There are many worlds and many systems of Universes existing all at the same time, all of them perishable.

— Anaximander 546 BC

Feed aggregator

Smile passes gruelling set of tests

ESO Top News - Tue, 07/15/2025 - 10:01am

All its parts have been built and put together. It has been wrapped in shiny gold insulating foil. Its launch is getting closer. But the Smile spacecraft had one major phase to pass before it could be certified ready for space – and it involved testing, testing and yet more testing.

Categories: Astronomy

Trump's 'Big Beautiful Bill' pushes for crewed moon missions, but proposed budget cuts leave NASA science behind

Space.com - Tue, 07/15/2025 - 10:00am
The U.S. government's "One, Big Beautiful Bill" Act finds funding for Artemis and Lunar Gateway, but nearly half of NASA's science missions are on the chopping block ahead of the 2026 budget.
Categories: Astronomy

One Survey by NASA’s Roman Could Unveil 100,000 Cosmic Explosions

NASA - Breaking News - Tue, 07/15/2025 - 9:49am

Scientists predict one of the major surveys by NASA’s upcoming Nancy Grace Roman Space Telescope may reveal around 100,000 celestial blasts, ranging from exploding stars to feeding black holes. Roman may even find evidence of some of the universe’s first stars, which are thought to completely self-destruct without leaving any remnant behind.

This simulation showcases the dynamic universe as NASA’s Nancy Grace Roman Space Telescope could see it over the course of its five-year primary mission. The video sparkles with synthetic supernovae from observations of the OpenUniverse simulated universe taken every five days (similar to the expected cadence of Roman’s High-Latitude Time-Domain Survey, which OpenUniverse simulates in its entirety). On top of the static sky of stars in the Milky Way and other galaxies, more than a million exploding stars flare into visibility and then slowly fade away. To highlight the dynamic physics happening and for visibility at this scale, the true brightness of each transient event has been magnified by a factor of 10,000 and no background light has been added to the simulated images. The video begins with Roman’s full field of view, which represents a single pointing of Roman’s camera, and then zooms into one square.Credit: NASA’s Goddard Space Flight Center and M. Troxel

Cosmic explosions offer clues to some of the biggest mysteries of the universe. One is the nature of dark energy, the mysterious pressure thought to be accelerating the universe’s expansion.

“Whether you want to explore dark energy, dying stars, galactic powerhouses, or probably even entirely new things we’ve never seen before, this survey will be a gold mine,” said Benjamin Rose, an assistant professor at Baylor University in Waco, Texas, who led a study about the results. The paper is published in The Astrophysical Journal.

Called the High-Latitude Time-Domain Survey, this observation program will scan the same large region of the cosmos every five days for two years. Scientists will stitch these observations together to create movies that uncover all sorts of cosmic fireworks.

Chief among them are exploding stars. The survey is largely geared toward finding a special class of supernova called type Ia. These stellar cataclysms allow scientists to measure cosmic distances and trace the universe’s expansion because they peak at about the same intrinsic brightness. Figuring out how fast the universe has ballooned during different cosmic epochs offers clues to dark energy.

This infographic describes the High-Latitude Time-Domain Survey that will be conducted by NASA’s Nancy Grace Roman Space Telescope. The survey’s main component will cover over 18 square degrees — a region of sky as large as 90 full moons — and see supernovae that occurred up to about 8 billion years ago. Smaller areas within the survey will pierce even farther, potentially back to when the universe was around a billion years old. The survey will be split between the northern and southern hemispheres, located in regions of the sky that will be continuously visible to Roman. The bulk of the survey will consist of 30-hour observations every five days for two years in the middle of Roman’s five-year primary mission.Credit: NASA’s Goddard Space Flight Center

In the new study, scientists simulated Roman’s entire High-Latitude Time-Domain Survey. The results suggest Roman could see around 27,000 type Ia supernovae—about 10 times more than all previous surveys combined.

Beyond dramatically increasing our total sample of these supernovae, Roman will push the boundaries of how far back in time we can see them. While most of those detected so far occurred within approximately the last 8 billion years, Roman is expected to see vast numbers of them earlier in the universe’s history, including more than a thousand that exploded more than 10 billion years ago and potentially dozens from as far back as 11.5 billion years. That means Roman will almost certainly set a new record for the farthest type Ia supernova while profoundly expanding our view of the early universe and filling in a critical gap in our understanding of how the cosmos has evolved over time.

