Feed aggregator
Air filters in classrooms reduce sick days by more than 10 per cent
Air filters in classrooms reduce sick days by more than 10 per cent
US Army launches hypersonic missile from Cape Canaveral Space Force Station
NASA Soars to New Heights in First 100 Days of Trump Administration
Today is the 100th day of the Trump-Vance Administration after being inaugurated on Jan. 20. In his inaugural address, President Trump laid out a bold and ambitious vision for NASA’s future throughout his second term, saying, “We will pursue our manifest destiny into the stars, launching American astronauts to plant the Stars and Stripes on the planet Mars.” NASA has spent the first 100 days in relentless pursuit of this goal, continually exploring, innovating, and inspiring for the benefit of humanity.
“In just 100 days, under the bold leadership of President Trump and acting Administrator Janet Petro, NASA has continued to further American innovation in space,” said Bethany Stevens, NASA press secretary. “From expediting the return of American astronauts home after an extended stay aboard the state-of-the-art International Space Station, to bringing two new nations on as signatories of the Artemis Accords, to the historic SPHEREx mission launch that takes us one step closer to mapping the secrets of the universe, NASA continues to lead on the world stage. Here at NASA, we’re putting the America First agenda into play amongst the stars, ensuring the United States wins the space race at this critical juncture in time.”
A litany of victories in the first 100 days set the stage for groundbreaking success throughout the remainder of the term. Read more about NASA’s cutting-edge work in this short, yet dynamic, period of time below:
Bringing Astronauts Home Safely, Space Station Milestones
- America brought Crew-9 safely home. NASA astronauts Butch Wilmore, Suni Williams, and Nick Hague, along with Roscosmos cosmonaut Aleksandr Gorbunov, returned to Earth after a successful mission aboard the International Space Station, splashing down in the Gulf of America. Their safe return reflects America’s unwavering commitment to the agency’s astronauts and mission success.
- A new, American-led mission launched to space. The agency’s Crew-10 mission is currently aboard the space station, with NASA astronauts Anne McClain and Nichole Ayers, joined by international partners from Japan and Russia. NASA continues to demonstrate American leadership and the power of space diplomacy as we maintain a continuous human presence in orbit.
- The agency welcomed home NASA astronaut Don Pettit, concluding a seven-month science mission aboard the orbiting laboratory. Pettit landed at 6:20 a.m. Kazakhstan time, April 20 on his 70th birthday, making him NASA’s oldest active astronaut and the third oldest person to reach orbit.
- NASA astronaut Jonny Kim launched and arrived safely at the International Space Station, marking the start of his first space mission. Over eight months, he’ll lead groundbreaking research that advances science and improves life on Earth, proving once again that Americans are built to lead in space.
- The four members of the agency’s SpaceX Crew-11, NASA astronauts Zena Cardman and Mike Fincke, JAXA (Japan Aerospace Exploration Agency) astronaut Kimiya Yui, and Roscosmos cosmonaut Oleg Platonov were named by NASA. Launching no earlier than July 2025, this mission continues America’s leadership in long-duration human spaceflight while strengthening critical global partnerships.
- NASA announced Chris Williams will launch in November 2025 for his first spaceflight. His upcoming mission underscores the pipeline of American talent ready to explore space and expand our presence beyond Earth.
- NASA is inviting U.S. industry to propose two new private astronaut missions to the space station in 2026 and 2027 – building toward a future where American companies sustain a continuous human presence in space and advance our national space economy.
- NASA and SpaceX launched the 32nd Commercial Resupply Services mission, delivering 6,700 pounds of cargo to the International Space Station. These investments in science and technology continue to strengthen America’s leadership in low Earth orbit. The payload supports cutting-edge research, including:
- New maneuvers for free-flying robots
- An advanced air quality monitoring system
- Two atomic clocks to explore relativity and ultra-precise timekeeping
Sending Humans to Moon, Mars
- Teams began hot fire testing the first of three 12-kW Solar Electric Propulsion (SEP) thrusters. These high-efficiency thrusters are a cornerstone of next-generation spaceflight, as they offer greater fuel economy and mission flexibility than traditional chemical propulsion, making them an asset for long-duration missions to the Moon, Mars, and beyond. For Mars in particular, SEP enables three key elements required for success:
- Sustained cargo transport
- Orbital maneuvering
- Transit operations
- NASA completed the fourth Entry Descent and Landing technology test in three months, accelerating innovation to achieve precision landings on Mars’ thin atmosphere and rugged terrain.
- NASA’s Deep Space Optical Communications experiment aboard Psyche broke new ground, enabling the high-bandwidth connections vital for communications with crewed missions to Mars.
- Firefly Aerospace’s Blue Ghost Mission One successfully delivered 10 NASA payloads to the Moon, advancing landing, autonomy, and data collection skills for Mars missions.
- Intuitive Machines’ IM-2 mission achieved the southernmost lunar landing, collecting critical data from challenging terrain to inform Mars exploration strategies.
- NASA cameras aboard Firefly’s Blue Ghost lander captured unprecedented footage of engine plume-surface interactions, offering vital data for designing safer landings on the Moon and Mars.
- The agency’s Stereo Cameras for Lunar Plume-Surface Studies (SCALPSS) 1.1 aboard Blue Ghost collected more than 9,000 images of lunar descent, providing insights on lander impacts and terrain interaction to guide future spacecraft design.
- New SCALPSS hardware delivered for Blue Origin’s Blue Mark 1 mission also is enhancing lunar landing models, helping build precision landing systems for the Moon and Mars. The LuGRE (Lunar Global Navigation Satellite System Receiver Experiment) on Blue Ghost acquired Earth navigation signals from the Moon, advancing autonomous positioning systems crucial for lunar and Mars operations.
- The Electrodynamic Dust Shield successfully cleared lunar dust, demonstrating a critical technology for protecting equipment on the Moon and Mars.
- Astronauts aboard the space station conducted studies to advance understanding of how to keep crews healthy on long-duration Mars missions.
- NASA’s Moon to Mars Architecture Workshop gathered industry, academic, and international partners to refine exploration plans and identify collaboration opportunities.
Artemis Milestones
- NASA completed stacking the twin solid rocket boosters for Artemis II, the mission that will send American astronauts around the Moon for the first time in more than 50 years. This is a powerful step toward returning our nation to deep space.
- At NASA’s Kennedy Space Center in Florida, teams joined the core stage with the solid rocket boosters inside the Vehicle Assembly Building.
