The space of night is infinite,
The blackness and emptiness
Crossed only by thin bright fences
Of logic

— Kenneth Rexroth
"Theory of Numbers"

Feed aggregator

Ted Michalek: Engineering from Apollo to Artemis

NASA - Breaking News - Tue, 06/04/2024 - 12:58pm

From the first lunar footsteps of Apollo to the threshold of humanity’s return aboard the Artemis missions, Ted Michalek has been part of the fabric of Goddard for 55 years — and counting!

Name: Theodore “Ted” Michalek
Title: Chief technical engineer (retired), now consultant
Formal Job Classification: Thermal engineer
Organization: Thermal Engineering Branch (Code 545), Mechanical Division (Code 540) and Systems Review Office, Flight Assurance Directorate (Code 301)

Theodore “Ted” Michalek is a consultant thermal engineer at NASA’s Goddard Space Flight Center in Greenbelt, Md. After 40 years at Goddard, he retired in 2009, but returned part-time as a contractor consultant. Courtesy of Ted Michalek

What do you do and what is most interesting about your role here at Goddard?

I’ve been a thermal engineer at Goddard since May 1970, over 50 years. I’m currently a consultant to the lead thermal engineer for the Roman Space Telescope mission. I am also part of a team reviewing the Compact Coronagraph Instrument (CCOR-2) which will fly on the Space Weather Follow On (SWFO) mission. The thermal engineering discipline involves and affects all of the hardware and systems on all spaceflight hardware, and is involved from “cradle to grave,” from conception to the end of every mission.

What is your educational background?

I went to the Baltimore Polytechnic Institute, a Baltimore City public high school with an engineering preparatory curriculum. In 1969, I earned a B.S. in aerospace engineering from the University of Maryland.

How did you become a thermal engineer?

From the time I was 2, I was always fascinated by things that flew, especially airplanes. I originally wanted to be a pilot, but my mother found that I was partially color blind so I could not become a pilot. I decided to become an aeronautical engineer instead. In college, I did not enjoy the aerodynamics courses, so I gravitated to the structural design of flight systems. It was the Apollo era and I was fascinated by the space program, and was fortunate to get a job at Goddard in a mechanical design group. After a year, I was transferred to the thermal design group which, at that time, had a critical shortage of engineers.

How did you come to Goddard?

Though a job fair and interviews, I came to Goddard in June 1969 about one month before the first moon landing, Apollo 11.

Why have you stayed at Goddard for over 50 years?

I’ve stayed at Goddard because it’s a really good place to work and the work is interesting. I was on the front line of thermal engineering for spacecraft design. Although I retired in 2009, I returned as a contractor consultant. After 40 years, I only wanted to work part time, but have enjoyed keeping my hand in the field, continuing to contribute, and working with the people.

What is most challenging about being a consultant to the lead thermal engineer for the Roman Space Telescope?

Roman is a challenging mission thermally since much of the instrument and optical portions of the observatory need to be maintained at temperatures well below room temperature. Not as cold as the James Webb Space Telescope, but still a challenge.  I had been doing reviews for Roman when it started, and eventually became part of their team. The lead thermal engineer is a very good guy whom I helped mentor when he first arrived in the thermal branch about 15 years ago. Thankfully I gave him good technical advice years ago, and am glad to be helping him out again. I’m proud that he has been so successful.

What is your role in reviewing the CCOR-2 instrument?

The systems review office at Goddard has a program of periodic reviews of every big project several times during their development phase from inception to launch. Every project has a committee of technical experts from various branches who are usually senior engineers who act as independent reviewers. The project presents to this review committee, discipline by discipline. There are success criteria for each periodic review. Each review has a pass-fail grade with details of what went into the grade, specific recommendations and advisories which are less binding than the formal recommendations. If there is really a problem, which is rare, they might get a lien, a restriction against proceeding beyond a certain point until a specific problem has been corrected.

What are your career highlights?

I’ve had many. One was being part of a small group of technical experts at Goddard who served as consultants to Argentina’s space agency, CONAE, when it was first formed and when they were designing their first orbiting satellite in the late 1980s and early 1990s. I went to Argentina a few times, and to Brazil twice for thermal testing. Another was being lead thermal engineer for the Earth Radiation Budget Satellite (ERBS) that was launched from a space shuttle. I also worked quite a bit on the WMAP (Wilkinson Microwave Anisotropy Probe) design, test and launch effort, and I also had the opportunity to work on the big Webb telescope test done in Houston before launch. I traveled to Houston for 10 days, every month, for five months to support that test, including right after Hurricane Harvey.

Do you know that your nickname is the Thermal Engineer Guru?

I may have heard that before. It’s OK, though the original thermal guru for me was Robert Kidwell, the assistant branch head when I joined the thermal branch, and was my first mentor there. A large part of the later part of my career included informal mentoring and reviews. I was responsible, as the chief technical engineer, for the technical output of my branch, so I spent a lot of my time talking with the engineers in the thermal branch, especially when they were involved in difficult technical situations. I worked with them to help make decisions. The job also included conducting periodic engineering peer reviews.

One of the engineers I worked with quite a bit said that they were the ones firing the cannon and I was especially good at aiming the cannon. That made me feel good.

“Take advantage of the culture at Goddard to learn your job as well as you can, which will enable you to take on more responsibility in time and contribute as much as you can to these missions,” said Ted Michalek. “I’ve always been appreciative and excited about how all of Goddard’s missions contribute to our knowledge of the universe and the quality of our life on Earth.”Courtesy of Ted Michalek

What changes have you seen in Goddard over the years?

The one big change is how the complexity of the missions has evolved. Our missions have gotten more sophisticated in technology and science. The size and complexity of our missions has increased. Thermal engineers work with almost every other disciplinary area including the scientists because everyone’s equipment has different thermal requirements.

I don’t think the culture of Goddard has changed that much. Goddard has always been a group of very smart and dedicated people who are devoted to the missions that they are working. Goddard generally has a very collegial and collaborative atmosphere. Over the years, the coordination of the different technical and science disciplines has improved, I’d say primarily because of the evolution of the systems engineering function which is a key part of every project, and has been for some time now. We also document more thoroughly now than we did when I started.

In 1970, when three of us entered the thermal branch, the first thing the branch did was have the assistant branch head conduct a three month training class. He was a pioneer in the field of thermal design for spacecraft, the real thermal guru. Over the years, the thermal branch has continued this kind of training class for incoming engineers.