“Filling these data gaps could also fill in gaps in our understanding of dark energy,” Rose said. “Evidence is mounting that dark energy has changed over time, and Roman will help us understand that change by exploring cosmic history in ways other telescopes can’t.”

But type Ia supernovae will be hidden among a much bigger sample of exploding stars Roman will see once it begins science operations in 2027. The team estimates Roman will also spot about 60,000 core-collapse supernovae, which occur when a massive star runs out of fuel and collapses under its own weight.

That’s different from type Ia supernovae, which originate from binary star systems that contain at least one white dwarf — the small, hot core remnant of a Sun-like star — siphoning material from a companion star. Core-collapse supernovae aren’t as useful for dark energy studies as type Ias are, but their signals look similar from halfway across the cosmos.

“By seeing the way an object’s light changes over time and splitting it into spectra — individual colors with patterns that reveal information about the object that emitted the light—we can distinguish between all the different types of flashes Roman will see,” said Rebekah Hounsell, an assistant research scientist at the University of Maryland-Baltimore County working at NASA’s Goddard Space Flight Center in Greenbelt, Maryland and a co-author of the study.

“With the dataset we’ve created, scientists can train machine-learning algorithms to distinguish between different types of objects and sift through Roman’s downpour of data to find them,” Hounsell added. “While searching for type Ia supernovae, Roman is going to collect a lot of cosmic ‘bycatch’—other phenomena that aren’t useful to some scientists, but will be invaluable to others.”

Hidden Gems

Thanks to Roman’s large, deep view of space, scientists say the survey should also unearth extremely rare and elusive phenomena, including even scarcer stellar explosions and disintegrating stars.

Upon close approach to a black hole, intense gravity can shred a star in a so-called tidal disruption event. The stellar crumbs heat up as they swirl around the black hole, creating a glow astronomers can see from across vast stretches of space-time. Scientists think Roman’s survey will unveil 40 tidal disruption events, offering a chance to learn more about black hole physics.

The team also estimates Roman will find about 90 superluminous supernovae, which can be 100 times brighter than a typical supernova. They pack a punch, but scientists aren’t completely sure why. Finding more of them will help astronomers weigh different theories.

Even rarer and more powerful, Roman could also detect several kilonovae. These blasts occur when two neutron stars — extremely dense cores leftover from stars that exploded as supernovae — collide. To date, there has been only one definitive kilonova detection. The team estimates Roman could spot five more.

This artist’s concept visualizes a kilonova – an explosion that happens when two neutron stars or a neutron star and a black hole collide and merge. When these collisions happen, a fraction of the resulting debris is ejected as jets, which move near the speed of light. The remaining debris produces hot, glowing, neutron-rich clouds that forge heavy elements, like gold and platinum. Researchers will mine data from NASA’s Nancy Grace Roman Space Telescope, which will survey the same areas of the sky every few days, to identify kilonovae. Roman’s extensive data will help astronomers better identify how often these events occur, how much energy they give off, and how near or far they are.Credit: NASA, ESA, J. Olmsted (STScI)

That would help astronomers learn much more about these mysterious events, potentially including their fate. As of now, scientists are unsure whether kilonovae result in a single neutron star, a black hole, or something else entirely.

Roman may even spot the detonations of some of the first stars that formed in the universe. These nuclear furnaces were giants, up to hundreds of times more massive than our Sun, and unsullied by heavy elements that hadn’t yet formed.

They were so massive that scientists think they exploded differently than modern massive stars do. Instead of reaching the point where a heavy star today would collapse, intense gamma rays inside the first stars may have turned into matter-antimatter pairs (electrons and positrons). That would drain the pressure holding the stars up until they collapsed, self-destructing in explosions so powerful they’re thought to leave nothing behind.

So far, astronomers have found about half a dozen candidates of these “pair-instability” supernovae, but none have been confirmed.

“I think Roman will make the first confirmed detection of a pair-instability supernova,” Rose said — in fact the study suggests Roman will find more than 10. “They’re incredibly far away and very rare, so you need a telescope that can survey a lot of the sky at a deep exposure level in near-infrared light, and that’s Roman.”

A future rendition of the simulation could include even more types of cosmic flashes, such as variable stars and active galaxies. Other telescopes may follow up on the rare phenomena and objects Roman discovers to view them in different wavelengths of light to study them in more detail.