- Engineers lifted the launch vehicle stage adapter atop the SLS (Space Launch System) core stage, connecting key systems that will soon power NASA’s return to the Moon.
- Teams received the Interim Cryogenic Propulsion Stage and moved the SLS core stage into the transfer aisle, clearing another milestone as the agency prepares to fully integrate America’s most powerful rocket.
- NASA attached the solar array wings that will help power the Orion spacecraft on its journey around the Moon, laying the groundwork for humanity’s next giant leap.
- Technicians installed the protective fairings on Orion’s service module to shield the spacecraft during its intense launch and ascent phase, as NASA prepares to send astronauts farther than any have gone in more than half a century.
- The agency’s next-generation mobile launcher continues to take shape, with the sixth of 10 massive modules being installed. This structure will carry future Artemis rockets to the launch pad.
- NASA and the Department of Defense teamed up aboard the USS Somerset for Artemis II recovery training, ensuring the agency and its partners are ready to safely retrieve Artemis astronauts after their historic mission around the Moon.
- NASA unveiled the Artemis II mission patch. The patch designates the mission as “AII,” signifying not only the second major flight of the Artemis campaign but also an endeavor of discovery that seeks to explore for all and by all.
America First in Space
- NASA announced the first major science results from asteroid Bennu, revealing ingredients essential for life, a discovery made possible by U.S. leadership in planetary science through the OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer) mission. The team found salty brines, 14 of the 20 amino acids used to make proteins, and all five DNA nucleobases, suggesting that the conditions and ingredients for life were widespread in our early solar system. And this is just the beginning – these results were from analysis of only 0.06% of the sample.
- NASA was named one of TIME’s Best Companies for Future Leaders, underscoring the agency’s role in cultivating the next generation of American innovators.
- NASA awarded contracts to U.S. industry supporting Earth science missions, furthering our understanding of the planet while strengthening America’s industrial base.
- As part of the Air Traffic Management-Exploration project, NASA supported Boeing’s test of digital and autonomous taxiing with a Cessna Caravan at Moffett Federal Airfield. The test used real-time simulations from the agency’s Future Flight Central to gather data that will help Boeing refine its systems and safely integrate advanced technologies into national airspace, demonstrating American aviation leadership.
- NASA successfully completed its automated space traffic coordination objectives between the agency’s four Starling spacecraft and SpaceX’s Starlink constellation. Teams demonstrated four risk mitigation maneuvers, autonomously resolving close approaches between two spacecraft with different owner/operators.
- In collaboration with the National Institute of Aeronautics, NASA selected eight finalists in a university competition aimed at designing innovative aviation solutions that can help the agriculture industry. NASA’s Gateways to Blue Skies seeks ways to apply American aircraft and aviation technology to enhance the productivity, efficiency, and resiliency of American farms.
- In Houston, United Airlines pilots successfully conducted operational tests of NASA-developed technologies designed to reduce flight delays. Using technologies from the Air Traffic Management Exploration project, pilots flew efficient re-routes, avoiding airspace with bad weather upon departure. United plans to expand the use of these capabilities, another example of how NASA innovations benefit all humanity.
- On March 11, NASA’s newest astrophysics observatory, SPHEREx, launched on its journey to answer fundamental questions about our universe, thanks to the dedication and expertise of the agency’s team. Riding aboard a SpaceX Falcon 9 from Vandenberg Space Force Base, SPHEREx will scan the entire sky to study how galaxies formed, search for the building blocks of life, and look back to the universe’s earliest moments. After launch, SPHEREx turned on its detectors, and everything is performing as expected.
- Also onboard were four small satellites for NASA’s PUNCH (Polarimeter to Unify the Corona and Heliosphere) mission, which will help scientists understand how the Sun’s outer atmosphere becomes solar wind. These missions reflect the best of the agency – pushing the boundaries of discovery and expanding our understanding of the cosmos.
- On March 14, NASA’s EZIE (Electrojet Zeeman Imaging Explorer) mission launched from Vandenberg Space Force Base. This trio of small satellites will study auroral electrojets, or intense electric currents flowing high above Earth’s poles, helping the agency better understand space weather and its effects on our planet. The mission has taken its first measurements, demonstrating that the spacecraft and onboard instrument are working as expected.
- The X-59 quiet supersonic aircraft cleared another hurdle on its way to first flight. The team successfully completed an engine speed hold test, confirming the “cruise control” system functions as designed.
- NASA researchers successfully tested a prototype that could help responders fight and monitor wildfires, even in low-visibility conditions. The Portable Airspace Management System, developed by NASA’s Advanced Capabilities for Emergency Response Operations project, safely coordinated simulated operations involving drones and other aircraft, tackling a major challenge for those on the front lines. This is just one example of how NASA’s innovation is making a difference where it’s needed most.
- NASA’s Parker Solar Probe completed its 23rd close approach to the Sun, coming within 3.8 million miles of the solar surface while traveling at 430,000 miles per hour – matching its own records for distance and speed. That same day, Parker Solar Probe was awarded the prestigious Collier Trophy, a well-earned recognition for its groundbreaking contributions to heliophysics.
- In response to severe weather that impacted more than 10 states earlier this month, the NASA Disasters Response Coordination System activated to support national partners. NASA worked closely with the National Weather Service and the Federal Emergency Management Agency serving the central and southeastern U.S. to provide satellite data and expertise that help communities better prepare, respond, and recover.
- As an example of how NASA’s research today is shaping the transportation of tomorrow, the agency’s aeronautics engineers began a flight test campaign focused on safely integrating air taxis into the national airspace. Using a Joby Aviation demonstrator aircraft, engineers are helping standardize flight test maneuvers, improving tools to assist with collision avoidance and landing operations, and ensuring safe and efficient air taxis operations in various weather conditions.
- NASA premiered “Planetary Defenders,” a new documentary that follows the dedicated team behind asteroid detection and planetary defense. The film debuted at an event at the agency’s headquarters with digital creators, interagency and international partners, and now is streaming on NASA+, YouTube, and X. In its first 24 hours, it saw 25,000 views on YouTube – 75% above average – and reached 4 million impressions on X.
- Finland became the 53rd nation to sign the Artemis Accords, reaffirming its commitment to the peaceful, transparent, and responsible exploration of space. This milestone underscores the growing global coalition led by the United States to establish a sustainable and cooperative presence beyond Earth.
- In Dhaka, Bangladesh, NASA welcomed a new signatory to the Artemis Accords. Bangladesh became the 54th nation to commit to the peaceful, safe, and responsible exploration of space. It’s a milestone that reflects our shared values and growing global momentum, reaffirming the United States’ leadership in building a global coalition for peaceful space exploration.