I came to work at Goddard 10 years after Goddard was created. When Goddard opened, there was a need to develop a workforce that knew how to build and launch spacecraft. Among other things, we had a number of people who came from the U.S. Naval Research Lab, or NRL, one of whom was the assistant branch head who taught us. Most of these people had worked on the Vanguard Project, which resulted in the launch of the second U.S. satellite to orbit the Earth.

I came to Goddard about 12 years after the field of thermal engineering for space flight was started. I was there for the continuing maturation of this field. Because our missions are so much more complex, the field keeps evolving. Computer modeling is an important part of the field and that has gone through a huge evolution since I was a young thermal engineer, including collaboration with the structural analysts to predict in-orbit deformations, which is a key on many missions these days, including Roman. Also, the thermal hardware we have to utilize has evolved, necessarily, to answer the demands of ever more complex science missions.

My first year at Goddard, we were doing vibration testing on a spacecraft model. I remember clearly thinking, as I was trying to position the instrumentation, that Goddard has been doing this for 10 years, and wondered if I’d ever do something new and different. Little did I know how much more evolution would go on from then until now.  Every mission is different and requires creative ways to meet ever more demanding requirements.

What do you do for fun?

I have been a semi-serious bird watcher for the last 35 years. About three years ago, I was introduced to several aspects that rekindled my interest. One is a free app for my cellphones called Merlin, developed by the Cornell Laboratory of Ornithology, which helps identify birds. Another is a free app called eBird, also developed by the Cornell Laboratory of Ornithology, which allows you to list the birds that you have seen on an outing and report it to Cornell’s worldwide data base. Now I feel like when I am going birding, I can easily keep track of the birds I have seen and at the same time help contribute to bird studies.

I also recently became involved in watching hawks in particular. There is a network of people and organizations from Canada to the northern part of South America who, during the fall and spring migration seasons, have expert observers in carefully chosen locations. The data from these sites goes into a database that’s been kept and analyzed for almost five decades now. These observers are charged with counting every migrating hawk they can see, daily, for two to three months. These people are fantastic in how they can do this tough job, in the outdoors, sometimes on a platform, from 7 a.m. until 4 or 5 p.m. every day, seven days a week, for two to three months at a time. Some are paid professionals. Depending on the location, day and weather, these hawk watches can count anything from zero migrant hawks to, in the Panama Canal Zone, 300,000 hawks. That’s in one day at the peak of the season. I really have a lot of respect for these hawk watchers.

Ted Michalek on a birding trip in May 2024 at Bradbury Mountain Hawkwatch area, at the summit, about 5 miles NW of Freeport, ME.Courtesy of Ted Michalek

On a birding trip in May 2024, I visited two of these hawkwatch sites, one at Bradbury Mountain State Park in Maine, and the other at Braddock Bay State Park in New York. In addition to getting some great practice at hawk identification, I learned first-hand the influence that weather, including wind direction, has in the daily flights, and how well the official hawk counters know the hawks and where to look for them based on the conditions, and how they can tell migrants (which they report) from local birds (which they don’t). It’s amazing how they’re able to quickly, at a glance sometimes, identify a hawk at a distance of several miles. At Braddock Bay, I was fortunate to be there on a couple of days when they had daily counts of more than 1,000 migrant hawks, and can attest first hand to the skill and focus necessary to identify and count that many birds. It was a good trip: in addition to visiting family, I saw 16 species of birds on this trip that I’d not seen before, including my first golden eagle, called to my attention by the professionals at Braddock Bay.

What lessons or words of wisdom would you pass along to somebody just starting their career at Goddard?

Take advantage of the culture at Goddard to learn your job as well as you can, which will enable you to take on more responsibility in time and contribute as much as you can to these missions. I’ve always been appreciative and excited about how all of Goddard’s missions contribute to our knowledge of the universe and the quality of our life on Earth. 

Who do you want to thank?

I want to thank my family, my wife especially. And also my parents who provided me with a nurturing and secure upbringing, and an education.  My wife and I homeschooled our two children through high school. I helped in the evening, but she did the bulk of the work. My wife has always been very supportive of my career. We met at Goddard. In the early ’70s, I taught a beginners’ class for the Goddard karate club and she was a student of mine. She offered me a correction for one of the exercises I had them do, and I listened and corrected it. My sister, our children and grandchildren, and the rest of my family have always been supportive of and interested in my career as NASA. I’m thankful to have such a wonderful extended family.

From my early years at the thermal branch, I would also like to thank Ed Powers, who transferred me into the thermal branch and became the assistant director of engineering before he retired. Ed recently made a presentation about the early history of the thermal branch in the 1960s. I’m helping him a bit with his presentation. I would also like to thank Norm Ackerman, who was also a thermal branch head. Both of them were my supervisors and also two of many excellent mentors and leaders I worked with at Goddard.

By Elizabeth M. Jarrell
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.

Share Details Last Updated Jun 04, 2024 EditorMadison OlsonContactRob Garnerrob.garner@nasa.govLocationGoddard Space Flight Center Related Terms Explore More 10 min read Kan Yang: Translating Science Ideas into Engineering Concepts Article 2 weeks ago 10 min read Ken Carpenter: Ensuring Top-Tier Science from Moon to Stars Article 4 weeks ago 6 min read Kiyun Kim: From Intern to Accessibility Advocate Article 1 month ago
Categories: NASA

Why excessive positivity is bad for your health and mental well-being

New Scientist Space - Cosmology - Tue, 06/04/2024 - 12:56pm
There are real benefits to a positive mindset, but the idea that we should always look on the bright side has gone too far. Research into toxic positivity can help restore balance
Categories: Astronomy

Why excessive positivity is bad for your health and mental well-being

New Scientist Space - Space Headlines - Tue, 06/04/2024 - 12:56pm
There are real benefits to a positive mindset, but the idea that we should always look on the bright side has gone too far. Research into toxic positivity can help restore balance
Categories: Astronomy

China's Chang'e 6 probe launches samples of far side of the moon to lunar orbit. Next stop? Earth (photos)

Space.com - Tue, 06/04/2024 - 12:53pm
China's Chang'e 6 moon mission returned stunning lunar surface images as it collected samples and sent them to orbit to begin their historic return to Earth for study.
Categories: Astronomy

55 Years Ago: Star Trek Final Episode Airs, Relationship with NASA Endures

NASA - Breaking News - Tue, 06/04/2024 - 12:15pm

The voyages of the Starship Enterprise came to a sudden and premature end on June 3, 1969, with the airing of the final episode of the Star Trek original television series. Ironically, the show’s cancellation came just six weeks before humanity embarked on its first voyage to land on another celestial body. Although the show ran for only three seasons, it generated a devoted fan base disappointed by the cancellation despite their write-in campaign to keep it on the air. But as things turned out, over the decades Star Trek evolved into a global phenomenon, first with the original episodes replayed in syndication, followed by a series of full-length motion pictures, and eventually a multitude of spin-off series. With its primary focus on space exploration, along with themes of diversity, inclusion, and innovation, the Star Trek fictional universe formed a natural association with NASA’s real life activities.


