NASA
NASA Astronaut to Answer Questions from Students in Washington State
NASA astronaut and Spokane, Washington, native Anne McClain will participate in an event with students from the Mobius Discovery Center located in her hometown. McClain will answer prerecorded questions submitted by students from aboard the International Space Station.
Watch the 20-minute Earth-to-space call on the NASA STEM YouTube Channel.
The event will take place at 1:25 p.m. EDT on Tuesday, May 27. Media interested in covering the event must RSVP no later than 5 p.m. EDT on Friday, May 23, to Karen Hudson at 509-321-7125 or via email at: mkhudson@mobiusspokane.org.
The Mobius Discovery Center will host the event for elementary, middle, and high school students from various schools across the region, nonprofit organizations, and the Kalispel Tribe. This event is designed to foster imagination among students through exploration of hands-on exhibits and science, technology, engineering, art, and mathematics learning opportunities while inspiring students to consider McClain’s career path.
For more than 24 years, astronauts have continuously lived and worked aboard the space station, testing technologies, performing science, and developing skills needed to explore farther from Earth. Astronauts aboard the orbiting laboratory communicate with NASA’s Mission Control Center in Houston 24 hours a day through SCaN’s (Space Communications and Navigation) Near Space Network.
Important research and technology investigations taking place aboard the space station benefit people on Earth and lays the groundwork for other agency missions. As part of NASA’s Artemis campaign, the agency will send astronauts to the Moon to prepare for future human exploration of Mars, inspiring Artemis Generation explorers, and ensuring the United States continues to lead in space exploration and discovery.
See videos of astronauts aboard the space station at:
https://www.nasa.gov/stemonstation
-end-
Gerelle Dodson
Headquarters, Washington
202-358-1600
gerelle.q.dodson@nasa.gov
Sandra Jones
Johnson Space Center, Houston
281-483-5111
sandra.p.jones@nasa.gov
NASA Astronaut to Answer Questions from Students in Washington State
NASA astronaut and Spokane, Washington, native Anne McClain will participate in an event with students from the Mobius Discovery Center located in her hometown. McClain will answer prerecorded questions submitted by students from aboard the International Space Station.
Watch the 20-minute Earth-to-space call on the NASA STEM YouTube Channel.
The event will take place at 1:25 p.m. EDT on Tuesday, May 27. Media interested in covering the event must RSVP no later than 5 p.m. EDT on Friday, May 23, to Karen Hudson at 509-321-7125 or via email at: mkhudson@mobiusspokane.org.
The Mobius Discovery Center will host the event for elementary, middle, and high school students from various schools across the region, nonprofit organizations, and the Kalispel Tribe. This event is designed to foster imagination among students through exploration of hands-on exhibits and science, technology, engineering, art, and mathematics learning opportunities while inspiring students to consider McClain’s career path.
For more than 24 years, astronauts have continuously lived and worked aboard the space station, testing technologies, performing science, and developing skills needed to explore farther from Earth. Astronauts aboard the orbiting laboratory communicate with NASA’s Mission Control Center in Houston 24 hours a day through SCaN’s (Space Communications and Navigation) Near Space Network.
Important research and technology investigations taking place aboard the space station benefit people on Earth and lays the groundwork for other agency missions. As part of NASA’s Artemis campaign, the agency will send astronauts to the Moon to prepare for future human exploration of Mars, inspiring Artemis Generation explorers, and ensuring the United States continues to lead in space exploration and discovery.
See videos of astronauts aboard the space station at:
https://www.nasa.gov/stemonstation
-end-
Gerelle Dodson
Headquarters, Washington
202-358-1600
gerelle.q.dodson@nasa.gov
Sandra Jones
Johnson Space Center, Houston
281-483-5111
sandra.p.jones@nasa.gov
Sols 4547-4548: Taking in the View After a Long Drive
- Curiosity Home
- Science
- News and Features
- Multimedia
- Mars Missions
- Mars Home
2 min read
Sols 4547-4548: Taking in the View After a Long Drive NASA’s Mars rover Curiosity acquired this image using its Left Navigation Camera on May 21, 2025 — Sol 4546, or Martian day 4,546 of the Mars Science Laboratory mission — at 05:05:33 UTC. NASA/JPL-CaltechWritten by Alex Innanen, Atmospheric Scientist at York University
Earth planning date: Wednesday, May 21, 2025
Monday’s single-sol plan included a marathon 45-meter drive (about 148 feet), which put us in position for two full sols of imaging. This means both sols have what we call “targeted” science blocks, in which we have images of the workspace down from the last plan and can carefully choose what we want to take a closer look at. This always means a lot of good discussion amongst the geology and mineralogy theme group (GEO) about what deserves this closer look. As an outsider on the environmental theme group (ENV), I don’t always grasp the complexities of these discussions, but it’s always interesting to see what GEO is up to and to learn new things about the geology of Mount Sharp.
