The space of night is infinite,
The blackness and emptiness
Crossed only by thin bright fences
Of logic

— Kenneth Rexroth
"Theory of Numbers"

Feed aggregator

Globular Clusters Should Contain More Intermediate-mass Black Holes

Universe Today - Fri, 06/07/2024 - 4:38pm

We live in a Universe studded with black holes. Countless stellar mass and supermassive ones exist in our galaxy and most others. It’s likely they existed as so-called “primordial” black holes in the earliest epochs of cosmic history. Yet, there seems to be a missing link category: intermediate-mass black holes (IMBH). Astronomers have searched for these rare beasts for years and there’s only one possible observation thanks to gravitational-wave data. So, where are they?

IMBH might be hidden away in the hearts of globular clusters. But, given the tightly packed nature of those compact collections of stars, how would we know if they contained any IMBH? Teams of researchers in Japan and China came up with a couple of ways to search them out. One is to look for fast-moving stars ejected from globular clusters. The other is to do simulations of collisions of stars in the hearts of newly forming clusters. Both methods may point the way to more IMBH discoveries.

What Are Intermediate-mass Black Holes?

These rare objects are pretty much what their name says: black holes with masses somewhere between their stellar-mass cousins and the supermassive behemoths at the hearts of galaxies. They can contain as little as a thousand times the mass of the Sun, which would be fairly “small”, up to maybe a million solar masses. Beyond that are the supermassive monsters with millions or billions of times the mass of the Sun. The IMBH don’t come from supernova explosions, since there’s no massive star big enough to collapse to produce an IMBH. The birth of an IMBH should involve multiple massive objects coalescing together. This makes them more like their big supermassive black hole siblings.

So, where would such a collisional event happen? It would help if you had a dense agglomeration of stars tightly packed together. That describes globular clusters to a T. They’re crowded with stars, and likely have a good collection of very massive ones. Those are the stars that explode as supernovae and collapse down to produce a stellar-mass black hole. If enough of them exist in the cluster, they could merge and create an IMBH. Another suggestion to create an IMBH is for massive stars to collide to create a single more-massive object.

Many globular clusters orbit the core of the Milky Way Galaxy. Some of the densest ones have millions of stars pulled together by gravity. The cluster Messier 15 (M15) is a good example. It contains more than 100,000 stars crammed into an area of space about 175 light-years across. If runaway star collisions or stellar-mass black hole mergers occurred in M15, that could be enough to create an IMBH.

Simulating Globular Clusters and Intermediate-Mass Black Hole Growth

Another idea is to explore the formation of globulars to see if it produces any clues to the origins and existence of IMBH. That’s what a team of scientists at the University of Tokyo did. They created advanced simulations of star cluster formation to see if massive-star collisions could occur and lead to the birth of IMBH. It’s not an easy task. Previous simulations suggested stellar winds would blow away the needed masses to create these missing black holes.

“Star cluster formation simulations were challenging because of the simulation cost,” said team leader Michiko Fujii. “We, for the first time, successfully performed numerical simulations of globular cluster formation, modeling individual stars. By resolving individual stars with a realistic mass for each, we could reconstruct the collisions of stars in a tightly packed environment. For these simulations, we have developed a novel simulation code, in which we could integrate millions of stars with high accuracy.”

A simulated star cluster forming in a giant molecular cloud. Could this visualization help astronomers understand the formation of intermediate-mass black holes in clusters? Courtesy: Takaaki Takeda (VASA Entertainment, Inc.)

The resulting simulation run showed that runaway collisions brought very massive stars together. These are perfect candidates to end up as IMBH candidates. “Our final goal is to simulate entire galaxies by resolving individual stars,” Fujii points to future research. “It is still difficult to simulate Milky Way-size galaxies by resolving individual stars using currently available supercomputers. However, it would be possible to simulate smaller galaxies such as dwarf galaxies. We also want to target the first clusters, star clusters formed in the early universe. First clusters are also places where IMBHs can be born.”