Left:  A scene from “The Man Trap,” the premiere episode of Star Trek. Middle: The cast of the original Star Trek series from a promotional ad for the 1968-9 season. Right: A scene from “Turnabout Intruder,” the final episode of the original series. Image credits: courtesy NBC-TV.

Star Trek creator Gene Roddenberry first had the idea for a science fiction television series in 1964. He presented his idea, a show set in the 23rd century aboard a starship with a crew dedicated to exploring the galaxy, to Desilu Productions, an independent television production company headed by Lucille Ball. They produced a pilot titled “The Cage,” selling it to the National Broadcasting Corporation (NBC) network that then bought a second pilot titled “Where No Man Has Gone Before.” NBC introduced the show to its fall 1966 lineup, with the first episode “The Man Trap” airing on Sep. 8. To put that date in perspective, NASA launched Gemini XI four days later, one of the missions that helped the agency achieve the Moon landing nearly three years later. Meanwhile, Star Trek’s Starship Enterprise continued its fictional five-year mission through the galaxy to “seek out new life and new civilizations.” The makeup of the Enterprise’s crew made the show particularly attractive to late 1960s television audiences. The major characters included an African American woman communications officer, an Asian American helmsman, and a half-human half-Vulcan science officer, later joined by a Russian-born ensign. While the show enjoyed good ratings during its first two seasons, cuts to its production budget resulted in lower quality episodes during its third season leading to lower ratings and, despite a concerted letter-writing campaign from its dedicated fans, eventual cancellation.


Left: NASA Administrator James C. Fletcher, left, with the creator and cast members of Star Trek at the September 1976 rollout of space shuttle Enterprise. Right: The cast members give the Vulcan salute.

Despite the show’s cancellation, Star Trek lived on and prospered in syndication and attracted an ever-growing fan base, turning into a worldwide sensation. Often dubbed “trekkies,” these fans held the first of many Star Trek conventions in 1972. When in 1976 NASA announced that it would name its first space shuttle orbiter Constitution, in honor of its unveiling on the anniversary of the U. S. Constitution’s ratification, trekkies engaged in a dedicated letter writing campaign to have the orbiter named Enterprise, after the starship in the television series. This time the fans’ letter writing campaign succeeded. President Gerald R. Ford agreed with the trekkies and directed NASA to rechristen the first space shuttle. When on Sept. 17, 1976, it rolled out of its manufacturing plant in Palmdale, California, appropriately accompanied by a band playing the show’s theme song, it bore the name Enterprise. Many of the original cast members of the show as well as its creator Rodenberry participated in the rollout ceremony, hosted by NASA Administrator James C. Fletcher. Thus began a lengthy relationship between the space agency and the Star Trek brand.


Left: Star Trek cast member Nichelle Nichols, left, in the shuttle simulator with astronaut Alan L. Bean at NASA’s Johnson Space Center (JSC) in Houston. Middle: Nichols at the controls of the shuttle simulator. Right: Nichols, left, in JSC’s Mission Control Center during filming of the recruiting video.

During the development of the space shuttle in the 1970s, the need arose to recruit a new group of astronauts to fly the vehicle, deploy the satellites, and perform the science experiments. When NASA released the call for the new astronaut selection on July 8, 1976, it specifically encouraged women and minorities to apply. To encourage those applicants, NASA chose Nichelle Nichols, who played communications officer Lt. Uhura on the Starship Enterprise, to record a recruiting video and speak to audiences nationwide. She came to NASA’s Johnson Space Center (JSC) in Houston in March 1977, and accompanied by Apollo 12 and Skylab 3 astronaut Alan L. Bean, toured the center and filmed scenes for the video in Mission Control and other facilities. NASA hoped that her stature and popularity would encourage women and minorities to apply, and indeed they did. In January 1978, when NASA announced the selection of 35 new astronauts from more than 8,000 applicants, for the first time the astronaut class included women and minorities. All distinguished themselves as NASA astronauts and paved the way for others in subsequent astronaut selections. Nichols returned to JSC in September 2010 with the Traveling Space Museum, an organization that partners with schools to promote space studies. She toured Mission Control and the International Space Station trainer accompanied by NASA astronaut B. Alvin Drew. She also flew aboard NASA’s Stratospheric Observatory for Infrared Astronomy (SOFIA) airborne telescope aircraft managed by NASA’s Ames Research Center in Silicon Valley, California, in September 2015.


Left: Nichelle Nichols, middle, with NASA astronaut B. Alvin Drew in the space station trainer at NASA’s Johnson Space Center in Houston. Right: Nichols, center, aboard NASA’s Stratospheric Observatory for Infrared Astronomy aircraft.

Meanwhile, the Star Trek brand renewed itself in 1979 as a full-length motion picture with the original TV series cast members reprising their roles. Over the years, several sequels followed this first film. And on the small screen, a reboot of sorts occurred in 1987 with the premiere of Star Trek: The Next Generation, a new series set in the 24th century aboard the Enterprise-D, a next generation starship with a new crew. That series lasted seven seasons, followed by a near-bewildering array of spin-off series, all built on the Star Trek brand, that continue to this day.


Left: Actor James Doohan visits NASA’s Dryden (now Armstrong) Flight Research Center in California in 1967 with NASA pilot Bruce A. Peterson, in front of the M2-F2 lifting body aircraft. Middle: At NASA’s Johnson Space Center in Houston, Doohan sits in the commander’s seat of the space shuttle simulator, as NASA astronaut Mario Runco looks on. Right: Doohan, second from left, during his retirement party with fellow Star Trek stars George Takei, left, and Nichelle Nichols, and Apollo 11 astronaut Neil A. Armstrong. Credit: Image courtesy Anne Cusack/Los Angeles Times.