- At NASA’s Armstrong Flight Research Center in Edwards, California, engineers conducted calibration flights for a new shock-sensing probe that will support future flight tests of the X-59 quiet supersonic demonstrator. Mounted on a research F-15D that will follow the X-59 closely in flight, the probe will gather data on the shock waves the X-59 generates, providing important data about its ability to fly faster than sound, but produce only a quiet thump.
- In its second asteroid encounter, Lucy flew by the asteroid Donaldjohanson and gave NASA a close look at a uniquely shaped fragment dating back 150 million years – an impressive performance ahead of its main mission target in 2027.
- A celebration of decades of discovery, NASA’s Hubble Space Telescope celebrated its 35th anniversary with new observations ranging from nearby solar system objects to distant galaxies – proof that Hubble continues to inspire wonder and advance our understanding of the universe.
- The SPHEREx team rang the closing bell at the New York Stock Exchange, spotlighting NASA’s newest space telescope and its bold mission to explore the origins of the universe.
- NASA received six Webby Awards and six People’s Voice Awards across platforms – recognition of America’s excellence in digital engagement and public communication.
- The NASA Electric Aircraft Testbed and Advanced Air Transport Technology project concluded testing of a 2.5-megawatt Wright Electric motor designed to eventually serve large aircraft. The testing used the project’s capabilities to simulate altitude conditions of up to 40,000 feet while the electric motor, the most powerful tested so far at the facility, ran at both full voltage and partial power. NASA partnered with the Department of Energy on the tests.
- U.S. entities can now request the Glenn Icing Computational Environment (GlennICE) tool from the NASA Software Catalog and discover solutions to icing challenges for novel engine and aircraft designs. A 3D computational tool, GlennICE allows engineers to integrate icing-related considerations earlier in the aircraft design process and enable safer, more efficient designs while saving costs in the design process.
For more about NASA’s mission, visit:
-end-
Bethany Stevens
Headquarters, Washington
202-358-1600
bethany.c.stevens@nasa.gov
NASA Soars to New Heights in First 100 Days of Trump Administration
Today is the 100th day of the Trump-Vance Administration after being inaugurated on Jan. 20. In his inaugural address, President Trump laid out a bold and ambitious vision for NASA’s future throughout his second term, saying, “We will pursue our manifest destiny into the stars, launching American astronauts to plant the Stars and Stripes on the planet Mars.” NASA has spent the first 100 days in relentless pursuit of this goal, continually exploring, innovating, and inspiring for the benefit of humanity.
“In just 100 days, under the bold leadership of President Trump and acting Administrator Janet Petro, NASA has continued to further American innovation in space,” said Bethany Stevens, NASA press secretary. “From expediting the return of American astronauts home after an extended stay aboard the state-of-the-art International Space Station, to bringing two new nations on as signatories of the Artemis Accords, to the historic SPHEREx mission launch that takes us one step closer to mapping the secrets of the universe, NASA continues to lead on the world stage. Here at NASA, we’re putting the America First agenda into play amongst the stars, ensuring the United States wins the space race at this critical juncture in time.”
A litany of victories in the first 100 days set the stage for groundbreaking success throughout the remainder of the term. Read more about NASA’s cutting-edge work in this short, yet dynamic, period of time below:
Bringing Astronauts Home Safely, Space Station Milestones
- America brought Crew-9 safely home. NASA astronauts Butch Wilmore, Suni Williams, and Nick Hague, along with Roscosmos cosmonaut Aleksandr Gorbunov, returned to Earth after a successful mission aboard the International Space Station, splashing down in the Gulf of America. Their safe return reflects America’s unwavering commitment to the agency’s astronauts and mission success.
- A new, American-led mission launched to space. The agency’s Crew-10 mission is currently aboard the space station, with NASA astronauts Anne McClain and Nichole Ayers, joined by international partners from Japan and Russia. NASA continues to demonstrate American leadership and the power of space diplomacy as we maintain a continuous human presence in orbit.
- The agency welcomed home NASA astronaut Don Pettit, concluding a seven-month science mission aboard the orbiting laboratory. Pettit landed at 6:20 a.m. Kazakhstan time, April 20 on his 70th birthday, making him NASA’s oldest active astronaut and the third oldest person to reach orbit.
- NASA astronaut Jonny Kim launched and arrived safely at the International Space Station, marking the start of his first space mission. Over eight months, he’ll lead groundbreaking research that advances science and improves life on Earth, proving once again that Americans are built to lead in space.
- The four members of the agency’s SpaceX Crew-11, NASA astronauts Zena Cardman and Mike Fincke, JAXA (Japan Aerospace Exploration Agency) astronaut Kimiya Yui, and Roscosmos cosmonaut Oleg Platonov were named by NASA. Launching no earlier than July 2025, this mission continues America’s leadership in long-duration human spaceflight while strengthening critical global partnerships.
- NASA announced Chris Williams will launch in November 2025 for his first spaceflight. His upcoming mission underscores the pipeline of American talent ready to explore space and expand our presence beyond Earth.
- NASA is inviting U.S. industry to propose two new private astronaut missions to the space station in 2026 and 2027 – building toward a future where American companies sustain a continuous human presence in space and advance our national space economy.
- NASA and SpaceX launched the 32nd Commercial Resupply Services mission, delivering 6,700 pounds of cargo to the International Space Station. These investments in science and technology continue to strengthen America’s leadership in low Earth orbit. The payload supports cutting-edge research, including:
- New maneuvers for free-flying robots
- An advanced air quality monitoring system
- Two atomic clocks to explore relativity and ultra-precise timekeeping
Sending Humans to Moon, Mars
- Teams began hot fire testing the first of three 12-kW Solar Electric Propulsion (SEP) thrusters. These high-efficiency thrusters are a cornerstone of next-generation spaceflight, as they offer greater fuel economy and mission flexibility than traditional chemical propulsion, making them an asset for long-duration missions to the Moon, Mars, and beyond. For Mars in particular, SEP enables three key elements required for success:
- Sustained cargo transport
- Orbital maneuvering
- Transit operations
- NASA completed the fourth Entry Descent and Landing technology test in three months, accelerating innovation to achieve precision landings on Mars’ thin atmosphere and rugged terrain.
- NASA’s Deep Space Optical Communications experiment aboard Psyche broke new ground, enabling the high-bandwidth connections vital for communications with crewed missions to Mars.
- Firefly Aerospace’s Blue Ghost Mission One successfully delivered 10 NASA payloads to the Moon, advancing landing, autonomy, and data collection skills for Mars missions.