“Roman’s going to find a whole bunch of weird and wonderful things out in space, including some we haven’t even thought of yet,” Hounsell said. “We’re definitely expecting the unexpected.”

For more information about the Roman Space Telescope visit www.nasa.gov/roman.

The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory in Southern California; Caltech/IPAC in Pasadena, California; the Space Telescope Science Institute in Baltimore; and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems Inc. in Boulder, Colorado; L3Harris Technologies in Rochester, New York; and Teledyne Scientific & Imaging in Thousand Oaks, California.

By Ashley Balzer
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Share Details Last Updated Jul 15, 2025 EditorAshley BalzerContactAshley Balzerashley.m.balzer@nasa.gov Related Terms Explore More 6 min read NASA’s Roman Mission Shares Detailed Plans to Scour Skies Article 3 months ago 6 min read New Simulated Universe Previews Panoramas From NASA’s Roman Telescope Article 6 months ago 3 min read NASA’s Roman Space Telescope Team Installs Observatory’s Solar Panels Article 6 days ago
Categories: NASA

One Survey by NASA’s Roman Could Unveil 100,000 Cosmic Explosions

NASA News - Tue, 07/15/2025 - 9:49am

Scientists predict one of the major surveys by NASA’s upcoming Nancy Grace Roman Space Telescope may reveal around 100,000 celestial blasts, ranging from exploding stars to feeding black holes. Roman may even find evidence of some of the universe’s first stars, which are thought to completely self-destruct without leaving any remnant behind.

This simulation showcases the dynamic universe as NASA’s Nancy Grace Roman Space Telescope could see it over the course of its five-year primary mission. The video sparkles with synthetic supernovae from observations of the OpenUniverse simulated universe taken every five days (similar to the expected cadence of Roman’s High-Latitude Time-Domain Survey, which OpenUniverse simulates in its entirety). On top of the static sky of stars in the Milky Way and other galaxies, more than a million exploding stars flare into visibility and then slowly fade away. To highlight the dynamic physics happening and for visibility at this scale, the true brightness of each transient event has been magnified by a factor of 10,000 and no background light has been added to the simulated images. The video begins with Roman’s full field of view, which represents a single pointing of Roman’s camera, and then zooms into one square.Credit: NASA’s Goddard Space Flight Center and M. Troxel

Cosmic explosions offer clues to some of the biggest mysteries of the universe. One is the nature of dark energy, the mysterious pressure thought to be accelerating the universe’s expansion.

“Whether you want to explore dark energy, dying stars, galactic powerhouses, or probably even entirely new things we’ve never seen before, this survey will be a gold mine,” said Benjamin Rose, an assistant professor at Baylor University in Waco, Texas, who led a study about the results. The paper is published in The Astrophysical Journal.

Called the High-Latitude Time-Domain Survey, this observation program will scan the same large region of the cosmos every five days for two years. Scientists will stitch these observations together to create movies that uncover all sorts of cosmic fireworks.

Chief among them are exploding stars. The survey is largely geared toward finding a special class of supernova called type Ia. These stellar cataclysms allow scientists to measure cosmic distances and trace the universe’s expansion because they peak at about the same intrinsic brightness. Figuring out how fast the universe has ballooned during different cosmic epochs offers clues to dark energy.

This infographic describes the High-Latitude Time-Domain Survey that will be conducted by NASA’s Nancy Grace Roman Space Telescope. The survey’s main component will cover over 18 square degrees — a region of sky as large as 90 full moons — and see supernovae that occurred up to about 8 billion years ago. Smaller areas within the survey will pierce even farther, potentially back to when the universe was around a billion years old. The survey will be split between the northern and southern hemispheres, located in regions of the sky that will be continuously visible to Roman. The bulk of the survey will consist of 30-hour observations every five days for two years in the middle of Roman’s five-year primary mission.Credit: NASA’s Goddard Space Flight Center

In the new study, scientists simulated Roman’s entire High-Latitude Time-Domain Survey. The results suggest Roman could see around 27,000 type Ia supernovae—about 10 times more than all previous surveys combined.