James Doohan, the actor who played Lt. Cmdr. Montgomery “Scotty” Scott, the Starship Enterprise’s chief engineer, had early associations with NASA. In April 1967, Doohan visited NASA’s Dryden (now Armstrong) Flight Research Center in California, spending time with NASA test pilot Bruce A. Peterson. A month later, Peterson barely survived a horrific crash of the experimental M2-F2 lifting body aircraft. He inspired the 1970s TV series The Six-Million Dollar Man, and the show’s opening credits include film of the crash. Doohan narrated a documentary film about the space shuttle released shortly before Columbia made its first flight in April 1981. In January 1991, Doohan visited JSC and with NASA astronaut Mario Runco (who sometimes went by the nickname “Spock”) toured the shuttle trainers, Mission Control, and tried his hand at operating the shuttle’s robotic arm in the Manipulator Development Facility. In a unique tribute, astronaut Neil A. Armstrong, the first person to step on the lunar surface, spoke at Doohan’s retirement in 2004, addressing him as “one old engineer to another.”


Left: Director of NASA’s Johnson Space Center in Houston Michael L. Coats presents actor George Takei with a commemorative plaque. Right: Takei and Robonaut both give the Vulcan greeting.

George Takei, who played Enterprise helmsman Lt. Hikaru Sulu, and his husband Brad, visited JSC in May 2012. Invited by both Asian American and LGBTQ+ Employee Resource Groups, Takei spoke of leadership and inclusiveness, including overcoming challenges while in Japanese American internment camps during World War II and as a member of the LGBTQ+ community. He noted that Star Trek remained ahead of its time in creating a future when all members of society could equally participate in great undertakings, at a time when the country struggled through the Civil Rights movement and the conflict in Southeast Asia. The inclusiveness that is part of NASA’s culture greatly inspired him. JSC Director Michael L. Coats presented Takei with a plaque including a U.S. flag flown aboard space shuttle Atlantis’ STS-135 mission. He also visited Mission Control and spent some time with Robonaut.


Left: Star Trek cast member Leonard Nimoy gives the Vulcan greeting in front of space shuttle Enterprise after its arrival in New York in 2012. Right: Expedition 43 crew member European Space Agency astronaut Samantha Cristoforetti gives the Vulcan salute to honor the late actor Nimoy. 

Leonard Nimoy played the science officer aboard the Starship Enterprise, the half-human, half-Vulcan Mr. Spock. The actor watched in September 2012 when space shuttle Enterprise arrived at John F. Kennedy International Airport in New York, on the last leg of its journey to the Intrepid Sea, Air and Space Museum, where it currently resides. “This is a reunion for me,” observed Nimoy. “Thirty-five years ago, I met the Enterprise for the first time.” As noted earlier, the Star Trek cast attended the first space shuttle’s rollout in 1976. Following his death in 2015, European Space Agency astronaut Samantha Cristoforetti paid tribute to Nimoy aboard the International Space Station by wearing a Star Trek science officer uniform, giving the Vulcan greeting, and proclaiming, “Of all the souls I have encountered … his was the most human.”


Left: Star Trek cast member William Shatner, left, receives the Distinguished Public Service Medal from NASA Deputy Associate Administrator for Communications Robert N. Jacobs in 2014. Middle: Shatner, upper left, moderates a virtual panel at the 2020 San Diego Comic-Con with NASA spacesuit engineer Lindsay T. Aitchison, upper right, NASA astronauts Nicole A. Mann, lower left, and Kjell N. Lindgren, and NASA technology expert LaNetra C. Tate. Image credit: courtesy Comic-Con International. Right: Shatner experiences weightlessness during his suborbital trip to the edge of space aboard a New Shepard vehicle. Image credit: courtesy Blue Origin.

Captain James T. Kirk, played by actor William Shatner, a life-long advocate of science and space exploration, served at the helm of the Starship Enterprise. His relationship with NASA began during the original series, with references to the space agency incorporated into several story lines. In 2011, Shatner hosted and narrated a NASA documentary celebrating the 30th anniversary of the Space Shuttle program, and gave his time and voice to other NASA documentaries. NASA recognized Shatner’s contributions in 2014 with a Distinguished Public Service Medal, the highest award NASA bestows on non-government individuals. NASA Deputy Associate Administrator for Communications Robert “Bob” N. Jacobs presented the medal to Shatner. The award’s citation read, “For outstanding generosity and dedication to inspiring new generations of explorers around the world, and for unwavering support for NASA and its missions of discovery.” In 2019, Shatner narrated the NASA video We Are Going, about NASA’s plans to return astronauts to the Moon. He has spoken at numerous NASA-themed events and moderated panels about NASA’s future plans. On Oct. 13, 2021, at the age of 90, Shatner reached the edge of space during the NS-18 suborbital flight of Blue Origin’s New Shepard vehicle, experiencing three minutes of weightlessness.


Left: Patch for the Window Observational Research Facility (WORF), including the Klingon writing just below the letters “WORF.” Middle: Astronaut Naoki Yamazaki of the Japan Aerospace Exploration Agency and the WORF rack after its installation aboard the space station during STS-131. Right: The STS-54 crew dressed as Starfleet officers.


Left: The Space Flight Awareness (SFA) poster for the Expedition 21 crew. Right: The SFA poster for the STS-134 crew.

Elements of the Star Trek universe have made their way not only into popular culture but also into NASA culture. As noted above, Star Trek fans had a hand in naming the first space shuttle Enterprise. NASA’s Earth observation facility aboard the space station that makes use of its optical quality window bears the name the Window Observational Research Facility (WORF). The connection between that acronym and the name of a Klingon officer aboard the Enterprise in the Star Trek: The Next Generation TV series seemed like an opportunity not to be missed – the facility’s official patch bears its name in English and in Klingon. Several astronaut crews have embraced Star Trek themes for their unofficial photographs. The STS-54 crew dressed in the uniforms of Starship Enterprise officers from Star Trek II: The Wrath of Kahn, the second full-length feature motion picture of the series. Space shuttle and space station crews created Space Flight Awareness (SFA) posters for their missions, and more than one embraced Star Trek themes. The Expedition 21 crew dressed in uniforms from the original series, while the STS-134 crew chose as their motif the 2009 reboot motion picture Star Trek.