- Intuitive Machines’ IM-2 mission achieved the southernmost lunar landing, collecting critical data from challenging terrain to inform Mars exploration strategies.
- NASA cameras aboard Firefly’s Blue Ghost lander captured unprecedented footage of engine plume-surface interactions, offering vital data for designing safer landings on the Moon and Mars.
- The agency’s Stereo Cameras for Lunar Plume-Surface Studies (SCALPSS) 1.1 aboard Blue Ghost collected more than 9,000 images of lunar descent, providing insights on lander impacts and terrain interaction to guide future spacecraft design.
- New SCALPSS hardware delivered for Blue Origin’s Blue Mark 1 mission also is enhancing lunar landing models, helping build precision landing systems for the Moon and Mars. The LuGRE (Lunar Global Navigation Satellite System Receiver Experiment) on Blue Ghost acquired Earth navigation signals from the Moon, advancing autonomous positioning systems crucial for lunar and Mars operations.
- The Electrodynamic Dust Shield successfully cleared lunar dust, demonstrating a critical technology for protecting equipment on the Moon and Mars.
- Astronauts aboard the space station conducted studies to advance understanding of how to keep crews healthy on long-duration Mars missions.
- NASA’s Moon to Mars Architecture Workshop gathered industry, academic, and international partners to refine exploration plans and identify collaboration opportunities.
Artemis Milestones
- NASA completed stacking the twin solid rocket boosters for Artemis II, the mission that will send American astronauts around the Moon for the first time in more than 50 years. This is a powerful step toward returning our nation to deep space.
- At NASA’s Kennedy Space Center in Florida, teams joined the core stage with the solid rocket boosters inside the Vehicle Assembly Building.
- Engineers lifted the launch vehicle stage adapter atop the SLS (Space Launch System) core stage, connecting key systems that will soon power NASA’s return to the Moon.
- Teams received the Interim Cryogenic Propulsion Stage and moved the SLS core stage into the transfer aisle, clearing another milestone as the agency prepares to fully integrate America’s most powerful rocket.
- NASA attached the solar array wings that will help power the Orion spacecraft on its journey around the Moon, laying the groundwork for humanity’s next giant leap.
- Technicians installed the protective fairings on Orion’s service module to shield the spacecraft during its intense launch and ascent phase, as NASA prepares to send astronauts farther than any have gone in more than half a century.
- The agency’s next-generation mobile launcher continues to take shape, with the sixth of 10 massive modules being installed. This structure will carry future Artemis rockets to the launch pad.
- NASA and the Department of Defense teamed up aboard the USS Somerset for Artemis II recovery training, ensuring the agency and its partners are ready to safely retrieve Artemis astronauts after their historic mission around the Moon.
- NASA unveiled the Artemis II mission patch. The patch designates the mission as “AII,” signifying not only the second major flight of the Artemis campaign but also an endeavor of discovery that seeks to explore for all and by all.
America First in Space
- NASA announced the first major science results from asteroid Bennu, revealing ingredients essential for life, a discovery made possible by U.S. leadership in planetary science through the OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer) mission. The team found salty brines, 14 of the 20 amino acids used to make proteins, and all five DNA nucleobases, suggesting that the conditions and ingredients for life were widespread in our early solar system. And this is just the beginning – these results were from analysis of only 0.06% of the sample.
- NASA was named one of TIME’s Best Companies for Future Leaders, underscoring the agency’s role in cultivating the next generation of American innovators.
- NASA awarded contracts to U.S. industry supporting Earth science missions, furthering our understanding of the planet while strengthening America’s industrial base.
- As part of the Air Traffic Management-Exploration project, NASA supported Boeing’s test of digital and autonomous taxiing with a Cessna Caravan at Moffett Federal Airfield. The test used real-time simulations from the agency’s Future Flight Central to gather data that will help Boeing refine its systems and safely integrate advanced technologies into national airspace, demonstrating American aviation leadership.
- NASA successfully completed its automated space traffic coordination objectives between the agency’s four Starling spacecraft and SpaceX’s Starlink constellation. Teams demonstrated four risk mitigation maneuvers, autonomously resolving close approaches between two spacecraft with different owner/operators.
- In collaboration with the National Institute of Aeronautics, NASA selected eight finalists in a university competition aimed at designing innovative aviation solutions that can help the agriculture industry. NASA’s Gateways to Blue Skies seeks ways to apply American aircraft and aviation technology to enhance the productivity, efficiency, and resiliency of American farms.
- In Houston, United Airlines pilots successfully conducted operational tests of NASA-developed technologies designed to reduce flight delays. Using technologies from the Air Traffic Management Exploration project, pilots flew efficient re-routes, avoiding airspace with bad weather upon departure. United plans to expand the use of these capabilities, another example of how NASA innovations benefit all humanity.
- On March 11, NASA’s newest astrophysics observatory, SPHEREx, launched on its journey to answer fundamental questions about our universe, thanks to the dedication and expertise of the agency’s team. Riding aboard a SpaceX Falcon 9 from Vandenberg Space Force Base, SPHEREx will scan the entire sky to study how galaxies formed, search for the building blocks of life, and look back to the universe’s earliest moments. After launch, SPHEREx turned on its detectors, and everything is performing as expected.
- Also onboard were four small satellites for NASA’s PUNCH (Polarimeter to Unify the Corona and Heliosphere) mission, which will help scientists understand how the Sun’s outer atmosphere becomes solar wind. These missions reflect the best of the agency – pushing the boundaries of discovery and expanding our understanding of the cosmos.
- On March 14, NASA’s EZIE (Electrojet Zeeman Imaging Explorer) mission launched from Vandenberg Space Force Base. This trio of small satellites will study auroral electrojets, or intense electric currents flowing high above Earth’s poles, helping the agency better understand space weather and its effects on our planet. The mission has taken its first measurements, demonstrating that the spacecraft and onboard instrument are working as expected.
- The X-59 quiet supersonic aircraft cleared another hurdle on its way to first flight. The team successfully completed an engine speed hold test, confirming the “cruise control” system functions as designed.
- NASA researchers successfully tested a prototype that could help responders fight and monitor wildfires, even in low-visibility conditions. The Portable Airspace Management System, developed by NASA’s Advanced Capabilities for Emergency Response Operations project, safely coordinated simulated operations involving drones and other aircraft, tackling a major challenge for those on the front lines. This is just one example of how NASA’s innovation is making a difference where it’s needed most.