Beyond dramatically increasing our total sample of these supernovae, Roman will push the boundaries of how far back in time we can see them. While most of those detected so far occurred within approximately the last 8 billion years, Roman is expected to see vast numbers of them earlier in the universe’s history, including more than a thousand that exploded more than 10 billion years ago and potentially dozens from as far back as 11.5 billion years. That means Roman will almost certainly set a new record for the farthest type Ia supernova while profoundly expanding our view of the early universe and filling in a critical gap in our understanding of how the cosmos has evolved over time.

“Filling these data gaps could also fill in gaps in our understanding of dark energy,” Rose said. “Evidence is mounting that dark energy has changed over time, and Roman will help us understand that change by exploring cosmic history in ways other telescopes can’t.”

But type Ia supernovae will be hidden among a much bigger sample of exploding stars Roman will see once it begins science operations in 2027. The team estimates Roman will also spot about 60,000 core-collapse supernovae, which occur when a massive star runs out of fuel and collapses under its own weight.

That’s different from type Ia supernovae, which originate from binary star systems that contain at least one white dwarf — the small, hot core remnant of a Sun-like star — siphoning material from a companion star. Core-collapse supernovae aren’t as useful for dark energy studies as type Ias are, but their signals look similar from halfway across the cosmos.

“By seeing the way an object’s light changes over time and splitting it into spectra — individual colors with patterns that reveal information about the object that emitted the light—we can distinguish between all the different types of flashes Roman will see,” said Rebekah Hounsell, an assistant research scientist at the University of Maryland-Baltimore County working at NASA’s Goddard Space Flight Center in Greenbelt, Maryland and a co-author of the study.

“With the dataset we’ve created, scientists can train machine-learning algorithms to distinguish between different types of objects and sift through Roman’s downpour of data to find them,” Hounsell added. “While searching for type Ia supernovae, Roman is going to collect a lot of cosmic ‘bycatch’—other phenomena that aren’t useful to some scientists, but will be invaluable to others.”

Hidden Gems

Thanks to Roman’s large, deep view of space, scientists say the survey should also unearth extremely rare and elusive phenomena, including even scarcer stellar explosions and disintegrating stars.

Upon close approach to a black hole, intense gravity can shred a star in a so-called tidal disruption event. The stellar crumbs heat up as they swirl around the black hole, creating a glow astronomers can see from across vast stretches of space-time. Scientists think Roman’s survey will unveil 40 tidal disruption events, offering a chance to learn more about black hole physics.

The team also estimates Roman will find about 90 superluminous supernovae, which can be 100 times brighter than a typical supernova. They pack a punch, but scientists aren’t completely sure why. Finding more of them will help astronomers weigh different theories.

Even rarer and more powerful, Roman could also detect several kilonovae. These blasts occur when two neutron stars — extremely dense cores leftover from stars that exploded as supernovae — collide. To date, there has been only one definitive kilonova detection. The team estimates Roman could spot five more.

This artist’s concept visualizes a kilonova – an explosion that happens when two neutron stars or a neutron star and a black hole collide and merge. When these collisions happen, a fraction of the resulting debris is ejected as jets, which move near the speed of light. The remaining debris produces hot, glowing, neutron-rich clouds that forge heavy elements, like gold and platinum. Researchers will mine data from NASA’s Nancy Grace Roman Space Telescope, which will survey the same areas of the sky every few days, to identify kilonovae. Roman’s extensive data will help astronomers better identify how often these events occur, how much energy they give off, and how near or far they are.Credit: NASA, ESA, J. Olmsted (STScI)

That would help astronomers learn much more about these mysterious events, potentially including their fate. As of now, scientists are unsure whether kilonovae result in a single neutron star, a black hole, or something else entirely.

Roman may even spot the detonations of some of the first stars that formed in the universe. These nuclear furnaces were giants, up to hundreds of times more massive than our Sun, and unsullied by heavy elements that hadn’t yet formed.

They were so massive that scientists think they exploded differently than modern massive stars do. Instead of reaching the point where a heavy star today would collapse, intense gamma rays inside the first stars may have turned into matter-antimatter pairs (electrons and positrons). That would drain the pressure holding the stars up until they collapsed, self-destructing in explosions so powerful they’re thought to leave nothing behind.

So far, astronomers have found about half a dozen candidates of these “pair-instability” supernovae, but none have been confirmed.

“I think Roman will make the first confirmed detection of a pair-instability supernova,” Rose said — in fact the study suggests Roman will find more than 10. “They’re incredibly far away and very rare, so you need a telescope that can survey a lot of the sky at a deep exposure level in near-infrared light, and that’s Roman.”