Left: Picture of the Gemini VI launch in the background in the 1967 Star Trek episode “Court Martial.” Credit: Image courtesy of Collectspace.com. Middle: NASA astronaut Mae C. Jemison, left, and actor LeVar Burton in a 1993 episode of Star Trek: The Next Generation. Credit: Image courtesy CBS. Right: NASA astronauts Terry W. Virts, left, and E. Michael Fincke, right, flank actor Scott Bakula on the set of Star Trek: Enterprise in 2005. Credit: Image courtesy CBS.

As much as Star Trek has influenced NASA, in turn the agency has left its mark on the franchise, from episodes referencing actual and future spaceflight events to NASA astronauts making cameo appearances on the show. The first-season episode “Court Martial” that aired in February 1967 featured a photograph of the December 1965 Gemini VI launch adorning a wall aboard a star base. In the second-season episode “Return to Tomorrow,” airing in February 1968, Captain Kirk in a dialogue about risk-taking remarks, “Do you wish that the first Apollo mission hadn’t reached the Moon?” a prescient reference to the first Apollo mission to reach the Moon more than 10 months after the episode aired. Astronaut Mae C. Jemison, who credits Nichelle Nichols as her inspiration to become an astronaut, appeared in the 1993 episode “Second Chances” of Star Trek: The Next Generation, eight months after her actual spaceflight aboard space shuttle Endeavour. In May 2005, two other NASA astronauts, Terry W. Virts and E. Michael Fincke, appeared in “These are the Voyages…,” the final episode of the series Star Trek: Enterprise.


Left: NASA astronaut Victor J. Glover, host of the 2016 documentary “NASA on the Edge of Forever: Science in Space.” Right: Actress Nichelle Nichols appearing in the documentary “NASA on the Edge of Forever: Science in Space.”

In the 2016 documentary “NASA on the Edge of Forever: Science in Space,” host NASA astronaut Victor J. Glover states, “Science and Star Trek go hand-in-hand.” The film explores how for 50 years, Star Trek influenced scientists, engineers, and even astronauts to reach beyond their potential. While the space station doesn’t speed through the galaxy like the Starship Enterprise, much of the research conducted aboard the orbiting facility can make the fiction of Star Trek come a little closer to reality. Several of the cast members from the original TV series share their viewpoints in the documentary, along with those of NASA managers and scientists. Over the years, NASA has created several videos highlighting the relationship between the agency and the Star Trek franchise. In 2016, NASA Administrator Charles F. Bolden led a video tribute to celebrate the 50th anniversary of the first Star Trek episode.


In a tribute to Star Trek creator Gene Roddenberry on the 100th anniversary of his birth, his son Rod, upper left, hosts a virtual panel discussion about diversity and inspiration.

In 2021, on the 100th anniversary of Gene Roddenberry’s birth, his son Rod hosted a virtual panel discussion, introduced by NASA Administrator C. William “Bill” Nelson, about diversity and inspiration, two ideals the Star Trek creator infused into the series. Panelists included Star Trek actor Takei, Tracy D. Drain, flight systems engineer for the Europa Clipper spacecraft at NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California, NASA astronaut Jonny Kim, Swati Mohan, guidance and operations lead for the Mars 2020 rover at JPL, and Hortense B. Diggs, Director of the Office of Communication and Public Engagement at NASA’s Kennedy Space Center in Florida.

The mutual attraction between NASA and Star Trek stems from, to paraphrase the opening voiceover from the TV series, that both seek to explore and discover new worlds, and to boldly go where no one has gone before. The diversity, inclusion, and inspiration involved in these endeavors ensure that they will live long and prosper.

Explore More 6 min read 25 Years Ago: STS-96 Resupplies the Space Station Article 6 days ago 6 min read 15 Years Ago: First Time all Partners Represented aboard the International Space Station Article 1 week ago 18 min read 40 Years Ago: NASA Selects its 10th Group of Astronauts Article 2 weeks ago

Categories: NASA

Marjorie Taylor Greene's Attacks of Fauci Over COVID’s Six-Foot Rule Not Based in Science

Scientific American.com - Tue, 06/04/2024 - 12:15pm

Attacks on Anthony Fauci over guidance on masking and social distancing issued during the COVID pandemic ignore the science on viral spread

Categories: Astronomy

Astrophotographer captures planetary parade with the moon in stunning photo

Space.com - Tue, 06/04/2024 - 12:00pm
Astrophotographer Josh Dury was able to capture Jupiter, Mercury, Uranus, Mars, Neptune, Saturn and the moon in one single image during a planetary alignment on June 1, 2024.
Categories: Astronomy

<p><a href="https://apod.nasa.gov/apod

APOD - Tue, 06/04/2024 - 12:00pm

What happens if you ascend this


Categories: Astronomy, NASA

Hubble Pauses its Science Again

Universe Today - Tue, 06/04/2024 - 11:54am

The Hubble Space Telescope has been shut down temporarily after one of its gyroscopes sent faulty telemetry readings back to Earth in late May. The venerable space-based observatory, which has been responsible for some of the most remarkable scientific advances of the last three decades, and stunning astrophotography that became a cultural mainstay, is in its thirty-fourth year of operation.

Hubble’s many and varied accomplishments have been achieved despite a plague of technical challenges over the years. Right out of the gate, it launched with blurry vision, due to an improperly polished lens. The problem was fixed with a space shuttle servicing mission in 1993, three years after launch. Four more servicing missions between 1997 and 2009 repaired and upgraded various parts of the spacecraft.

With the retirement of the space shuttle, the space telescope has now been operating for 15 years without servicing.

Pauses in science operations like the current one are common events for Hubble these days, occurring several times a year in recent times. Hubble’s gyroscopes are the usual culprit.

In fact, a faulty gyroscope previously caused a shutdown barely a month ago, in April 2024, and did the same back in November 2023. In every case, NASA was able to get the space telescope back up and running in short order.

That doesn’t mean there is no cause for concern. Gyroscopes help the telescope orient itself in space, keeping it stable to point at astronomical targets in the distant universe. The last servicing mission in 2009 left the telescope with six operational gyroscopes, but it has been running on three since 2018.

Hubble needs all three to operate at full capacity.

The end of a Hubble gyro reveals the hair-thin wires known as flex leads. They carry data and electricity inside the gyro, and their corrosion has caused gyroscope failures in the past. NASA

But having two wouldn’t necessarily be the end of the mission. It would reduce the area of the sky Hubble can observe, and slow down science operations.