GEO ended up picking “Big Bear Lake” as our contact science target, which is getting its typical treatment from APXS and MAHLI, as well as a LIBS observation from ChemCam. Aside from that there was plenty of room for remote sensing. ChemCam is also taking a LIBS observation of “Volcan Mountains” and a long-distance mosaic of the Texoli butte. Mastcam is also taking mosaics of a nearby trough, as well as two depressions known as “Sulphur Spring,” a more distant boxwork structure, and the very distant Mishe Mokwa butte.
All of ENV’s activities are remote sensing, and we managed to squeeze in a few of those too. We have a couple dust monitoring observations, looking for dust devils and checking the amount of dust in the atmosphere. And since we’re still in the cloudy season we always try to make room for cloud observations. Today that meant a suraphorizon movie looking for clouds just above the horizon to the south, and a phase function sky survey, which captures clouds all around the rover, to try to understand how these clouds scatter sunlight.
Share Details Last Updated May 22, 2025 Related Terms Explore More 2 min read Sol 4546: Martian JengaArticle
3 hours ago
5 min read Sols 4543-4545: Leaving the Ridge for the Ridges
Article
2 days ago
3 min read Sols 4541–4542: Boxwork Structure, or Just “Box-Like” Structure?
Article
3 days ago
Keep Exploring Discover More Topics From NASA Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
Sols 4547-4548: Taking in the View After a Long Drive
- Curiosity Home
- Science
- News and Features
- Multimedia
- Mars Missions
- Mars Home
2 min read
Sols 4547-4548: Taking in the View After a Long Drive NASA’s Mars rover Curiosity acquired this image using its Left Navigation Camera on May 21, 2025 — Sol 4546, or Martian day 4,546 of the Mars Science Laboratory mission — at 05:05:33 UTC. NASA/JPL-CaltechWritten by Alex Innanen, Atmospheric Scientist at York University
Earth planning date: Wednesday, May 21, 2025
Monday’s single-sol plan included a marathon 45-meter drive (about 148 feet), which put us in position for two full sols of imaging. This means both sols have what we call “targeted” science blocks, in which we have images of the workspace down from the last plan and can carefully choose what we want to take a closer look at. This always means a lot of good discussion amongst the geology and mineralogy theme group (GEO) about what deserves this closer look. As an outsider on the environmental theme group (ENV), I don’t always grasp the complexities of these discussions, but it’s always interesting to see what GEO is up to and to learn new things about the geology of Mount Sharp.
GEO ended up picking “Big Bear Lake” as our contact science target, which is getting its typical treatment from APXS and MAHLI, as well as a LIBS observation from ChemCam. Aside from that there was plenty of room for remote sensing. ChemCam is also taking a LIBS observation of “Volcan Mountains” and a long-distance mosaic of the Texoli butte. Mastcam is also taking mosaics of a nearby trough, as well as two depressions known as “Sulphur Spring,” a more distant boxwork structure, and the very distant Mishe Mokwa butte.
All of ENV’s activities are remote sensing, and we managed to squeeze in a few of those too. We have a couple dust monitoring observations, looking for dust devils and checking the amount of dust in the atmosphere. And since we’re still in the cloudy season we always try to make room for cloud observations. Today that meant a suraphorizon movie looking for clouds just above the horizon to the south, and a phase function sky survey, which captures clouds all around the rover, to try to understand how these clouds scatter sunlight.
Share Details Last Updated May 22, 2025 Related Terms Explore More 2 min read Sol 4546: Martian JengaArticle
3 hours ago
5 min read Sols 4543-4545: Leaving the Ridge for the Ridges
Article
2 days ago
3 min read Sols 4541–4542: Boxwork Structure, or Just “Box-Like” Structure?