A future rendition of the simulation could include even more types of cosmic flashes, such as variable stars and active galaxies. Other telescopes may follow up on the rare phenomena and objects Roman discovers to view them in different wavelengths of light to study them in more detail.

“Roman’s going to find a whole bunch of weird and wonderful things out in space, including some we haven’t even thought of yet,” Hounsell said. “We’re definitely expecting the unexpected.”

For more information about the Roman Space Telescope visit www.nasa.gov/roman.

The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory in Southern California; Caltech/IPAC in Pasadena, California; the Space Telescope Science Institute in Baltimore; and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems Inc. in Boulder, Colorado; L3Harris Technologies in Rochester, New York; and Teledyne Scientific & Imaging in Thousand Oaks, California.

By Ashley Balzer
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Share Details Last Updated Jul 15, 2025 EditorAshley BalzerContactAshley Balzerashley.m.balzer@nasa.gov Related Terms Explore More 6 min read NASA’s Roman Mission Shares Detailed Plans to Scour Skies Article 3 months ago 6 min read New Simulated Universe Previews Panoramas From NASA’s Roman Telescope Article 6 months ago 3 min read NASA’s Roman Space Telescope Team Installs Observatory’s Solar Panels Article 5 days ago
Categories: NASA

Fourth NASA-Enabled Private Flight to Space Station Completes Safely

NASA - Breaking News - Tue, 07/15/2025 - 9:08am
The Axiom Mission 4 crew launched on June 25, 2025, aboard a SpaceX Dragon spacecraft to the International Space Station from NASA’s Kennedy Space Center in Florida. From left to right: Tibor Kapu of Hungary, ISRO (Indian Space Research Organization) astronaut Shubhanshu Shukla, former NASA astronaut Peggy Whitson, and ESA (European Space Agency) astronaut Sławosz Uznański-Wiśniewski of Poland (Credit: Axiom Space).

The NASA-supported fourth private astronaut mission to the International Space Station, Axiom Mission 4, completed its flight as part of the agency’s efforts to demonstrate demand and build operational knowledge for future commercial space stations.

The four-person crew safely returned to Earth, splashing down off the coast of California at 5:31 a.m. EDT on Tuesday, aboard a SpaceX Dragon spacecraft. Teams aboard SpaceX recovery vessels retrieved the spacecraft and astronauts. 

Peggy Whitson, former NASA astronaut and director of human spaceflight at Axiom Space, ISRO (Indian Space Research Organization) astronaut Shubhanshu Shukla, and ESA (European Space Agency) project astronaut Sławosz Uznański-Wiśniewski of Poland, and Hungarian to Orbit (HUNOR) astronaut Tibor Kapu of Hungary, completed about two and a half weeks in space.

The Axiom Mission 4 crew launched at 2:31 a.m. on June 25, on a Falcon 9 rocket from NASA’s Kennedy Space Center in Florida. Approximately 28 hours later, Dragon docked to the space-facing port of the space station’s Harmony module. The astronauts undocked at 7:15 a.m. on July 14, to begin the trip home.

The crew conducted microgravity research, educational outreach, and commercial activities. The spacecraft will return to Florida for inspection and processing at SpaceX’s refurbishing facilities. Throughout their mission, the astronauts conducted about 60 science experiments, and returned science, including NASA cargo, back to Earth.

A collaboration between NASA and ISRO allowed Axiom Mission 4 to deliver on a commitment highlighted by President Trump and Indian Prime Minister Narendra Modi to send the first ISRO astronaut to the station. The space agencies participated in five joint science investigations and two in-orbit science, technology, engineering, and mathematics demonstrations. NASA and ISRO have a long-standing relationship built on a shared vision to advance scientific knowledge and expand space collaboration.

The private mission also carried the first astronauts from Poland and Hungary to stay aboard the space station.

The International Space Station is a springboard for developing a low Earth orbit economy. NASA’s goal is to achieve a strong economy off the Earth where the agency can purchase services as one of many customers to meet its science and research objectives in microgravity. NASA’s commercial strategy for low Earth orbit provides the government with reliable and safe services at a lower cost, enabling the agency to focus on Artemis missions to the Moon in preparation for Mars while also continuing to use low Earth orbit as a training and proving ground for those deep space missions.