Regardless of the outcome of the current troubles, NASA appears confident that this is not the end of the line, stating in a press release on May 31:

“NASA anticipates Hubble will continue making discoveries throughout this decade and possibly into the next, working with other observatories, such as the agency’s James Webb Space Telescope for the benefit of humanity.”

It doesn’t appear that that will be the last word on the subject, however. A press conference has been called for 4PM EDT on June 4, where NASA’s Director of the Astrophysics Division, Mark Clampin, and Hubble’s project Manager, Patrick Crouse, are expected to give an update on Hubble’s condition.

In the event that Hubble is reduced to two working gyroscopes, NASA recently indicated that it would likely put one of them into safe mode, relying on just one gyroscope and keeping the last in good working order for the future.

With just one gyroscope in operation, magnetometers, sun sensors, and star trackers will need to make up for the work that the other gyroscopes used to do. This takes more time, and would reduce Hubble’s working capacity by 20-25%. Hubble would no longer be able to look at objects closer to Earth than Mars, it would be less capable of catching transient events at a moment’s notice, and it would have to pause observations during parts of its orbit when the Moon and Earth get in the way of its star trackers.

But it would keep the mission alive longer, which is good news for astronomers and astronomy fans everywhere. There is even hope for a future Hubble repair mission, an idea proposed by Jared Isaacman, a private astronaut who will command the upcoming Polaris Dawn mission aboard SpaceX’s Dragon capsule. Currently, Dragon is incapable of docking with Hubble, leaving the idea firmly in the speculative stage for the moment.

As for more immediate plans, we’ll have to see what NASA has to say. Stay tuned for the press conference at 4PM June 4.

The post Hubble Pauses its Science Again appeared first on Universe Today.

Categories: Astronomy

Ada Lovelace’s 180-Year-Old Notes Previewed the Future of Computers

Scientific American.com - Tue, 06/04/2024 - 11:45am

Ada Lovelace’s wisdom about the first general-purpose computer can be found buried in the appendix of another paper

Categories: Astronomy

Heat Waves Make AC Too Expensive for Many People

Scientific American.com - Tue, 06/04/2024 - 11:30am

Poorer households face climate-related dangers during heat waves amid climbing electricity costs, a report by state energy officials warns

Categories: Astronomy

NASA 3D Instagram 'experience' brings nebulas into your home

Space.com - Tue, 06/04/2024 - 11:00am
Ever wanted to see the wreckage of a supernova or explore distant clouds of gas and dust ejected by a dying star? A new NASA Instagram Experience brings celestial bodies to Earth.
Categories: Astronomy

Fauci Calls COVID Cover-Up Claim ‘Preposterous’

Scientific American.com - Tue, 06/04/2024 - 10:45am

Congressional representatives grilled Anthony Fauci, former head of the U.S. National Institute of Allergy and Infectious Diseases, about the government’s early response to the COVID pandemic

Categories: Astronomy

NASA Awards University Research Projects to Support Agency Missions

NASA - Breaking News - Tue, 06/04/2024 - 10:43am
Credits: NASA

NASA announced the recipients of the Established Program to Stimulate Competitive Research (EPSCoR) grants, which will support scientific and technical research projects for more than 20 universities and organizations across the United States.

“NASA’s EPSCoR awards are a tool to strengthen research capacity in areas across our nation that have historically been underrepresented in government research,” said Torry Johnson, deputy associate administrator of Science, Technology, Engineering, and Mathematics (STEM) Engagement Programs at NASA Headquarters in Washington. “The goal with each award is to provide institutions a long-term and sustainable pathway to participating in the aerospace industry by cultivating competitive research capabilities and fostering strategic relationships with NASA experts.”  

The EPSCoR awards will compliment NASA’s research portfolio to benefit future missions. Selected proposals cover a range of science and technology needs including in space manufacturing, heliophysics, astronaut health, and climate research.

The NASA EPSCoR Rapid Response Research grants, funded by the agency’s Office of STEM Engagement, will award approximately $100,000 to each project over the course of a one-year performance period for fiscal year 2024.

The awarded institutions are:

  • University of Alabama in Huntsville
  • University of Arkansas in Little Rock
  • University of Delaware in Newark
  • Iowa State University in Ames
  • University of Idaho in Moscow
  • University of Kentucky in Lexington
  • Louisiana Board of Regents in Baton Rouge
  • University of Mississippi in University
  • Montana State University in Bozeman
  • University of North Dakota in Grand Forks
  • University of Nebraska in Omaha
  • New Mexico State University in Las Cruces
  • Nevada System of Higher Education in Reno
  • Oklahoma State University in Stillwater
  • Brown University in Providence, Rhode Island 
  • College of Charleston in Charleston, South Carolina
  • South Dakota School of Mines and Technology in Rapid City
  • West Virginia University in Morgantown
  • University of Wyoming in Laramie

NASA establishes partnerships with government, higher education, and industry to create lasting improvements in research infrastructure while enhancing national research and development competitiveness. The program is directed at those jurisdictions that have traditionally been underrepresented in competitive aerospace and aerospace-related research activities.

For more information about NASA STEM, visit:

https://stem.nasa.gov

-end-

Gerelle Dodson
Headquarters, Washington
202-358-1600
gerelle.q.dodson@nasa.gov

Share Details Last Updated Jun 04, 2024 LocationNASA Headquarters Related Terms
Categories: NASA

Aerospace Trailblazer: Shirley Holland-Hunt’s Visionary Leadership Transforms Space Exploration

NASA - Breaking News - Tue, 06/04/2024 - 10:38am

From pioneering space initiatives to championing diversity and innovation, Shirley Holland-Hunt’s multifaceted leadership at NASA exemplifies the future of aerospace exploration. Her efforts have driven technological advancements and advocated for the inclusion of women and minorities in STEM fields. 

Holland-Hunt currently serves as the associate division chief for Houston’s Johnson Space Center Aeroscience and Flight Mechanics Division, where she drives engineering design, development, testing, and evaluation for all phases of space flight.  

She supports the identification and establishment of center partnerships and Space Act Agreements that drive the research and development of new space exploration technology. Holland-Hunt also coordinates business activities and workforce development, including planning, programming, budgeting, and execution, as well as facility management and Johnson’s diversity, equity, inclusion, and accessibility initiatives. 

Holland-Hunt was a member of the Dare | Unite | Explore team that launched the “Propel the Space Economy Coalition” initiative, which supports the sustainable growth of the global space economy.  