Article
3 days ago
Keep Exploring Discover More Topics From NASA Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
Preflight Flower
Preflight Flower
A NASA photographer took this picture of a flower called Borshchov’s tulip near the launch pad at the Baikonur Cosmodrome in Kazakhstan on April 7, 2025, ahead of NASA astronaut Jonny Kim and cosmonauts Sergey Ryzhikov and Alexey Zubritsky launching to the International Space Station. The flower is unique to Kazakhstan, attracting many to study and appreciate its beauty.
Image credit: NASA/Joel Kowsky
Preflight Flower
A NASA photographer took this picture of a flower called Borshchov’s tulip near the launch pad at the Baikonur Cosmodrome in Kazakhstan on April 7, 2025, ahead of NASA astronaut Jonny Kim and cosmonauts Sergey Ryzhikov and Alexey Zubritsky launching to the International Space Station. The flower is unique to Kazakhstan, attracting many to study and appreciate its beauty.
Image credit: NASA/Joel Kowsky
Percolating Clues: NASA Models New Way to Build Planetary Cores
5 min read
Percolating Clues: NASA Models New Way to Build Planetary Cores NASA’s Perseverance rover was traveling in the channel of an ancient river, Neretva Vallis, when it captured this view of an area of scientific interest nicknamed “Bright Angel” – the light-toned area in the distance at right. The area features light-toned rocky outcrops that may represent either ancient sediment that later filled the channel or possibly much older rock that was subsequently exposed by river erosion. NASA/JPL-CaltechA new NASA study reveals a surprising way planetary cores may have formed—one that could reshape how scientists understand the early evolution of rocky planets like Mars.
Conducted by a team of early-career scientists and long-time researchers across the Astromaterials Research and Exploration Science (ARES) Division at NASA’s Johnson Space Center in Houston, the study offers the first direct experimental and geochemical evidence that molten sulfide, rather than metal, could percolate through solid rock and form a core—even before a planet’s silicate mantle begins to melt.
For decades, scientists believed that forming a core required large-scale melting of a planetary body, followed by heavy metallic elements sinking to the center. This study introduces a new scenario—especially relevant for planets forming farther from the Sun, where sulfur and oxygen are more abundant than iron. In these volatile-rich environments, sulfur behaves like road salt on an icy street—it lowers the melting point by reacting with metallic iron to form iron-sulfide so that it may migrate and combine into a core. Until now, scientists didn’t know if sulfide could travel through solid rock under realistic planet formation conditions.
Working on this project pushed us to be creative. It was exciting to see both data streams converge on the same story.Dr. Jake Setera
ARES Scientist with Amentum
The study results gave researchers a way to directly observe this process using high-resolution 3D imagery—confirming long-standing models about how core formation can occur through percolation, in which dense liquid sulfide travels through microscopic cracks in solid rock.
“We could actually see in full 3D renderings how the sulfide melts were moving through the experimental sample, percolating in cracks between other minerals,” said Dr. Sam Crossley of the University of Arizona in Tucson, who led the project while a postdoctoral fellow with NASA Johnson’s ARES Division. “It confirmed our hypothesis—that in a planetary setting, these dense melts would migrate to the center of a body and form a core, even before the surrounding rock began to melt.”
Recreating planetary formation conditions in the lab required not only experimental precision but also close collaboration among early-career scientists across ARES to develop new ways of observing and analyzing the results. The high-temperature experiments were first conducted in the experimental petrology lab, after which the resulting samples—or “run products”—were brought to NASA Johnson’s X-ray computed tomography (XCT) lab for imaging.
A molten sulfide network (colored gold) percolates between silicate mineral grains in this cut-out of an XCT rendering—rendered are unmelted silicates in gray and sulfides in white. Credit: Crossley et al. 2025, Nature CommunicationsX-ray scientist and study co-author Dr. Scott Eckley of Amentum at NASA Johnson used XCT to produce high-resolution 3D renderings—revealing melt pockets and flow pathways within the samples in microscopic detail. These visualizations offered insight into the physical behavior of materials during early core formation without destroying the sample.