Runaway Stars and IMBH

Okay, so simulations show that such IMBH could be possible in the globular cluster environment, but what’s the physical proof they actually exist? No one has actually detected the collisions of stellar-mass black holes inside a cluster to create an IMBH. Nor have they seen stellar collisions that might create a monster object — although the Japanese simulations proved they can happen. The trick now is to observe both types of event. Until that happens, astronomers can figure out if IMBH exist through indirect means.

A Chinese research team, led by Yang Huang of the University of the Chinese Academy of Sciences, recently posted a paper about a high-velocity star fleeing the scene of a collision in the heart of Messier 15. The star, called J0731+3717, was ejected by an encounter with an intermediate-mass black hole embedded very close to the center of the cluster.

J0731+3717 got tossed out on its high-speed journey about 21 million years ago. The team examined its metallicity (that is, its ratios of hydrogen and heavier elements (called “metals” by astronomers)) and found that it matches the stars in M15. The rogue star moves away from the cluster at a velocity of about 550 kilometers per second and once “lived” at a distance of about 1 AU from the cluster’s core. The team analyzed those measurements and did reverse orbital calculations of that star (and others within 5 kpc of the Sun). Based on their calculations, they concluded the star had a too-close encounter with an intermediate-mass black hole containing about 100 solar masses.

The team suggests that this method be used to prove the existence of other IMBH in similar environments. They conclude their paper with a look at future observations to prove the concept. “With the increasing power of ongoing Gaia and large-scale spectroscopic surveys, we expect to discover dozens of cases within the 5kpc volume and ten times more within a 10kpc volume, which should shed light on the understanding of the evolutionary path from stellar-mass BHs to SMBHs.”

For More Information

Simulations Yield New Intermediate Mass Black Holes Recipe
Medium and Mighty: Intermediate-mass Black Holes Can Survive in Globular Clusters
A High-velocity Star Recently Ejected by an Intermediate-mass Black Hole in M15

The post Globular Clusters Should Contain More Intermediate-mass Black Holes appeared first on Universe Today.

Categories: Astronomy

What Are You Looking At?

NASA Image of the Day - Fri, 06/07/2024 - 4:30pm
A Florida redbelly turtle casts a suspicious look as he is being photographed on the grounds of NASA's Kennedy Space Center in Florida. The redbelly turtle inhabits ponds, lakes, sloughs, marshes and mangrove-bordered creeks, in a range that encompasses Florida from the southern tip north to the Apalachicola area of the panhandle. Active year-round, it is often seen basking on logs or floating mats of vegetation. Adults prefer a diet of aquatic plants. The Center shares a boundary with the Merritt Island National Wildlife Refuge, which encompasses 92,000 acres that are a habitat for more than 331 species of birds, 31 mammals, 117 fishes, and 65 amphibians and reptiles. The marshes and open water of the refuge provide wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds, as well as a variety of insects.
Categories: Astronomy, NASA

What Are You Looking At?

NASA - Breaking News - Fri, 06/07/2024 - 4:29pm
NASA

A Florida redbelly turtle looks warily at the camera in this photo from Feb. 29, 2000. This image was captured on the grounds of NASA’s Kennedy Space Center in Florida, which shares a border with the Merritt Island National Wildlife Refuge. The refuge contains 92,000 acres that are a habitat for more than 330 species of birds, 31 mammals, 117 fishes, and 65 amphibians and reptiles – including suspicious turtles.

Image Credit: NASA

Categories: NASA

NASA Exploring Alternative Mars Sample Return Methods

NASA - Breaking News - Fri, 06/07/2024 - 4:01pm
NASA logo. Credit: NASA

NASA is moving forward with 10 studies to examine more affordable and faster methods of bringing samples from Mars’ surface back to Earth as part of the agency’s Mars Sample Return Program. As part of this effort, NASA will award a firm-fixed-price contract for up to $1.5 million to conduct 90-day studies to seven industry proposers.

Additionally, NASA centers, NASA’s Jet Propulsion Laboratory in Southern California, and Johns Hopkins’ Applied Physics Laboratory are producing studies. Once completed, NASA will assess all studies to consider alterations or enhancements to the Mars Sample Return architecture.

“Mars Sample Return will be one of the most complex missions NASA has undertaken, and it is critical that we carry it out more quickly, with less risk, and at a lower cost,” said NASA Administrator Bill Nelson. “I’m excited to see the vision that these companies, centers and partners present as we look for fresh, exciting, and innovative ideas to uncover great cosmic secrets from the Red Planet.”