- NASA’s Parker Solar Probe completed its 23rd close approach to the Sun, coming within 3.8 million miles of the solar surface while traveling at 430,000 miles per hour – matching its own records for distance and speed. That same day, Parker Solar Probe was awarded the prestigious Collier Trophy, a well-earned recognition for its groundbreaking contributions to heliophysics.
- In response to severe weather that impacted more than 10 states earlier this month, the NASA Disasters Response Coordination System activated to support national partners. NASA worked closely with the National Weather Service and the Federal Emergency Management Agency serving the central and southeastern U.S. to provide satellite data and expertise that help communities better prepare, respond, and recover.
- As an example of how NASA’s research today is shaping the transportation of tomorrow, the agency’s aeronautics engineers began a flight test campaign focused on safely integrating air taxis into the national airspace. Using a Joby Aviation demonstrator aircraft, engineers are helping standardize flight test maneuvers, improving tools to assist with collision avoidance and landing operations, and ensuring safe and efficient air taxis operations in various weather conditions.
- NASA premiered “Planetary Defenders,” a new documentary that follows the dedicated team behind asteroid detection and planetary defense. The film debuted at an event at the agency’s headquarters with digital creators, interagency and international partners, and now is streaming on NASA+, YouTube, and X. In its first 24 hours, it saw 25,000 views on YouTube – 75% above average – and reached 4 million impressions on X.
- Finland became the 53rd nation to sign the Artemis Accords, reaffirming its commitment to the peaceful, transparent, and responsible exploration of space. This milestone underscores the growing global coalition led by the United States to establish a sustainable and cooperative presence beyond Earth.
- In Dhaka, Bangladesh, NASA welcomed a new signatory to the Artemis Accords. Bangladesh became the 54th nation to commit to the peaceful, safe, and responsible exploration of space. It’s a milestone that reflects our shared values and growing global momentum, reaffirming the United States’ leadership in building a global coalition for peaceful space exploration.
- At NASA’s Armstrong Flight Research Center in Edwards, California, engineers conducted calibration flights for a new shock-sensing probe that will support future flight tests of the X-59 quiet supersonic demonstrator. Mounted on a research F-15D that will follow the X-59 closely in flight, the probe will gather data on the shock waves the X-59 generates, providing important data about its ability to fly faster than sound, but produce only a quiet thump.
- In its second asteroid encounter, Lucy flew by the asteroid Donaldjohanson and gave NASA a close look at a uniquely shaped fragment dating back 150 million years – an impressive performance ahead of its main mission target in 2027.
- A celebration of decades of discovery, NASA’s Hubble Space Telescope celebrated its 35th anniversary with new observations ranging from nearby solar system objects to distant galaxies – proof that Hubble continues to inspire wonder and advance our understanding of the universe.
- The SPHEREx team rang the closing bell at the New York Stock Exchange, spotlighting NASA’s newest space telescope and its bold mission to explore the origins of the universe.
- NASA received six Webby Awards and six People’s Voice Awards across platforms – recognition of America’s excellence in digital engagement and public communication.
- The NASA Electric Aircraft Testbed and Advanced Air Transport Technology project concluded testing of a 2.5-megawatt Wright Electric motor designed to eventually serve large aircraft. The testing used the project’s capabilities to simulate altitude conditions of up to 40,000 feet while the electric motor, the most powerful tested so far at the facility, ran at both full voltage and partial power. NASA partnered with the Department of Energy on the tests.
- U.S. entities can now request the Glenn Icing Computational Environment (GlennICE) tool from the NASA Software Catalog and discover solutions to icing challenges for novel engine and aircraft designs. A 3D computational tool, GlennICE allows engineers to integrate icing-related considerations earlier in the aircraft design process and enable safer, more efficient designs while saving costs in the design process.
For more about NASA’s mission, visit:
-end-
Bethany Stevens
Headquarters, Washington
202-358-1600
bethany.c.stevens@nasa.gov
Trump Dismisses Scientists Writing the National Climate Assessment
President Trump has dismissed hundreds of scientists working on the congressionally mandated National Climate Assessment, raising concerns about whether the void will be filled with pseudoscience
NASA Invites Media to Agency’s 25th Annual Student Launch Challenge
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)NASA’s annual Student Launch challenge will bring middle school, high school, and college students from around the country together to launch high-powered rockets and payloads. On Saturday, May 3, from 8:30 a.m.-2:30 p.m. CDT (or until the last rocket launches), student teams will convene for the agency’s 25th annual challenge at Bragg Farms in Toney, Alabama, near NASA’s Marshall Space Flight Center in Huntsville.
Hundreds of students from across the U.S. and Puerto Rico launched amateur rockets near NASA’s Marshall Space Flight Center in Huntsville, Alabama, during the Agency’s 2024 Student Launch competition. NASALive streaming will begin at 8:20 a.m. CDT on NASA Marshall YouTube.
Media interested in covering Student Launch events should contact Taylor Goodwin at 938-210-2891.
Winners will be announced June 9 during a virtual awards ceremony once all teams’ flight data has been verified.
Seventy-one teams participated this year; 47 teams are expected to launch in-person. Teams not traveling to Alabama are allowed to conduct final test flights at a qualified launch field near them.
Schedule of Events:Rocket Fair: Friday, May 2, 2025, 3-6 p.m. at the Von Braun Center East Hall.
A free event for the public to view rockets and meet the student teams.
Launch Day: Saturday, May 3, 2025, gates open at 7 a.m. and the event runs from 8:30 a.m.-2:30 p.m. (or until last rocket launch) at Bragg Farms, in Toney, Alabama. This is a free public event with live rocket launches. Please be weather aware. Lawn chairs are recommended. Pets are not permitted.
Back-up Launch Day: Sunday, May 4, 2025, is reserved as a back-up launch day in case of inclement weather. If needed, the event will run from 8:30 a.m. to 2:30 p.m. (or until last rocket launches) at Bragg Farms.
About the CompetitionStudent Launch provides relevant, cost-effective research and development of rocket propulsion systems and reflects the goals of NASA’s Artemis Program, which will establish the first long-term presence on the Moon and pave the way for eventual Mars missions.
Each year, the payload component changes to reflect current NASA missions. As Student Launch celebrates its 25th anniversary, the payload challenge will include “reports” from STEMnauts, non-living objects representing astronauts. The STEMnaut “crew” must relay real-time data to the student team’s mission control, just as the Artemis astronaut crew will do as they explore the lunar surface.
Eligible teams compete for prizes and awards and are scored in nearly a dozen categories including safety, vehicle design, social media presence, and science, technology, engineering, and math (STEM) engagement.