Learn more about NASA’s commercial space strategy at:

https://www.nasa.gov/commercial-space

News Media Contacts:
Claire O’Shea 
Headquarters, Washington 
202-358-1100 
claire.a.o’shea@nasa.gov

Anna Schneider 
Johnson Space Center, Houston 
281-483-5111 
anna.c.schneider@nasa.gov

Facebook logo @NASA @NASA Instagram logo @NASA Linkedin logo @NASA
Categories: NASA

Fourth NASA-Enabled Private Flight to Space Station Completes Safely

NASA News - Tue, 07/15/2025 - 9:08am
The Axiom Mission 4 crew launched on June 25, 2025, aboard a SpaceX Dragon spacecraft to the International Space Station from NASA’s Kennedy Space Center in Florida. From left to right: Tibor Kapu of Hungary, ISRO (Indian Space Research Organization) astronaut Shubhanshu Shukla, former NASA astronaut Peggy Whitson, and ESA (European Space Agency) astronaut Sławosz Uznański-Wiśniewski of Poland (Credit: Axiom Space).

The NASA-supported fourth private astronaut mission to the International Space Station, Axiom Mission 4, completed its flight as part of the agency’s efforts to demonstrate demand and build operational knowledge for future commercial space stations.

The four-person crew safely returned to Earth, splashing down off the coast of California at 5:31 a.m. EDT on Tuesday, aboard a SpaceX Dragon spacecraft. Teams aboard SpaceX recovery vessels retrieved the spacecraft and astronauts. 

Peggy Whitson, former NASA astronaut and director of human spaceflight at Axiom Space, ISRO (Indian Space Research Organization) astronaut Shubhanshu Shukla, and ESA (European Space Agency) project astronaut Sławosz Uznański-Wiśniewski of Poland, and Hungarian to Orbit (HUNOR) astronaut Tibor Kapu of Hungary, completed about two and a half weeks in space.

The Axiom Mission 4 crew launched at 2:31 a.m. on June 25, on a Falcon 9 rocket from NASA’s Kennedy Space Center in Florida. Approximately 28 hours later, Dragon docked to the space-facing port of the space station’s Harmony module. The astronauts undocked at 7:15 a.m. on July 14, to begin the trip home.

The crew conducted microgravity research, educational outreach, and commercial activities. The spacecraft will return to Florida for inspection and processing at SpaceX’s refurbishing facilities. Throughout their mission, the astronauts conducted about 60 science experiments, and returned science, including NASA cargo, back to Earth.

A collaboration between NASA and ISRO allowed Axiom Mission 4 to deliver on a commitment highlighted by President Trump and Indian Prime Minister Narendra Modi to send the first ISRO astronaut to the station. The space agencies participated in five joint science investigations and two in-orbit science, technology, engineering, and mathematics demonstrations. NASA and ISRO have a long-standing relationship built on a shared vision to advance scientific knowledge and expand space collaboration.

The private mission also carried the first astronauts from Poland and Hungary to stay aboard the space station.

The International Space Station is a springboard for developing a low Earth orbit economy. NASA’s goal is to achieve a strong economy off the Earth where the agency can purchase services as one of many customers to meet its science and research objectives in microgravity. NASA’s commercial strategy for low Earth orbit provides the government with reliable and safe services at a lower cost, enabling the agency to focus on Artemis missions to the Moon in preparation for Mars while also continuing to use low Earth orbit as a training and proving ground for those deep space missions.

Learn more about NASA’s commercial space strategy at:

https://www.nasa.gov/commercial-space

News Media Contacts:
Claire O’Shea 
Headquarters, Washington 
202-358-1100 
claire.a.o’shea@nasa.gov

Anna Schneider 
Johnson Space Center, Houston 
281-483-5111 
anna.c.schneider@nasa.gov

Facebook logo @NASA @NASA Instagram logo @NASA Linkedin logo @NASA
Categories: NASA

Bird Flu Is Killing Wildlife, and Experts Fear the Ecological Toll

Scientific American.com - Tue, 07/15/2025 - 9:00am

Bird flu fears have focused on the poultry and dairy industries and human health. But wild animals are threatened, too—at scales no one fully understands

Categories: Astronomy

Could Bird Flu Spread between Humans? Here’s What It Would Take

Scientific American.com - Tue, 07/15/2025 - 9:00am

The H5N1 avian flu is circulating in cows and other mammals. Whether it will make a permanent leap to humans is another question