Over the last quarter century, NASA has engaged in a systematic effort to determine the early history of Mars and how it can help us understand the formation and evolution of habitable worlds, including Earth. As part of that effort, Mars Sample Return has been a long-term goal of international planetary exploration for the past two decades. NASA’s Perseverance rover has been collecting samples for later collection and return to Earth since it landed on Mars in 2021.

The following companies and proposals were selected from among those that responded to an April 15 request for proposals:

  • Lockheed Martinin Littleton, Colorado: “Lockheed Martin Rapid Mission Design Studies for Mars Sample Return”
  • SpaceX in Hawthorne, California: “Enabling Mars Sample Return With Starship”
  • Aerojet Rocketdyne in Huntsville, Alabama: “A High-Performance Liquid Mars Ascent Vehicle, Using Highly Reliable and Mature Propulsion Technologies, to Improve Program Affordability and Schedule”
  • Blue Origin in Monrovia, California: “Leveraging Artemis for Mars Sample Return”
  • Quantum Space, in Rockville, Maryland: “Quantum Anchor Leg Mars Sample Return Study”
  • Northrop Grumman in Elkton, Maryland: “High TRL MAV Propulsion Trades and Concept Design for MSR Rapid Mission Design”
  • Whittinghill Aerospace in Camarillo, California: “A Rapid Design Study for the MSR Single Stage Mars Ascent Vehicle”

NASA’s Mars Sample Return is a strategic partnership with ESA (the European Space Agency). Returning scientifically selected samples to Earth for study using the most sophisticated instruments around the world can revolutionize our understanding of Mars and would fulfill one of the highest priority solar system exploration goals as identified by the National Academies of Science, Engineering and Medicine.

For more information on Mars Sample Return, visit:

https://science.nasa.gov/mission/mars-sample-return/

-end-

Dewayne Washington
Headquarters, Washington
202-358-1600
dewayne.a.washington@nasa.gov

Share Details Last Updated Jun 07, 2024 LocationNASA Headquarters
Categories: NASA

Virgin Galactic launches VSS Unity space plane on final suborbital spaceflight with crew of 6 (photos)

Space.com - Fri, 06/07/2024 - 4:00pm
Virgin Galactic launched its seventh commercial spaceflight mission on June 8 during the final flight of its VSS Unity suborbital spaceplane.
Categories: Astronomy

NASA Crew Flight Test Astronauts to Call White House, NASA Leaders

NASA - Breaking News - Fri, 06/07/2024 - 3:35pm
NASA astronauts Suni Williams (pictured left) and Butch Wilmore (pictured right) launched at 10:52 a.m. EDT June 5 as the first crewed flight of Boeing’s Starliner spacecraft on the United Launch Alliance Atlas V rocket from Space Launch Complex-41 at Cape Canaveral Space Force Station in Florida.Credits: NASA

Following their safe arrival at the International Space Station, NASA astronauts Butch Wilmore and Suni Williams will participate in a pair of Earth to space calls Monday, June 10, regarding their historic mission aboard Boeing’s Starliner spacecraft:

Known as NASA’s Boeing Crew Flight Test, the duo will speak first at 1 p.m. EDT with NASA Administrator Bill Nelson, Deputy Administrator Pam Melroy, Associate Administrator Jim Free, and Johnson Space Center Director Vanessa Wyche.

Coverage of the call will stream live on NASA+, NASA Television, and the agency’s website. Learn how to stream NASA TV through a variety of platforms including social media.

At 2:40 p.m., the astronauts will participate in a Q&A moderated by Chirag Parikh, deputy assistant to President Joe Biden and executive secretary for the White House’s National Space Council.

Coverage of the call will stream live on NASA+, NASA Television, and the agency’s website.

Wilmore and Williams launched at 10:52 a.m. June 5, on a United Launch Alliance Atlas V rocket from Space Launch Complex-41 at Cape Canaveral Space Force Station in Florida for NASA’s Boeing Crew Flight Test mission. They docked to the orbiting laboratory at 1:34 p.m., June 6, and will remain for a week-long stay, testing Starliner and its subsystems as the next step in the spacecraft’s certification for rotational missions as part of the agency’s Commercial Crew Program.