Official portrait of Shirley Holland-Hunt. Credit: NASA/James Blair

As an alumna of Prairie View A&M University, a Historically Black College and University, Holland-Hunt holds a bachelor of science in Electrical Engineering and a Master of Business Administration from the University of Phoenix. She helped develop Johnson’s first Request for Information document, showcasing her pivotal role in advancing the center’s initiatives to collect data that inform future procurement actions. 

She also spearheaded initiatives to promote women in leadership roles. She founded the networking group “The Women of ES” within the Structural Engineering Division to help women leaders seek opportunities and gain promotions. Additionally, she launched “The Women of EG” within the Aeroscience and Flight Mechanics Division, which conducts outreach to schools to encourage girls to pursue STEM careers. 

“Each division leaves its own footprint,” she said. “Sometimes you need those small entities within a culture because the issues are different, the people are different. It’s so fulfilling to be a part of these outreach activities and see the outcome.” 

Shirley Holland-Hunt leads a discussion at a STEM outreach event for Brownsville Independent School District.

Holland-Hunt emphasizes the importance of persistence and continuous learning in your career. “Every little thing that you do or contribute to is huge. You might not see the results right away, but there is an outcome.” 

She motivates students interested in pursuing space exploration careers to recognize their skills, know their worth, and work hard. “Strive to do your best daily but know that things are going to happen. Just be the best you can be.” 

One of her core beliefs is to treat others with respect and acknowledge that diversity of thought is a strength. “Different means that somebody has a different way of thinking than you do, and that is a plus.” 

Shirley Holland-Hunt at a NASA Pathways internship outreach event at Prairie View A&M University.

Holland-Hunt is also involved in a discovery program at her church, educating young girls about careers in STEM and supporting minority students pursuing graduate programs in those fields. She recalls teachers doubting her potential to become an engineer. “I don’t want another little girl to hear that she can’t be something that she wants to be,” she said. 

Her advice to women is to embrace new challenges without fear. “Learn and grow in everything you do. Don’t be afraid to move around in your career. You don’t need to have 100% of the skills to do it,” said Holland-Hunt. “Networking is also important—get to know people who can make a positive impact on your life.” 

Shirley Holland-Hunt at a Texas Independent School District STEM outreach event in Galveston.

Reflecting on her career, Holland-Hunt shares, “I started at NASA in a technical field but learned later that I have a passion for people, which was shocking because I always thought I was shy and an introvert. Now, I have a passion for seeing people grow and giving back in any way I can.” 

Holland-Hunt worked in flight software and avionics for the Space Shuttle Program, which she said was her favorite program to work on at NASA. “When the program ended, I had to figure out how to use my background at Johnson for future capabilities,” she said. “That is the great part of working at NASA; there are many opportunities that bring together a range of people and perspectives to foster innovation.” 

Holland-Hunt’s previous role managing a materials and processing group helped overcome her initial fear that her technical knowledge would hinder her ability to manage people. “I empowered everyone in that group with the respect I had for their work. They could teach me, and we trusted and learned from each other,” she said. “I know that I’m working with the best engineers in the world, and I learn so much from everyone that I work with.” 

She believes that challenging herself and moving to different programs has revealed her hidden strengths and talents. “Knowing yourself is very important to be successful.” 

Shirley Holland-Hunt in front of NASA’s Space Exploration Vehicle at Johnson Space Center in Houston.

Holland-Hunt is also a member of the Ensemble Theatre in Houston, Texas, which aims to preserve African American artistic expression. She and her husband enjoy attending car shows and driving her 1972 Pontiac GTO. 

Coming from a large family of eight, with a father who was a sharecropper, Holland-Hunt helped her family pick cotton. Despite her parents not graduating from junior high school, she and her eight siblings graduated from college, with five becoming engineers. Her husband also works for Axiom Space, one of the agency’s commercial space partners. 

Holland-Hunt believes that experiencing adversity at a young age developed her character. “My parents always told me to be the best we can be and to love ourselves. That made us feel special and empowered me to do great things,” she said. “We never got new books, but we never saw it as a reason not to learn or excel. It teaches you to work with what you have. Now, when challenges come, I think, ‘That’s nothing. I’ve lived through worse.’” 

Categories: NASA

Solid State Quantum Magnetometers—Seeking out water worlds from the quantum world

NASA - Breaking News - Tue, 06/04/2024 - 10:09am

4 min read

Solid State Quantum Magnetometers—Seeking out water worlds from the quantum world Left: Jupiter’s moon Europa and its presumed interior. A thick ice shell covers a planetary saltwater ocean, presumed to hold twice as much water as Earth’s oceans. Right: Simulation of the ocean bending the magnetic field lines emitted by Jupiter that are close to Europa Image credit: C. Cochrane/ NASA/JPL-Caltech

“Follow the water!”  The solar system is full of water in different states, from the Sun’s water vapor to the ice of Pluto and beyond. Water is not only linked to the possibility to sustain life, it is also interesting for its own geological properties and potential uses. For example, ice on the Moon and Mars could support human exploration. Comets that hit Earth may have deposited water on our planet. The icy comets and rings of Saturn reveal how solar systems change over time.

Liquid water, however, has a special role in enabling life. Scientists have discovered indications that liquid water might exist on a number of moons orbiting our solar system’s gas and ice giants. The mantra of the astrobiology community is to “Follow the Water” to find life, so subsurface oceans on Jupiter’s Europa, Saturn’s Enceladus, and other moons are compelling targets for future missions.

However, looking beneath the miles-thick ice crusts of these planetary bodies with conventional remote-sensing instruments, like cameras and radar, is challenging. Until we can send landers or rovers that drill or melt through the ice, we can use other techniques to track down these enormous, but elusive, water bodies. One method—Magnetometry—stands out since magnetic fields penetrate solid material and can therefore provide information about the interior of planet-sized bodies.

Briny water conducts electricity; therefore, a saltwater ocean can function as a planet-sized electric circuit. The strong rotating magnetic field of the parent planet of an ocean world can induce an electric current in this “circuit,” which in turn disturbs and modifies the magnetic field near the ocean world under investigation. These magnetic field disturbances can be observed from a spacecraft and may indicate the presence of liquid water. For example, a distortion of Jupiter’s magnetic field in the vicinity of Europa was measured by the magnetometer on NASA’s Galileo mission, providing further evidence for the initial suspicions of a water ocean under that moon’s icy crust.