The 3D XCT visualizations initially confirmed that sulfide melts could percolate through solid rock under experimental conditions, but that alone could not confirm whether percolative core formation occurred over 4.5 billion years ago. For that, researchers turned to meteorites.
“We took the next step and searched for forensic chemical evidence of sulfide percolation in meteorites,” Crossley said. “By partially melting synthetic sulfides infused with trace platinum-group metals, we were able to reproduce the same unusual chemical patterns found in oxygen-rich meteorites—providing strong evidence that sulfide percolation occurred under those conditions in the early solar system.”
To understand the distribution of trace elements, study co-author Dr. Jake Setera, also of Amentum, developed a novel laser ablation technique to accurately measure platinum-group metals, which concentrate in sulfides and metals.
“Working on this project pushed us to be creative,” Setera said. “To confirm what the 3D visualizations were showing us, we needed to develop an appropriate laser ablation method that could trace the platinum group-elements in these complex experimental samples. It was exciting to see both data streams converge on the same story.”
When paired with Setera’s geochemical analysis, the data provided powerful, independent lines of evidence that molten sulfide had migrated and coalesced within a solid planetary interior. This dual confirmation marked the first direct demonstration of the process in a laboratory setting.
Dr. Sam Crossley welds shut the glass tube of the experimental assembly. To prevent reaction with the atmosphere and precisely control oxygen and sulfur content, experiments needed to be sealed in a closed system under vacuum. Credit: Amentum/Dr. Brendan AnzuresThe study offers a new lens through which to interpret planetary geochemistry. Mars in particular shows signs of early core formation—but the timeline has puzzled scientists for years. The new results suggest that Mars’ core may have formed at an earlier stage, thanks to its sulfur-rich composition—potentially without requiring the full-scale melting that Earth experienced. This could help explain longstanding puzzles in Mars’ geochemical timeline and early differentiation.
The results also raise new questions about how scientists date core formation events using radiogenic isotopes, such as hafnium and tungsten. If sulfur and oxygen are more abundant during a planet’s formation, certain elements may behave differently than expected—remaining in the mantle instead of the core and affecting the geochemical “clocks” used to estimate planetary timelines.
This research advances our understanding of how planetary interiors can form under different chemical conditions—offering new possibilities for interpreting the evolution of rocky bodies like Mars. By combining experimental petrology, geochemical analysis, and 3D imaging, the team demonstrated how collaborative, multi-method approaches can uncover processes that were once only theoretical.
Crossley led the research during his time as a McKay Postdoctoral Fellow—a program that recognizes outstanding early-career scientists within five years of earning their doctorate. Jointly offered by NASA’s ARES Division and the Lunar and Planetary Institute in Houston, the fellowship supports innovative research in astromaterials science, including the origin and evolution of planetary bodies across the solar system.
As NASA prepares for future missions to the Moon, Mars, and beyond, understanding how planetary interiors form is more important than ever. Studies like this one help scientists interpret remote data from spacecraft, analyze returned samples, and build better models of how our solar system came to be.
For more information on NASA’s ARES division, visit: https://ares.jsc.nasa.gov/
Victoria Segovia
NASA’s Johnson Space Center
281-483-5111
victoria.segovia@nasa.gov
Article
2 hours ago
4 min read Eclipses, Auroras, and the Spark of Becoming: NASA Inspires Future Scientists
Article
1 week ago
6 min read NASA Observes First Visible-light Auroras at Mars
Article
1 week ago
Keep Exploring Discover More Topics From NASA
Planetary Science Stories
Astromaterials
Latest NASA Science News
Solar System
Percolating Clues: NASA Models New Way to Build Planetary Cores
5 min read
Percolating Clues: NASA Models New Way to Build Planetary Cores NASA’s Perseverance rover was traveling in the channel of an ancient river, Neretva Vallis, when it captured this view of an area of scientific interest nicknamed “Bright Angel” – the light-toned area in the distance at right. The area features light-toned rocky outcrops that may represent either ancient sediment that later filled the channel or possibly much older rock that was subsequently exposed by river erosion. NASA/JPL-CaltechA new NASA study reveals a surprising way planetary cores may have formed—one that could reshape how scientists understand the early evolution of rocky planets like Mars.