Categories: Astronomy

Science Crossword: On the Fly

Scientific American.com - Tue, 07/15/2025 - 9:00am

Your favorite word game with a twist of science

Categories: Astronomy

Bird Flu Is out of the News but Still Circulating

Scientific American.com - Tue, 07/15/2025 - 9:00am

Bird flu was nearly everywhere in the U.S.—in chickens, cows, pet cats and even humans. Cases have gone down, but experts warn that it hasn’t disappeared

Categories: Astronomy

How Influenza Reassortment May Make Bird Flu More Dangerous

Scientific American.com - Tue, 07/15/2025 - 9:00am

Influenza viruses like bird flu can mix and match their genomes, and this has played a role in at least three of the last four flu pandemics

Categories: Astronomy

The largest Mars rock on Earth is up for auction in NYC — it could be yours for $4 million (or more)

Space.com - Tue, 07/15/2025 - 9:00am
The largest Mars rock on Earth will soon be auctioned off in NYC, and could sell for at least $2 million.
Categories: Astronomy

Complex knots can actually be easier to untie than simple ones

New Scientist Space - Cosmology - Tue, 07/15/2025 - 7:00am
Mathematicians have solved a decades-old problem in knot theory, discovering that linking two knots together can actually produce a knot that is easier to untie – the opposite of what was expected
Categories: Astronomy

Complex knots can actually be easier to untie than simple ones

New Scientist Space - Space Headlines - Tue, 07/15/2025 - 7:00am
Mathematicians have solved a decades-old problem in knot theory, discovering that linking two knots together can actually produce a knot that is easier to untie – the opposite of what was expected
Categories: Astronomy

Doctors Discover New Blood Type—And Only One Person Has It

Scientific American.com - Tue, 07/15/2025 - 7:00am

Newly discovered “Gwada-negative” is the rarest of 48 known blood groups

Categories: Astronomy

Astronomers discover giant alien planet 35 times more massive than Earth hiding in a known star system

Space.com - Tue, 07/15/2025 - 7:00am
"It remains possible that there are other unseen planets in the system. The challenge is finding them!"
Categories: Astronomy

Earth’s Poles Have Shifted because of Water Dams

Scientific American.com - Tue, 07/15/2025 - 6:30am

When large masses of water are moved from one place to another, this changes the shape of Earth and leads to a phenomenon called true polar wander

Categories: Astronomy

Melissa Harris: Shaping NASA’s Vision for a Future in Low Earth Orbit

NASA - Breaking News - Tue, 07/15/2025 - 6:00am
Melissa Harris’ official NASA portrait. NASA/Robert Markowitz

With over 25 years of experience in human spaceflight programs, Melissa Harris has contributed to numerous programs and projects during key moments in NASA’s history. As the life cycle lead and Independent Review Team review manager for the Commercial Low Earth Orbit Development Program, she guides the agency through development initiatives leading to a new era of space exploration.  

Harris grew up near NASA’s Johnson Space Center in Houston and spent time exploring the center and trying on astronaut helmets. She later earned her bachelor’s degree in legal studies from the University of Houston, master and subject matter expert certifications in configuration management, and ISO 9001 Lead Auditors Certification. When the opportunity arose, she jumped at the chance to join the International Space Station Program. 

Harris (right) and her twin sister, Yvonne (left), at the Artemis I launch. Image courtesy of Melissa Harris

Starting as a board specialist, Harris spent eight years supporting the space station program boards, panels, and flight reviews. Other areas of support included the International Space Station Mission Evaluation Room and the EVA Crew Systems and Robotics Division managing changes for the acquisition and building of mockups in the Neutral Buoyancy Laboratory and Space Vehicle Mockup Facility in Houston. She then took a leap to join the Constellation Program, developing and overseeing program and project office processes and procedures. Harris then transitioned to the Extravehicular Activity (EVA) Project Office where she was a member of the EVA 23 quality audit team tasked with reviewing data to determine the cause of an in-orbit failure. She also contributed to the Orion Program and Artemis campaign. After spending two years at Axiom Space, Harris returned to NASA and joined the commercial low Earth orbit team. 

Harris said the biggest lesson she has learned during her career is that “there are always ups and downs and not everything works out, but if you just keep going and at the end of the day see that the hard work and dedication has paid off, it is always the proudest moment.”  