The heart of optically pumped quantum magnetometers: a diamond crystal enriched with color centers. Unlike many other quantum systems, diamond and SiC solid state quantum color centers operate at room temperature and can be readily accessed electrically or optically. The bottom photo, filtering the laser light for the observer, shows the red-shifted emission response of the quantum system. This response is encoded with quantum spin information, and can be used to read environmental influences, such as temperature, pressure, electric and, most importantly for us, magnetic field properties. Image credit A. Gottscholl/ NASA/JPL-Caltech

Solid-state quantum magnetometers are an upcoming instrument class promising to measure magnetic fields at competitive sensitivities, while offering lower size, weight, and power footprints. In addition, these instruments offer quantum benefits like self-calibration on spin-nuclear quantum interaction, which means that the magnetometer can compensate for drifts over time. This capability is especially important for decades-long missions to the outer ice-giants. Other solid-state quantum advantages include radiation resilience and an inherent ability to withstand very high/low temperatures.

Solid-state quantum magnetometers leverage quantum color centers located in semiconductors such as diamond and silicon carbide. Color centers are defects in the crystal lattice—for example, a missing atom or a different atom replacing a crystal atom. In everyday life, color centers give crystals their color, but they can also be probed on the quantum level using modulated light. Due to their quantum spin properties these color centers are sensitive to environmental magnetic fields. As these color centers are exposed to varying magnetic fields, the changing quantum spin properties can be read electrically and/or optically, providing insight into the magnetic field properties and enabling us to detect the presence of water.

Research teams at NASA’s Jet Propulsion Laboratory are developing two magnetometers to measure spin properties from space. The incredibly simple but elegant SiCMAG (Silicon Carbide Magnetometer, Lead Dr. Corey J. Cochrane) instrument reads spin properties electrically, while the OPuS-MAGNM (optically pumped solid state quantum magnetometer, Lead Dr. Hannes Kraus) promises access to higher sensitivities through the addition of optics. Optically pumped here means that the quantum system is pumped with green (diamond) or deep red (silicon carbide) laser light, and the system’s response is read with a light detector.

According to Dr. Kraus, “Novel quantum sensors not only enable new science, but also offer the chance to downscale former flagship-class instrumentation to a size and cost allowing flagship-class science on CubeSat-class platforms.”

NASA has been funding solid state quantum magnetometer sensor research through its PICASSO (Planetary Instrument Concepts for the Advancement of Solar System Observations) program since 2016. A variety of domestic partners from industry and academia support this research, including NASA’s Glenn Research Center in Cleveland, the University of Iowa, Q-Cat LLC and QuantCAD LLC, as well as international partners such as Japan’s National Institutes for Quantum Science and Technology (QST Japan) and ETH Zurich, a public research university in Zurich, Switzerland.

PI Dr. Kraus (left) and postdoctoral researcher Dr. Andreas Gottscholl (right) in the JPL Quantum Magnetometer lab, with the optically detected magnetic resonance (ODMR) spectrometer apparatus—a larger-scale stepping stone towards a miniaturized integrated magnetometer instrument—built by Dr. Gottscholl in the background. The optically pumped quantum sensor crystals (not visible here, as the sensor itself is only millimeters in size) are located in the concentric barrel-shaped four-layer µ-metal chamber, which is capable of shielding the Earth’s and other magnetic field disturbances by a factor of 100,000. Image Credit H. Kraus/ NASA/JPL-Caltech

Acknowledgment: The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004).

PROJECT LEAD

Dr. Hannes Kraus, Dr. Corey Cochrane, Jet Propulsion Laboratory/California Institute of Technology

SPONSORING ORGANIZATION

Science Mission Directorate PICASSO, JPL R&D funding

Share

Details

Last Updated

Jun 04, 2024

Related Terms Explore More

2 min read June’s Night Sky Notes: Constant Companions: Circumpolar Constellations, Part III

In the final Circumpolar Constellations installment, learn about objects in Cepheus, Draco, and Ursa Major,…



Article


4 days ago

6 min read What’s Up: June 2024 Skywatching Tips from NASA

Article


5 days ago

8 min read The Moon and Amaey Shah

Article


5 days ago

Categories: NASA

'Star Trek: The Illustrated Oral History: The Original Cast' reveals how William Shatner felt about tribbles (exclusive)

Space.com - Tue, 06/04/2024 - 10:04am
An exclusive excerpt from Titan Books' new release, "Star Trek: The Illustrated Oral History" which releases on July 30, 2024.
Categories: Astronomy

NASA Wallops Visitor Center Extended Hours June 12

NASA - Breaking News - Tue, 06/04/2024 - 10:00am
This June 2021 aerial photograph shows the coastal launch range at NASA’s Wallops Flight Facility on Virginia’s Eastern Shore.Credit: Courtesy Patrick J. Hendrickson; used with permission

The NASA Wallops Visitor Center will be open for extended hours from 4-6 p.m., Wednesday, June 12, to conduct outreach focused around NASA’s environmental work at Wallops. In addition, the Visitor Center exhibit gallery and auditorium will be open for the public to visit, and personnel will be onsite to share information on current and upcoming missions.

The Visitor Center is open to the public and admission is always free.

Wallops’ Environmental Team will be on-hand to discuss and answer questions about NASA’s ongoing work related to Per- and Polyfluoroalkyl Substances (PFAS) at the facility. Experts will also be available to share information on the new Wallops Island Causeway Bridge project.

Wallops conducts extended hours outreach events routinely at the Visitor Center, which is located on Virginia Route 175 about five miles from U.S. Route 13 and five miles from Chincoteague Island, Virginia.

By Jeremy Eggers
NASA’s Wallops Flight Facility, Wallops Island, Va.

Share Details Last Updated Jun 04, 2024 EditorMadison OlsonContactJeremy EggersLocationWallops Flight Facility Related Terms
Categories: NASA

Sun unleashes giant plasma plume and reels it back in apparent 'failed eruption' (video)

Space.com - Tue, 06/04/2024 - 9:05am
Watch the moment a huge plasma plume is fired out from the sun and then reeled back in during M-class solar flare eruption.
Categories: Astronomy

Mars is more prone to devastating asteroid impacts than we thought, new study hints

Space.com - Tue, 06/04/2024 - 9:00am
Potentially hazardous asteroids pose a risk to Mars missions, but they can also yield insight into the history of the Red Planet and the early solar system, new research suggests.
Categories: Astronomy