Conducted by a team of early-career scientists and long-time researchers across the Astromaterials Research and Exploration Science (ARES) Division at NASA’s Johnson Space Center in Houston, the study offers the first direct experimental and geochemical evidence that molten sulfide, rather than metal, could percolate through solid rock and form a core—even before a planet’s silicate mantle begins to melt.
For decades, scientists believed that forming a core required large-scale melting of a planetary body, followed by heavy metallic elements sinking to the center. This study introduces a new scenario—especially relevant for planets forming farther from the Sun, where sulfur and oxygen are more abundant than iron. In these volatile-rich environments, sulfur behaves like road salt on an icy street—it lowers the melting point by reacting with metallic iron to form iron-sulfide so that it may migrate and combine into a core. Until now, scientists didn’t know if sulfide could travel through solid rock under realistic planet formation conditions.
Working on this project pushed us to be creative. It was exciting to see both data streams converge on the same story.Dr. Jake Setera
ARES Scientist with Amentum
The study results gave researchers a way to directly observe this process using high-resolution 3D imagery—confirming long-standing models about how core formation can occur through percolation, in which dense liquid sulfide travels through microscopic cracks in solid rock.
“We could actually see in full 3D renderings how the sulfide melts were moving through the experimental sample, percolating in cracks between other minerals,” said Dr. Sam Crossley of the University of Arizona in Tucson, who led the project while a postdoctoral fellow with NASA Johnson’s ARES Division. “It confirmed our hypothesis—that in a planetary setting, these dense melts would migrate to the center of a body and form a core, even before the surrounding rock began to melt.”
Recreating planetary formation conditions in the lab required not only experimental precision but also close collaboration among early-career scientists across ARES to develop new ways of observing and analyzing the results. The high-temperature experiments were first conducted in the experimental petrology lab, after which the resulting samples—or “run products”—were brought to NASA Johnson’s X-ray computed tomography (XCT) lab for imaging.
A molten sulfide network (colored gold) percolates between silicate mineral grains in this cut-out of an XCT rendering—rendered are unmelted silicates in gray and sulfides in white. Credit: Crossley et al. 2025, Nature CommunicationsX-ray scientist and study co-author Dr. Scott Eckley of Amentum at NASA Johnson used XCT to produce high-resolution 3D renderings—revealing melt pockets and flow pathways within the samples in microscopic detail. These visualizations offered insight into the physical behavior of materials during early core formation without destroying the sample.
The 3D XCT visualizations initially confirmed that sulfide melts could percolate through solid rock under experimental conditions, but that alone could not confirm whether percolative core formation occurred over 4.5 billion years ago. For that, researchers turned to meteorites.
“We took the next step and searched for forensic chemical evidence of sulfide percolation in meteorites,” Crossley said. “By partially melting synthetic sulfides infused with trace platinum-group metals, we were able to reproduce the same unusual chemical patterns found in oxygen-rich meteorites—providing strong evidence that sulfide percolation occurred under those conditions in the early solar system.”
To understand the distribution of trace elements, study co-author Dr. Jake Setera, also of Amentum, developed a novel laser ablation technique to accurately measure platinum-group metals, which concentrate in sulfides and metals.
“Working on this project pushed us to be creative,” Setera said. “To confirm what the 3D visualizations were showing us, we needed to develop an appropriate laser ablation method that could trace the platinum group-elements in these complex experimental samples. It was exciting to see both data streams converge on the same story.”
When paired with Setera’s geochemical analysis, the data provided powerful, independent lines of evidence that molten sulfide had migrated and coalesced within a solid planetary interior. This dual confirmation marked the first direct demonstration of the process in a laboratory setting.
Dr. Sam Crossley welds shut the glass tube of the experimental assembly. To prevent reaction with the atmosphere and precisely control oxygen and sulfur content, experiments needed to be sealed in a closed system under vacuum. Credit: Amentum/Dr. Brendan AnzuresThe study offers a new lens through which to interpret planetary geochemistry. Mars in particular shows signs of early core formation—but the timeline has puzzled scientists for years. The new results suggest that Mars’ core may have formed at an earlier stage, thanks to its sulfur-rich composition—potentially without requiring the full-scale melting that Earth experienced. This could help explain longstanding puzzles in Mars’ geochemical timeline and early differentiation.