Marshall’s Office of STEM Engagement hosts Student Launch to encourage students to pursue careers in STEM through real-world experiences. Student Launch is a part of the agency’s Artemis Student Challenges– a variety of activities exposing students to the knowledge and technology required to achieve the goals of the Artemis missions.
In addition to the NASA Office of STEM Engagement’s Next Gen STEM project, NASA Space Operations Mission Directorate, Northrup Grumman, National Space Club Huntsville, American Institute of Aeronautics and Astronautics, National Association of Rocketry, Relativity Space and Bastion Technologies provide funding and leadership for the competition.
For more information about Student Launch, please visit:
https://www.nasa.gov/learning-resources/nasa-student-launch/
Taylor Goodwin
NASA’s Marshall Space Flight Center, Huntsville, Alabama
256-544-0034
taylor.goodwin@nasa.gov
At Norfolk Technical Center in Norfolk, Virginia, carpentry students in Jordan Crawford’s first-year class aren’t…
Article 2 weeks ago Keep Exploring Discover Related TopicsMissions
Humans in Space
Climate Change
Solar System
NASA Invites Media to Agency’s 25th Annual Student Launch Challenge
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)NASA’s annual Student Launch challenge will bring middle school, high school, and college students from around the country together to launch high-powered rockets and payloads. On Saturday, May 3, from 8:30 a.m.-2:30 p.m. CDT (or until the last rocket launches), student teams will convene for the agency’s 25th annual challenge at Bragg Farms in Toney, Alabama, near NASA’s Marshall Space Flight Center in Huntsville.
Hundreds of students from across the U.S. and Puerto Rico launched amateur rockets near NASA’s Marshall Space Flight Center in Huntsville, Alabama, during the Agency’s 2024 Student Launch competition. NASALive streaming will begin at 8:20 a.m. CDT on NASA Marshall YouTube.
Media interested in covering Student Launch events should contact Taylor Goodwin at 938-210-2891.
Winners will be announced June 9 during a virtual awards ceremony once all teams’ flight data has been verified.
Seventy-one teams participated this year; 47 teams are expected to launch in-person. Teams not traveling to Alabama are allowed to conduct final test flights at a qualified launch field near them.
Schedule of Events:Rocket Fair: Friday, May 2, 2025, 3-6 p.m. at the Von Braun Center East Hall.
A free event for the public to view rockets and meet the student teams.
Launch Day: Saturday, May 3, 2025, gates open at 7 a.m. and the event runs from 8:30 a.m.-2:30 p.m. (or until last rocket launch) at Bragg Farms, in Toney, Alabama. This is a free public event with live rocket launches. Please be weather aware. Lawn chairs are recommended. Pets are not permitted.
Back-up Launch Day: Sunday, May 4, 2025, is reserved as a back-up launch day in case of inclement weather. If needed, the event will run from 8:30 a.m. to 2:30 p.m. (or until last rocket launches) at Bragg Farms.
About the CompetitionStudent Launch provides relevant, cost-effective research and development of rocket propulsion systems and reflects the goals of NASA’s Artemis Program, which will establish the first long-term presence on the Moon and pave the way for eventual Mars missions.
Each year, the payload component changes to reflect current NASA missions. As Student Launch celebrates its 25th anniversary, the payload challenge will include “reports” from STEMnauts, non-living objects representing astronauts. The STEMnaut “crew” must relay real-time data to the student team’s mission control, just as the Artemis astronaut crew will do as they explore the lunar surface.
Eligible teams compete for prizes and awards and are scored in nearly a dozen categories including safety, vehicle design, social media presence, and science, technology, engineering, and math (STEM) engagement.
Marshall’s Office of STEM Engagement hosts Student Launch to encourage students to pursue careers in STEM through real-world experiences. Student Launch is a part of the agency’s Artemis Student Challenges– a variety of activities exposing students to the knowledge and technology required to achieve the goals of the Artemis missions.
In addition to the NASA Office of STEM Engagement’s Next Gen STEM project, NASA Space Operations Mission Directorate, Northrup Grumman, National Space Club Huntsville, American Institute of Aeronautics and Astronautics, National Association of Rocketry, Relativity Space and Bastion Technologies provide funding and leadership for the competition.
For more information about Student Launch, please visit:
https://www.nasa.gov/learning-resources/nasa-student-launch/
Taylor Goodwin
NASA’s Marshall Space Flight Center, Huntsville, Alabama
256-544-0034
taylor.goodwin@nasa.gov
At Norfolk Technical Center in Norfolk, Virginia, carpentry students in Jordan Crawford’s first-year class aren’t…
Article 2 weeks ago Keep Exploring Discover Related TopicsMissions
Humans in Space
Climate Change
Solar System
Vesta: Not Quite a Planet, Not Quite an Asteroid
As the second-largest object in the main asteroid belt, Vesta attracts a healthy amount of scientific interest. While smaller asteroids in the belt are considered fragments of collisions, scientists think Vesta and the other three large objects in the belt are likely primordial and have survived for billions of years. They believe that Vesta was on its way to becoming a planet and that the Solar System's rocky planets likely began as protoplanets just like it. But new research is casting doubt on that conclusion.
AI designs 50 gravitational wave detectors that could outperform human-made ones
Help Classify Galaxies Seen by NASA’s James Webb Space Telescope!
3 min read
Help Classify Galaxies Seen by NASA’s James Webb Space Telescope! The Galaxy Zoo classification interface shows you an image from NASA’s Webb telescope and asks you questions about it. Image credit: Galaxy Zoo, Zooniverse. Inset galaxy: NASA/STScI/CEERS/TACC/S. Finkelstein/M. Bagley/Z. Levay/A. PaganNASA needs your help identifying the shapes of thousands of galaxies in images taken by our James Webb Space Telescope with the Galaxy Zoo project. These classifications will help scientists answer questions about how the shapes of galaxies have changed over time, what caused these changes, and why. Thanks to the light collecting power of Webb, there are now over 500,000 images of galaxies on website of the Galaxy Zoo citizen science project—more images than scientists can classify by themselves.
“This is a great opportunity to see images from the newest space telescope,” said volunteer Christine Macmillan from Aberdeen, Scotland. “Galaxies at the edge of our universe are being seen for the first time, just as they are starting to form. Just sign up and answer simple questions about the shape of the galaxy that you are seeing. Anyone can do it, ages 10 and up!”
