spacecraft buses and is providing mission operations support. Rocket Lab USA, Inc. provided launch and integration services. Partners supporting Starling’s payload experiments have included Stanford University’s Space Rendezvous Lab in Stanford, California, York Space Systems (formerly Emergent Space Technologies) of Denver, Colorado, CesiumAstro of Austin, Texas, L3Harris Technologies, Inc., of Melbourne, Florida. Funding support for the DSA experiment was provided by NASA’s Game Changing Development program within STMD. Partners supporting Starling’s mission extension include SpaceX of Hawthorne, California, NASA’s Conjunction Assessment Risk Analysis (CARA) program, and the Department of Commerce. SpaceX manages the Starlink satellite constellation and the Collision Avoidance ground system.

Share Details Last Updated May 29, 2024 Related Terms Explore More 2 min read Follow NASA’s Starling Swarm in Real Time Article 7 months ago 6 min read NASA’s Starling Mission Sending Swarm of Satellites into Orbit Article 11 months ago Keep Exploring Discover Related Topics

Ames Research Center

Space Technology Mission Directorate

Starling

Game Changing Development

Categories: NASA

Smartphone use can actually help teenagers boost their mood

New Scientist Space - Cosmology - Wed, 05/29/2024 - 3:00pm
A survey of 253 US teens has found that, on average, their mood lifted after using their smartphones
Categories: Astronomy

Smartphone use can actually help teenagers boost their mood

New Scientist Space - Space Headlines - Wed, 05/29/2024 - 3:00pm
A survey of 253 US teens has found that, on average, their mood lifted after using their smartphones
Categories: Astronomy

Babies group together their squeals and growls to prepare for speech

New Scientist Space - Cosmology - Wed, 05/29/2024 - 3:00pm
Babies seem to cluster together their squeals and growling noises, rather than making them sporadically, which suggests they are part of their preparation for talking
Categories: Astronomy

Babies group together their squeals and growls to prepare for speech

New Scientist Space - Space Headlines - Wed, 05/29/2024 - 3:00pm
Babies seem to cluster together their squeals and growling noises, rather than making them sporadically, which suggests they are part of their preparation for talking
Categories: Astronomy

'Star Trek #500' cover showcases a commanding collection of cosmic captains

Space.com - Wed, 05/29/2024 - 2:00pm
A preview of IDW Publishing's "Star Trek #500" special issue that pays homage to the series' many unforgettable starship captains arriving this year on Star Trek Day.
Categories: Astronomy

The Monty Hall problem shows how tricky judging the odds can be

New Scientist Space - Cosmology - Wed, 05/29/2024 - 2:00pm
Calculating probabilities can be complicated, as this classic "what's behind the doors" problem shows, says Peter Rowlett
Categories: Astronomy

The Monty Hall problem shows how tricky judging the odds can be

New Scientist Space - Space Headlines - Wed, 05/29/2024 - 2:00pm
Calculating probabilities can be complicated, as this classic "what's behind the doors" problem shows, says Peter Rowlett
Categories: Astronomy

Relax with Aqua, a colourful board game about building coral reefs

New Scientist Space - Cosmology - Wed, 05/29/2024 - 2:00pm
Scrap screens for a while and enjoy the real feel of Aqua, a board game where colourful tiles grow into ecosystems. It's mostly relaxing – apart from the fiendish scoring system, says Jacob Aron
Categories: Astronomy

Relax with Aqua, a colourful board game about building coral reefs

New Scientist Space - Space Headlines - Wed, 05/29/2024 - 2:00pm
Scrap screens for a while and enjoy the real feel of Aqua, a board game where colourful tiles grow into ecosystems. It's mostly relaxing – apart from the fiendish scoring system, says Jacob Aron
Categories: Astronomy

New Scientist recommends Ice Cold: An exhibition of hip-hop jewelry

New Scientist Space - Space Headlines - Wed, 05/29/2024 - 2:00pm
The books, TV, games and more that New Scientist staff have enjoyed this week
Categories: Astronomy

New Scientist recommends Ice Cold: An exhibition of hip-hop jewelry

New Scientist Space - Cosmology - Wed, 05/29/2024 - 2:00pm
The books, TV, games and more that New Scientist staff have enjoyed this week
Categories: Astronomy

How the weird and powerful pull of black holes made me a physicist

New Scientist Space - Cosmology - Wed, 05/29/2024 - 2:00pm
When I heard Stephen Hawking extol the mysteries of black holes, I knew theoretical physics was what I wanted to do. There is still so much to learn about these strange regions, says Chanda Prescod-Weinstein
Categories: Astronomy

The dangers of amorous ostriches when starting an ostrich farm

New Scientist Space - Cosmology - Wed, 05/29/2024 - 2:00pm
Feedback wonders if previous research into 'courtship behaviours of ostriches' in the UK will be taken into account by the owner of a new ostrich farm in New Hampshire
Categories: Astronomy