The results also raise new questions about how scientists date core formation events using radiogenic isotopes, such as hafnium and tungsten. If sulfur and oxygen are more abundant during a planet’s formation, certain elements may behave differently than expected—remaining in the mantle instead of the core and affecting the geochemical “clocks” used to estimate planetary timelines.
This research advances our understanding of how planetary interiors can form under different chemical conditions—offering new possibilities for interpreting the evolution of rocky bodies like Mars. By combining experimental petrology, geochemical analysis, and 3D imaging, the team demonstrated how collaborative, multi-method approaches can uncover processes that were once only theoretical.
Crossley led the research during his time as a McKay Postdoctoral Fellow—a program that recognizes outstanding early-career scientists within five years of earning their doctorate. Jointly offered by NASA’s ARES Division and the Lunar and Planetary Institute in Houston, the fellowship supports innovative research in astromaterials science, including the origin and evolution of planetary bodies across the solar system.
As NASA prepares for future missions to the Moon, Mars, and beyond, understanding how planetary interiors form is more important than ever. Studies like this one help scientists interpret remote data from spacecraft, analyze returned samples, and build better models of how our solar system came to be.
For more information on NASA’s ARES division, visit: https://ares.jsc.nasa.gov/
Victoria Segovia
NASA’s Johnson Space Center
281-483-5111
victoria.segovia@nasa.gov
Article
2 hours ago
4 min read Eclipses, Auroras, and the Spark of Becoming: NASA Inspires Future Scientists
Article
1 week ago
6 min read NASA Observes First Visible-light Auroras at Mars
Article
1 week ago
Keep Exploring Discover More Topics From NASA
Planetary Science Stories
Astromaterials
Latest NASA Science News
Solar System
NASA’s Moffett Federal Airfield Hosts Boeing Digital Taxi Tests
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater) Boeing’s test plane simulates digital taxiing at Moffett Field at NASA’s Ames Research Center in California’s Silicon Valley. NASA/Brandon Torres NavarreteNew technology tested by an industry partner at NASA’s Ames Research Center in California’s Silicon Valley could improve how commercial planes taxi to and from gates to runways, making operations safer and more efficient on the surfaces of airports.
Airport taxiways are busy. Planes come and go while support vehicles provide maintenance, carry fuel, transport luggage, and more. Pilots must listen carefully to air traffic control when getting directions to the runway – and garbled communications and heavy workloads can cause issues that could lead to runway incursions or collisions.
Researchers at Boeing are working to address these issues by digitizing taxiway information and automating aircraft taxi functions. The team traveled to NASA Ames to collaborate with researchers while testing their technology at the Moffett Federal Airfield and NASA’s FutureFlight Central, an air traffic control simulation facility.
Doug Christensen, test engineer for Air Traffic Management eXploration (ATM-X) at NASA Ames, and Mike Klein, autonomy technical leader in product development at Boeing discuss the digital taxi test in Ames’s FutureFlight Central facility.NASA/Brandon Torres NavarreteTo test these new technologies, Boeing brought a custom single-engine test plane to the airfield. Working from FutureFlight Central, their researchers developed simulated taxiway instructions and deployed them to the test pilot’s digital tablet and the autonomous system.
Typically, taxiing requires verbal communication between an air traffic controller and a pilot. Boeing’s digital taxi release system displays visual turn-by-turn routes and directions directly on the pilot’s digital tablet.
“This project with Boeing lends credibility to the research being done across Ames,” said Adam Yingling, autonomy researcher for the Air Traffic Management-eXploration (ATM-X) program at NASA Ames. “We have a unique capability with our proximity to Moffett and the work Ames researchers are doing to advance air traffic capabilities and technologies to support the future of our national airspace that opens the door to work alongside commercial operators like Boeing.”
The team’s autonomous taxiing tests allowed its aircraft to follow the air traffic control’s digital instructions to transit to the runway without additional pilot inputs.
Estela Buchmann, David Shapiro, and Maxim Mounier, members of the NASA Ames ATM-X project team, analyze results of Boeing’s digital taxi test at Ames’s FutureFlight Central facility.NASA/Brandon Torres NavarreteAs commercial air travel increases and airspace gets busier, pilots and air traffic controllers have to manage heavier workloads. NASA is working with commercial partners to address those challenges through initiatives like its Air Traffic Management-eXploration project, which aims to transform air traffic management to accommodate new vehicles and air transportation options.