As we look at more distant objects in the universe, we see them as they were billions of years ago because light takes time to travel to us. With Webb, we can spot galaxies at greater distances than ever before. We’re seeing what some of the earliest galaxies ever detected look like, for the first time. The shapes of these galaxies tell us about how they were born, how and when they formed stars, and how they interacted with their neighbors. By looking at how more distant galaxies have different shapes than close galaxies, we can work out which processes were more common at different times in the universe’s history.
At Galaxy Zoo, you’ll first examine an image from the Webb telescope. Then you will be asked several questions, such as ‘Is the galaxy round?’, or ‘Are there signs of spiral arms?’. If you’re quick, you may even be the first person to see the galaxies you’re asked to classify.
“I’m amazed and honored to be one of the first people to actually see these images! What a privilege!” said volunteer Elisabeth Baeten from Leuven, Belgium.
Galaxy Zoo is a citizen science project with a long history of scientific impact. Galaxy Zoo volunteers have been exploring deep space since July 2007, starting with a million galaxies from a telescope in New Mexico called the Sloan Digital Sky Survey and then, moving on to images from space telescopes like NASA’s Hubble Space Telescope and ESA (European Space Agency)’s Euclid telescope. The project has revealed spectacular mergers, taught us about how the black holes at the center of galaxies affect their hosts, and provided insight into how features like spiral arms form and grow.
Now, in addition to adding new data from Webb, the science team has incorporated an AI algorithm called ZooBot, which will sift through the images first and label the ‘easier ones’ where there are many examples that already exist in previous images from the Hubble Space Telescope. When ZooBot is not confident on the classification of a galaxy, perhaps due to complex or faint structures, it will show it to users on Galaxy Zoo to get their human classifications, which will then help ZooBot learn more. Working together, humans and AI can accurately classify limitless numbers of galaxies. The Galaxy Zoo science team acknowledges support from the International Space Sciences Institute (ISSI), who provided funding for the team to get together and work on Galaxy Zoo. Join the project now.
Share Details Last Updated Apr 29, 2025 Related Terms Explore More 2 min read Hubble Visits Glittering Cluster, Capturing Its Ultraviolet LightArticle
4 days ago
5 min read Eye on Infinity: NASA Celebrates Hubble’s 35th Year in Orbit
Article
6 days ago
3 min read Nine Finalists Advance in NASA’s Power to Explore Challenge
Article
6 days ago
The pursuit of truths: A letter on the boy who cried aliens (op-ed)
Where Does Gold Come From? NASA Data Has Clues
Since the big bang, the early universe had hydrogen, helium, and a scant amount of lithium. Later, some heavier elements, including iron, were forged in stars. But one of the biggest mysteries in astrophysics is: How did the first elements heavier than iron, such as gold, get created and distributed throughout the universe?
“It’s a pretty fundamental question in terms of the origin of complex matter in the universe,” said Anirudh Patel, a doctoral student at Columbia University in New York. “It’s a fun puzzle that hasn’t actually been solved.”
Patel led a study using 20-year-old archival data from NASA and ESA telescopes that finds evidence for a surprising source of a large amount of these heavy elements: flares from highly magnetized neutron stars, called magnetars. The study is published in The Astrophysical Journal Letters.
Study authors estimate that magnetar giant flares could contribute up to 10% of the total abundance of elements heavier than iron in the galaxy. Since magnetars existed relatively early in the history of the universe, the first gold could have been made this way.
“It’s answering one of the questions of the century and solving a mystery using archival data that had been nearly forgotten,” said Eric Burns, study co-author and astrophysicist at Louisiana State University in Baton Rouge.
How could gold be made at a magnetar?Neutron stars are the collapsed cores of stars that have exploded. They are so dense that one teaspoon of neutron star material, on Earth, would weigh as much as a billion tons. A magnetar is a neutron star with an extremely powerful magnetic field.
On rare occasions, magnetars release an enormous amount of high-energy radiation when they undergo “starquakes,” which, like earthquakes, fracture the neutron star’s crust. Starquakes may also be associated with powerful bursts of radiation called magnetar giant flares, which can even affect Earth’s atmosphere. Only three magnetar giant flares have been observed in the Milky Way and the nearby Large Magellanic Cloud, and seven outside.
Patel and colleagues, including his advisor Brian Metzger, professor at Columbia University and senior research scientist at the Flatiron Institute in New York, have been thinking about how radiation from giant flares could correspond to heavy elements forming there. This would happen through a “rapid process” of neutrons forging lighter atomic nuclei into heavier ones.
Protons define the element’s identity on the periodic table: hydrogen has one proton, helium has two, lithium has three, and so on. Atoms also have neutrons which do not affect identity, but do add mass. Sometimes when an atom captures an extra neutron the atom becomes unstable and a nuclear decay process happens that converts a neutron into a proton, moving the atom forward on the periodic table. This is how, for example, a gold atom could take on an extra neutron and then transform into mercury.
In the unique environment of a disrupted neutron star, in which the density of neutrons is extremely high, something even stranger happens: single atoms can rapidly capture so many neutrons that they undergo multiple decays, leading to the creation of a much heavier element like uranium.
When astronomers observed the collision of two neutron stars in 2017 using NASA telescopes and the Laser Interferometer Gravitational wave Observatory (LIGO), and numerous telescopes on the ground and in space that followed up the initial discovery, they confirmed that this event could have created gold, platinum, and other heavy elements. But neutron star mergers happen too late in the universe’s history to explain the earliest gold and other heavy elements. Recent research by co-authors of the new study — Jakub Cehula of Charles University in Prague, Todd Thompson of The Ohio State University, and Metzger — has found that magnetar flares can heat and eject neutron star crustal material at high speeds, making them a potential source.
A rupture in the crust of a highly magnetized neutron star, shown here in an artist’s rendering, can trigger high-energy eruptions. Credit: NASA’s Goddard Space Flight Center/S. Wiessinger New clues in old dataAt first, Metzger and colleagues thought that the signature from the creation and distribution of heavy elements at a magnetar would appear in the visible and ultraviolet light, and published their predictions. But Burns in Louisiana wondered if there could be a gamma-ray signal bright enough to be detected, too. He asked Metzger and Patel to check, and they found that there could be such a signature.
“At some point, we said, ‘OK, we should ask the observers if they had seen any,’” Metzger said.
Burns looked up the gamma ray data from the last giant flare that has been observed, which was in December 2004. He realized that while scientists had explained the beginning of the outburst, they had also identified a smaller signal from the magnetar, in data from ESA (European Space Agency)’s INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL), a recently retired mission with NASA contributions. “It was noted at the time, but nobody had any conception of what it could be,” Burns said.