Her dedication led to a nomination for the Stellar Award by the Rotary National Award for Space Achievement Foundation.

Harris and her son, Tyler, at the Rotary National Award Banquet in 2024.Image courtesy of Melissa Harris

Harris’ favorite part of her role at NASA is working “closely with brilliant minds” and being part of a dedicated and hard-working team that contributes to current space programs while also planning for future programs. Looking forward, she anticipates witnessing the vision and execution of a self-sustaining commercial market in low Earth orbit come to fruition. 

Outside of work, Harris enjoys being with family, whether cooking on the back porch, over a campfire, or traveling both in and out of the country. She has been married for 26 years to her high school sweetheart, Steve, and has one son, Tyler. Her identical twin sister, Yvonne, also works at Johnson. 

Harris and her twin sister Yvonne dressed as Mark and Scott Kelly for Halloween in 2024.Image courtesy of Melissa Harris

Learn more about NASA’s Commercial Low Earth Orbit Development Program at: 

www.nasa.gov/commercialspacestations

Categories: NASA

Melissa Harris: Shaping NASA’s Vision for a Future in Low Earth Orbit

NASA News - Tue, 07/15/2025 - 6:00am
Melissa Harris’ official NASA portrait. NASA/Robert Markowitz

With over 25 years of experience in human spaceflight programs, Melissa Harris has contributed to numerous programs and projects during key moments in NASA’s history. As the life cycle lead and Independent Review Team review manager for the Commercial Low Earth Orbit Development Program, she guides the agency through development initiatives leading to a new era of space exploration.  

Harris grew up near NASA’s Johnson Space Center in Houston and spent time exploring the center and trying on astronaut helmets. She later earned her bachelor’s degree in legal studies from the University of Houston, master and subject matter expert certifications in configuration management, and ISO 9001 Lead Auditors Certification. When the opportunity arose, she jumped at the chance to join the International Space Station Program. 

Harris (right) and her twin sister, Yvonne (left), at the Artemis I launch. Image courtesy of Melissa Harris

Starting as a board specialist, Harris spent eight years supporting the space station program boards, panels, and flight reviews. Other areas of support included the International Space Station Mission Evaluation Room and the EVA Crew Systems and Robotics Division managing changes for the acquisition and building of mockups in the Neutral Buoyancy Laboratory and Space Vehicle Mockup Facility in Houston. She then took a leap to join the Constellation Program, developing and overseeing program and project office processes and procedures. Harris then transitioned to the Extravehicular Activity (EVA) Project Office where she was a member of the EVA 23 quality audit team tasked with reviewing data to determine the cause of an in-orbit failure. She also contributed to the Orion Program and Artemis campaign. After spending two years at Axiom Space, Harris returned to NASA and joined the commercial low Earth orbit team. 

Harris said the biggest lesson she has learned during her career is that “there are always ups and downs and not everything works out, but if you just keep going and at the end of the day see that the hard work and dedication has paid off, it is always the proudest moment.”  

Her dedication led to a nomination for the Stellar Award by the Rotary National Award for Space Achievement Foundation.

Harris and her son, Tyler, at the Rotary National Award Banquet in 2024.Image courtesy of Melissa Harris

Harris’ favorite part of her role at NASA is working “closely with brilliant minds” and being part of a dedicated and hard-working team that contributes to current space programs while also planning for future programs. Looking forward, she anticipates witnessing the vision and execution of a self-sustaining commercial market in low Earth orbit come to fruition. 

Outside of work, Harris enjoys being with family, whether cooking on the back porch, over a campfire, or traveling both in and out of the country. She has been married for 26 years to her high school sweetheart, Steve, and has one son, Tyler. Her identical twin sister, Yvonne, also works at Johnson. 

Harris and her twin sister Yvonne dressed as Mark and Scott Kelly for Halloween in 2024.Image courtesy of Melissa Harris

Learn more about NASA’s Commercial Low Earth Orbit Development Program at: 

www.nasa.gov/commercialspacestations

Categories: NASA

Private Ax-4 astronauts splash down aboard SpaceX capsule to conclude ISS mission (video)

Space.com - Tue, 07/15/2025 - 5:50am
The four astronauts of Axiom Space's latest private mission have safely returned to Earth after more that two weeks aboard the International Space Station.
Categories: Astronomy