NASA’s Commercial Crew Program is delivering on its goal of safe, reliable, and cost-effective transportation to and from the International Space Station from the United States through a partnership with American private industry. This partnership is opening access to low-Earth orbit and the International Space Station to more people, science, and commercial opportunities. The space station remains the springboard to NASA’s next great leap in space exploration, including future missions to the Moon under Artemis, and ultimately, to Mars.

For more information about the mission, visit:

www.nasa.gov/commercialcrew

-end-

Faith McKie / Josh Finch
Headquarters, Washington
202-358-1100
faith.d.mckie@nasa.gov / joshua.a.finch@nasa.gov

Share Details Last Updated Jun 07, 2024 LocationNASA Headquarters Related Terms
Categories: NASA

SpaceX lands Falcon 9 rocket for 300th time (video)

Space.com - Fri, 06/07/2024 - 3:30pm
SpaceX landed one of its Falcon 9 rockets for the 300th time tonight (June 7), notching the milestone during a Starlink satellite launch.
Categories: Astronomy

Tiny great ape fossils identified as new species from Europe

New Scientist Space - Space Headlines - Fri, 06/07/2024 - 3:00pm
A kneecap and two teeth found in Germany have been identified as belonging to a new species of ape from 11.6 million years ago, thought to have weighed as little as 10 kilograms
Categories: Astronomy

Tiny great ape fossils identified as new species from Europe

New Scientist Space - Cosmology - Fri, 06/07/2024 - 3:00pm
A kneecap and two teeth found in Germany have been identified as belonging to a new species of ape from 11.6 million years ago, thought to have weighed as little as 10 kilograms
Categories: Astronomy

Jupiter's raging gas cyclones may actually mirror Earth's oceans. Here's how

Space.com - Fri, 06/07/2024 - 3:00pm
Jupiter and Earth's oceans have more in common than you might think.
Categories: Astronomy

‘Super’ Star Cluster Shines in New Look From NASA’s Chandra

NASA - Breaking News - Fri, 06/07/2024 - 2:14pm
Star Cluster Westerlund 1.X-ray: NASA/CXC/INAF/M. Guarcello et al.; Optical: NASA/ESA/STScI; Image Processing: NASA/CXC/SAO/L. Frattare

Westerlund 1 is the biggest and closest “super” star cluster to Earth. New data from NASA’s Chandra X-ray Observatory, in combination with other NASA telescopes, is helping astronomers delve deeper into this galactic factory where stars are vigorously being produced.

This is the first data to be publicly released from a project called the Extended Westerlund 1 and 2 Open Clusters Survey, or EWOCS, led by astronomers from the Italian National Institute of Astrophysics in Palermo. As part of EWOCS, Chandra observed Westerlund 1 for about 12 days in total.

Currently, only a handful of stars form in our galaxy each year, but in the past the situation was different. The Milky Way used to produce many more stars, likely hitting its peak of churning out dozens or hundreds of stars per year about 10 billion years ago and then gradually declining ever since. Astronomers think that most of this star formation took place in massive clusters of stars, known as “super star clusters,” like Westerlund 1. These are young clusters of stars that contain more than 10,000 times the mass of the Sun. Westerlund 1 is between about 3 million and 5 million years old.

This new image shows the new deep Chandra data along with previously released data from NASA’s Hubble Space Telescope. The X-rays detected by Chandra show young stars (mostly represented as white and pink) as well as diffuse heated gas throughout the cluster (colored pink, green, and blue, in order of increasing temperatures for the gas). Many of the stars picked up by Hubble appear as yellow and blue dots.

Only a few super star clusters still exist in our galaxy, but they offer important clues about this earlier era when most of our galaxy’s stars formed. Westerlund 1 is the biggest of these remaining super star clusters in the Milky Way and contains a mass between 50,000 and 100,000 Suns. It is also the closest super star cluster to Earth at about 13,000 light-years.

These qualities make Westerlund 1 an excellent target for studying the impact of a super star cluster’s environment on the formation process of stars and planets as well as the evolution of stars over a broad range of masses.