“In order to increase the safety and efficiency of our airspace operations, NASA research in collaboration with industry can demonstrate how specific functions can be automated to chart the course for enhancing traffic management on the airport surface,” said Shivanjli Sharma, ATM-X project manager at Ames.
Share Details Last Updated May 22, 2025 Related Terms Explore More 3 min read Winners Announced in NASA’s 2025 Gateways to Blue Skies Competition Article 16 hours ago 5 min read NASA X-59’s Latest Testing Milestone: Simulating Flight from the Ground Article 7 days ago 5 min read NASA Satellite Images Could Provide Early Volcano Warnings Article 1 week ago Keep Exploring Discover More Topics From NASAMissions
Humans in Space
Climate Change
Solar System
NASA’s Moffett Federal Airfield Hosts Boeing Digital Taxi Tests
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater) Boeing’s test plane simulates digital taxiing at Moffett Field at NASA’s Ames Research Center in California’s Silicon Valley. NASA/Brandon Torres NavarreteNew technology tested by an industry partner at NASA’s Ames Research Center in California’s Silicon Valley could improve how commercial planes taxi to and from gates to runways, making operations safer and more efficient on the surfaces of airports.
Airport taxiways are busy. Planes come and go while support vehicles provide maintenance, carry fuel, transport luggage, and more. Pilots must listen carefully to air traffic control when getting directions to the runway – and garbled communications and heavy workloads can cause issues that could lead to runway incursions or collisions.
Researchers at Boeing are working to address these issues by digitizing taxiway information and automating aircraft taxi functions. The team traveled to NASA Ames to collaborate with researchers while testing their technology at the Moffett Federal Airfield and NASA’s FutureFlight Central, an air traffic control simulation facility.
Doug Christensen, test engineer for Air Traffic Management eXploration (ATM-X) at NASA Ames, and Mike Klein, autonomy technical leader in product development at Boeing discuss the digital taxi test in Ames’s FutureFlight Central facility.NASA/Brandon Torres NavarreteTo test these new technologies, Boeing brought a custom single-engine test plane to the airfield. Working from FutureFlight Central, their researchers developed simulated taxiway instructions and deployed them to the test pilot’s digital tablet and the autonomous system.
Typically, taxiing requires verbal communication between an air traffic controller and a pilot. Boeing’s digital taxi release system displays visual turn-by-turn routes and directions directly on the pilot’s digital tablet.
“This project with Boeing lends credibility to the research being done across Ames,” said Adam Yingling, autonomy researcher for the Air Traffic Management-eXploration (ATM-X) program at NASA Ames. “We have a unique capability with our proximity to Moffett and the work Ames researchers are doing to advance air traffic capabilities and technologies to support the future of our national airspace that opens the door to work alongside commercial operators like Boeing.”
The team’s autonomous taxiing tests allowed its aircraft to follow the air traffic control’s digital instructions to transit to the runway without additional pilot inputs.
Estela Buchmann, David Shapiro, and Maxim Mounier, members of the NASA Ames ATM-X project team, analyze results of Boeing’s digital taxi test at Ames’s FutureFlight Central facility.NASA/Brandon Torres NavarreteAs commercial air travel increases and airspace gets busier, pilots and air traffic controllers have to manage heavier workloads. NASA is working with commercial partners to address those challenges through initiatives like its Air Traffic Management-eXploration project, which aims to transform air traffic management to accommodate new vehicles and air transportation options.
“In order to increase the safety and efficiency of our airspace operations, NASA research in collaboration with industry can demonstrate how specific functions can be automated to chart the course for enhancing traffic management on the airport surface,” said Shivanjli Sharma, ATM-X project manager at Ames.