Metzger remembers that Burns thought he and Patel were “pulling his leg” because the prediction from their team’s model so closely matched the mystery signal in the 2004 data. In other words, the gamma ray signal detected over 20 years ago corresponded to what it should look like when heavy elements are created and then distributed in a magnetar giant flare.
Patel was so excited, “I wasn’t thinking about anything else for the next week or two. It was the only thing on my mind,” he said.
Researchers supported their conclusion using data from two NASA heliophysics missions: the retired RHESSI (Reuven Ramaty High Energy Solar Spectroscopic Imager) and the ongoing NASA’s Wind satellite, which had also observed the magnetar giant flare. Other collaborators on the new study included Jared Goldberg at the Flatiron Institute.
Next steps in the magnetar gold rushNASA’s forthcoming COSI (Compton Spectrometer and Imager) mission can follow up on these results. A wide-field gamma ray telescope, COSI is expected to launch in 2027 and will study energetic phenomena in the cosmos, such as magnetar giant flares. COSI will be able to identify individual elements created in these events, providing a new advancement in understanding the origin of the elements. It is one of many telescopes that can work together to look for “transient” changes across the universe.
Researchers will also follow up on other archival data to see if other secrets are hiding in observations of other magnetar giant flares.
“It very cool to think about how some of the stuff in my phone or my laptop was forged in this extreme explosion of the course of our galaxy’s history,” Patel said.
Media ContactElizabeth Landau
Headquarters, Washington
202-358-0845
elandau@nasa.gov
If HPV Infection Increases Heart Disease Risk, Can Vaccination Lower It?
A vaccine that blocks infection with the human papillomavirus has helped to lower cervical cancer rates. Researchers want to find out if the shot also prevents heart attacks
Biomass launched to count forest carbon
ESA’s groundbreaking Biomass satellite, designed to provide unprecedented insights into the world’s forests and their crucial role in Earth’s carbon cycle, has been launched. The satellite lifted off aboard a Vega-C rocket from Europe’s Spaceport in Kourou, French Guiana, on 29 April at 11:15 CEST (06:15 local time).
In the Starlight: Jason Phillips’ Unexpected Path to Johnson Procurement
Sometimes an unexpected turn in a carefully planned career path leads to surprising opportunities for growth and exciting new experiences. For Jason Phillips, that turn steered toward NASA’s Johnson Space Center in Houston.
Official portrait of Jason Phillips.NASA/Bill StaffordPhillips joined the U.S. Air Force in 1994 and planned to serve for at least 20 years, but in 2010—while preparing for a third deployment after 14 years of service—he found himself facing a medical separation from the military. “In a very short amount of time I had to figure out next steps for a career and lifestyle that no longer involved being an active duty servicemember,” he said.
Thanks to a special hiring authority obtained by Peterson Air Force Base’s Office of Procurement, Phillips was able to transition to the civil service and apply his experience as an Air Force contracting officer to a new role. Phillips returned home to Houston and shifted from a Defense Department job to NASA as a contract specialist, spending his first 10 years at Johnson supporting all aspects of the Center Operations Directorate. He was then tasked with the challenge of serving as a lead contracting officer within Johnson’s procurement office for the International Space Station Program.
Phillips currently leads a team of highly skilled acquisition professionals who support a variety of contracts that sustain the International Space Station’s operations, maximize science conducted aboard the orbiting laboratory, and pave the way for a seamless transition to commercial low Earth orbit destinations. He oversees the team’s daily work, which includes strategic planning and acquisition of contracts valued at more than $21 billion. Specifically, the team handles NASA’s Cargo Resupply Services contracts, a cooperative agreement with the Center for the Advancement of Science in Space, and the Research, Engineering & Mission Integration Services-2 contract.
Jason Phillips (left) and Johnson Office of Procurement colleagues attend a National Contract Management Association conference at the Gilruth Center in 2016. NASA/James Blair“I am responsible for providing high-quality procurement products, services, and support to ensure that executive and technical customer needs are met and exceeded while maintaining compliance with applicable statutes, regulations, and guidelines,” he said. That work has included modifying the program’s original acquisition strategy to minimize delays, target cost savings, and emphasize critical infrastructure and services such as the Environmental Control and Life Support Systems aboard the space station.
Phillips enjoys seeing the direct impact of his work. “This career field almost always allows me to see the fruits of my labor, whether I am procuring office supplies and equipment or managing construction projects,” he said, noting that the remodeling of Johnson’s building 20 was his first project at the center. He is also proud to have supported the career progression of fellow procurement professionals and technical staff. “It’s a nod to those who came before me and provided me with their leadership and technical knowledge of procurement.”
Jason Phillips received an Individual Contribution Award for continuous support in Johnson’s Office of Procurement from NASA Assistant Administrator for Procurement Karla Jackson in 2022.NASA/Robert MarkowitzPhillips said that staying humble and accountable is key to finding mission-focused solutions that benefit everyone. He also cautioned against making assumptions. “The people around you are very willing to offer thoughts and insights into a solution to your problem,” he said. “There is so much knowledge to be gained by listening.”
He encourages the Artemis Generation to seek opportunities to expand their technical knowledge and grow professionally. “Help yourself so that you may help others.”
Explore More 2 min read NASA Gathers Experts to Discuss Emerging Technologies in Astrophysics Article 10 mins ago 2 min read How Are We Made of Star Stuff? We Asked a NASA Expert: Episode 58 Article 20 hours ago 5 min read NASA 3D Wind Measuring Laser Aims to Improve Forecasts from Air, Space Article 21 hours agoSee a wafer-thin crescent moon leapfrog Jupiter this week
ESA’s Biomass mission launches on Vega-C
ESA’s state-of-the-art Biomass satellite has launched aboard a Vega-C rocket from Europe’s Spaceport in French Guiana. The rocket lifted off on 29 April 2025 at 11:15 CEST (06:15 local time).
In orbit, this latest Earth Explorer mission will provide vital insights into the health and dynamics of the world’s forests, revealing how they are changing over time and, critically, enhancing our understanding of their role in the global carbon cycle. It is the first satellite to carry a fully polarimetric P-band synthetic aperture radar for interferometric imaging. Thanks to the long wavelength of P-band, around 70 cm, the radar signal can slice through the whole forest layer to measure the ‘biomass’, meaning the woody trunks, branches and stems, which is where trees store most of their carbon.
Vega-C is the evolution of the Vega family of rockets and delivers increased performance, greater payload volume and improved competitiveness.