This new deep Chandra dataset of Westerlund 1 has more than tripled the number of X-ray sources known in the cluster. Before the EWOCS project, Chandra had detected 1,721 sources in Westerlund 1. The EWOCS data found almost 6,000 X-ray sources, including fainter stars with lower masses than the Sun. This gives astronomers a new population to study.

One revelation is that 1,075 stars detected by Chandra are squeezed into the middle of Westerlund 1 within four light-years of the cluster’s center. For a sense of how crowded this is, four light-years is about the distance between the Sun and the next closest star to Earth.

The diffuse emission seen in the EWOCS data represents the first detection of a halo of hot gas surrounding the center of Westerlund 1, which astronomers think will be crucial in assessing the cluster’s formation and evolution, and giving a more precise estimate of its mass.

paper published in the journal Astronomy and Astrophysics, led by Mario Guarcello from the Italian National Institute of Astrophysics in Palermo, discusses the survey and the first results. Follow-up papers will discuss more about the results, including detailed studies of the brightest X-ray sources. This future work will analyze other EWOCS observations, involving NASA’s James Webb Space Telescope and NICER (Neutron Star Interior Composition Explorer).

NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science from Cambridge Massachusetts and flight operations from Burlington, Massachusetts.

Read more from NASA’s Chandra X-ray Observatory.

For more Chandra images, multimedia and related materials, visit:

https://www.nasa.gov/mission/chandra-x-ray-observatory/

Visual Description:

This is an image of the Westerlund 1 star cluster and the surrounding region, as detected in X-ray and optical light. The black canvas of space is peppered with colored dots of light of various sizes, mostly in shades of red, green, blue, and white.

At the center of the image is a semi-transparent, red and yellow cloud of gas encircling a grouping of tightly packed gold stars. The shape and distribution of stars in the cluster call to mind effervescent soda bubbles dancing above the ice cubes of a recently poured beverage.

News Media Contact

Megan Watzke
Chandra X-ray Center
Cambridge, Mass.
617-496-7998

Jonathan Deal
Marshall Space Flight Center
Huntsville, Ala.
256-544-0034

Categories: NASA

Why is Neptune's magnetic field so weird? An exotic molecule may be the answer

Space.com - Fri, 06/07/2024 - 2:00pm
An exotic molecule stabilized by intense pressure found in the icy depths of Neptune and Uranus could help explain a long-standing mystery.
Categories: Astronomy

Starliner and Starship launches propel space industry into a new era

New Scientist Space - Space Headlines - Fri, 06/07/2024 - 1:57pm
SpaceX successfully launched its Starship rocket on the same day that Boeing’s Starliner craft made its first crewed flight, a sign that the space industry is hotting up
Categories: Astronomy

Starliner and Starship launches propel space industry into a new era

New Scientist Space - Cosmology - Fri, 06/07/2024 - 1:57pm
SpaceX successfully launched its Starship rocket on the same day that Boeing’s Starliner craft made its first crewed flight, a sign that the space industry is hotting up
Categories: Astronomy

NASA to Discuss Upcoming Spacewalks for Station Repairs, Upgrades

NASA - Breaking News - Fri, 06/07/2024 - 1:10pm
Astronaut waves during a spacewalk outside of the International Space Station (Credits: NASA)

NASA astronauts aboard the International Space Station will conduct three spacewalks targeted for June. NASA will discuss the upcoming spacewalks during a news conference at 4 p.m. EDT Tuesday, June 11.Live coverage will air on NASA+, NASA Television, the NASA appYouTube, and the agency’s website. Learn how to stream NASA TV through a variety of platforms including social media.

Participants in the news conference include:

  • Dina Contella, deputy program manager, International Space Station
  • Rebecca Wingfield, flight director, spacewalk 90
  • Nicole McElroy, flight director, spacewalk 91
  • Sandy Fletcher, spacewalk officer, spacewalk 90
  • Faruq Sabur, spacewalk officer, spacewalk 91 and 92

U.S. media interested in participating in person must contact the Johnson newsroom no later than 4 p.m. Monday, June 10, at: 281-483-5111 or jsccommu@mail.nasa.gov. To ask questions, media must dial in no later than 15 minutes before the start of the news conference. Questions also may be submitted on social media using #AskNASA.

For the first spacewalk, NASA astronauts Tracy C. Dyson and Matt Dominick will exit the station’s Quest airlock to complete the removal of a faulty electronics box, called a radio frequency group, from a communications antenna on the starboard truss of the space station. The pair also will collect samples for analysis to understand the ability of microorganisms to survive and reproduce on the exterior of the orbiting laboratory.

Dyson will serve as spacewalk crew member 1 and will wear a suit with red stripes. Dominick will serve as spacewalk crew member 2 and will wear an unmarked suit. U.S. spacewalk 90 will be the fourth for Dyson and the first for Dominick. NASA will announce participating crew members for U.S. spacewalks 91 and 92 following the completion of the first and will provide additional coverage details.

For the second spacewalk, astronauts will remove and replace the external high-definition camera located at camera port nine on the orbiting laboratory. This camera is one of several to provide external views of the space station. Additionally, crew members will complete a cable connection fit check for the alpha magnetic spectrometer, a particle physics experiment on the station’s exterior. If not completed during U.S. spacewalk 90, the astronauts will begin by collecting microorganism samples.

For the third spacewalk, crew members will remove and replace a rate gyro assembly, which provides data on the orientation of the space station. Astronauts will then attach a support bracket, called a modification kit, in preparation for future installation of the orbiting laboratory’s next International Space Station Roll-Out Solar Array on the 2A power channel on the port truss.

Learn more about the space station, its research, and crew, at:

https://www.nasa.gov/station

-end-

Josh Finch / Claire O’Shea
Headquarters, Washington
202-358-1100
joshua.a.finch@nasa.gov / claire.a.o’shea@nasa.gov
Sandra Jones / Anna Schneider
Johnson Space Center, Houston
281-483-5111
sandra.p.jones@nasa.gov / anna.c.schneider@nasa.gov

Categories: NASA

What is a heat dome and are they getting worse with climate change?

New Scientist Space - Space Headlines - Fri, 06/07/2024 - 1:02pm
Mexico and the southern US have seen extreme temperatures due to a heat dome, a weather phenomenon that will become more intense with climate change
Categories: Astronomy

What is a heat dome and are they getting worse with climate change?

New Scientist Space - Cosmology - Fri, 06/07/2024 - 1:02pm
Mexico and the southern US have seen extreme temperatures due to a heat dome, a weather phenomenon that will become more intense with climate change
Categories: Astronomy

US military test launches 2 unarmed intercontinental ballistic missiles in 2 days

Space.com - Fri, 06/07/2024 - 1:00pm
The United States Air Force and U.S. Space Force conducted two routine test launches of unarmed intercontinental ballistic missiles this week from Vandenberg Space Force Base.
Categories: Astronomy

PACE Celebrates National Ocean Month With Colorful Views of the Planet

NASA - Breaking News - Fri, 06/07/2024 - 1:00pm

3 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) Credit: NASA/Ryan Fitzgibbons

What do you give to an ocean that has everything? This year, for National Ocean Month, NASA’s Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) satellite— is gifting us a unique look at our home planet. The visualizations created with data from the satellite, which launched on Feb. 8, are already enhancing the ways that we view our seas and skies. 

The PACE satellite views our entire planet every day, returning data at a cadence that allows scientists to track and monitor the rapidly changing atmosphere and ocean, including cloud formation, aerosol movement, and differences in microscopic ocean life over time.

The visualization starts with a view of swaths of Earth from PACE’s Ocean Color Instrument. The Ocean Color Instrument observes Earth in ultraviolet, visible, and near infrared light — over 200 wavelengths. With this level of detail, scientists can now, from space, regularly identify specific communities of phytoplankton — tiny organisms floating near the surface of the ocean that serve as the center of the marine food web. This is a major advance, as different types of phytoplankton play different roles in ocean ecosystems and health.

PACE orbits Earth in this visualization, exposing a swath of true color imagery. NASA’s Scientific Visualization Studio

Zooming in, the visualization shows the ecosystems and surrounding atmosphere off the United States’ East Coast and The Bahamas on March 21. Like previous satellites, the Ocean Color Instrument can detect chlorophyll in the ocean, which indicates the presence and abundance of phytoplankton. The Ocean Color Instrument adds to this by allowing scientists to determine the types of phytoplankton present, such as the three different types of phytoplankton identified in the visualization.

False color data visualization of phytoplankton (Picoeukaryotes and Prochlorococcus), as observed by PACE’s Ocean Color instrument (OCI).NASA’s Scientific Visualization Studio

The portion of the swirls in green indicate the presence of picoeukaryotes, organisms which are smaller than 0.3 micrometers in size — 30 times smaller than the width of a human hair. In light blue are prochlorococcus, the smallest known organism to turn sunlight into energy (photosynthesis); they account for a major fraction of all photosynthesis that occurs in the ocean. The portion of the bloom in bright pink indicates synechococcus, a phytoplankton group that can color the water light pink when many are present in a small area.

False color data visualization of phytoplankton (Picoeukaryotes and Synechococcus), as observed by PACE’s OCI instrument. NASA’s Scientific Visualization Studio

These are just three of the thousands of types of phytoplankton, and just the start of what the Ocean Color Instrument will be able to identify.

The PACE satellite’s two polarimeters, Hyper-Angular Rainbow Polarimeter #2 (HARP2) and Spectro-polarimeter for Planetary Exploration one (SPEXone), provide a unique view of Earth’s atmosphere, helping scientists learn more about clouds and small particles called aerosols. The polarimeters measure light that reflects off of these particles. By learning more about the interactions between clouds and aerosols, these data will ultimately help make climate models more accurate. Additionally, aerosols can degrade air quality, so monitoring their properties and movement is important for human health.

Aerosols, as observed by PACE’s HARP2 and SPEXone instruments.NASA’s Scientific Visualization Studio

In the visualization, the large swath of HARP2 data shows the concentration of aerosols in the air for that particular day. These data — a measure of the light scattering and absorbing properties of aerosols — help scientists not only locate the aerosols, but identify the type. Near the coast, the aerosols are most likely smoke from fires in the U.S. southeast. Adding detail to the visualization and the science, the thin swath of SPEXone data furthers the information by showing the aerosol particle size.

Over the next year, PACE scientists aim to create the first global maps of phytoplankton communities and glean new insights into how fisheries and aquatic resources are responding to Earth’s changing climate.

To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video

NASA’s Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) spacecraft was specifically designed to study the invisible universe of Earth’s sea and sky from the vantage point of space. We’ve measured 4-6 colors of the rainbow for decades, which has enabled us to “see” phytoplankton from space through the lens of its primary photosynthetic pigment, chlorophyll-a. PACE’s primary instrument is the first of its kind to measure all the colors of the rainbow, every day, everywhere. That means we can identify the type of phytoplankton behind the chlorophyll-a. Different types of phytoplankton have different effects on the food web, on water management, and on the climate, via their impact on the carbon cycle.NASA's Scientific Visualization Studio

By Erica McNamee

NASA’s Goddard Space Flight Center, Greenbelt, Md.

Share Details Last Updated Jun 07, 2024 EditorKate D. RamsayerContactErica McNameeerica.s.mcnamee@nasa.govLocationGoddard Space Flight Center Related Terms Explore More 4 min read NASA’s PACE Data on Ocean, Atmosphere, Climate Now Available Article 2 months ago 5 min read Early Adopters of NASA’s PACE Data to Study Air Quality, Ocean Health

From the atmosphere down to the surface of the ocean, data from NASA’s PACE (Plankton,…

Article 2 months ago
6 min read NASA’s PACE To Investigate Oceans, Atmosphere in Changing Climate

Earth’s oceans and atmosphere are changing as the planet warms. Some ocean waters become greener…

Article 5 months ago
Categories: NASA

Banning Fossil Fuel Ads Would Be Legally Difficult in the U.S.

Scientific American.com - Fri, 06/07/2024 - 12:30pm

This week U.N. Secretary-General António Guterres called for bans on fossil fuel ads, but legal challenges would make nationwide restrictions difficult to implement in the U.S.

Categories: Astronomy