Share Details Last Updated May 22, 2025 Related Terms Explore More 3 min read Winners Announced in NASA’s 2025 Gateways to Blue Skies Competition Article 8 hours ago 5 min read NASA X-59’s Latest Testing Milestone: Simulating Flight from the Ground Article 7 days ago 5 min read NASA Satellite Images Could Provide Early Volcano Warnings Article 1 week ago Keep Exploring Discover More Topics From NASAMissions
Humans in Space
Climate Change
Solar System
Sol 4546: Martian Jenga
- Curiosity Home
- Science
- News and Features
- Multimedia
- Mars Missions
- Mars Home
2 min read
Sol 4546: Martian Jenga NASA’s Mars rover Curiosity acquired this image using its Left Navigation Camera on May 19, 2025 — Sol 4544, or Martian day 4,544 of the Mars Science Laboratory mission — at 02:23:29 UTC. NASA/JPL-CaltechWritten by Michelle Minitti, Planetary Geologist at Framework
Earth planning date: Monday, May 19, 2025
Have you ever played the game Jenga, where you remove one wooden block from a stack, gently place it on another part of the stack, then repeat over and over as you try to keep the stack from toppling over? There are strategies to the game such as what blocks you can afford to remove, and where you can manage to place them without throwing the structure out of balance. That is very much how planning felt today — but instead of wooden blocks, the objects the science team was moving around were science observations in the plan.
We had an unusual one-sol plan today so there were very restricted time windows in the plan in which to fit science observations and our next drive. We are driving through an area with criss-crossing fracture sets (which we call boxwork structures) large enough to be seen from orbit. Since they have only recently come within our view, there is no shortage of new observations to make of the fractures as we try to understand the processes that led to their formation. If the fractures were caused by extensive fluid flow through the Martian crust, understanding them would be an important contribution toward tracing the history of Martian water.
To fit in all the desired observations — including APXS and MAHLI on a DRT-brushed target, multiple ChemCam RMI and Mastcam mosaics, and a ChemCam LIBS analysis — in addition to environmental monitoring activities and a long drive, the team used every trick in its book to achieve a delicate balancing act of science, time, and power. Some activities were trimmed to fit in smaller time windows, others were moved to less-constrained parts of the plan, and other activities were placed in parallel with each other to take advantage of Curiosity’s ability to multitask.
Once our planning Jenga game was over, the team had won — we had a complete and perfectly balanced plan! Who says you cannot teach an old dog (4,546-sols-old) new tricks?
Share Details Last Updated May 22, 2025 Related Terms Explore More 5 min read Sols 4543-4545: Leaving the Ridge for the RidgesArticle
2 days ago
3 min read Sols 4541–4542: Boxwork Structure, or Just “Box-Like” Structure?
Article
3 days ago
1 min read Sols 4539-4540: Back After a Productive Weekend Plan
Article
1 week ago
Keep Exploring Discover More Topics From NASA Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
Sol 4546: Martian Jenga
- Curiosity Home
- Science
- News and Features
- Multimedia
- Mars Missions
- Mars Home
2 min read
Sol 4546: Martian Jenga NASA’s Mars rover Curiosity acquired this image using its Left Navigation Camera on May 19, 2025 — Sol 4544, or Martian day 4,544 of the Mars Science Laboratory mission — at 02:23:29 UTC. NASA/JPL-CaltechWritten by Michelle Minitti, Planetary Geologist at Framework
Earth planning date: Monday, May 19, 2025
Have you ever played the game Jenga, where you remove one wooden block from a stack, gently place it on another part of the stack, then repeat over and over as you try to keep the stack from toppling over? There are strategies to the game such as what blocks you can afford to remove, and where you can manage to place them without throwing the structure out of balance. That is very much how planning felt today — but instead of wooden blocks, the objects the science team was moving around were science observations in the plan.
We had an unusual one-sol plan today so there were very restricted time windows in the plan in which to fit science observations and our next drive. We are driving through an area with criss-crossing fracture sets (which we call boxwork structures) large enough to be seen from orbit. Since they have only recently come within our view, there is no shortage of new observations to make of the fractures as we try to understand the processes that led to their formation. If the fractures were caused by extensive fluid flow through the Martian crust, understanding them would be an important contribution toward tracing the history of Martian water.
To fit in all the desired observations — including APXS and MAHLI on a DRT-brushed target, multiple ChemCam RMI and Mastcam mosaics, and a ChemCam LIBS analysis — in addition to environmental monitoring activities and a long drive, the team used every trick in its book to achieve a delicate balancing act of science, time, and power. Some activities were trimmed to fit in smaller time windows, others were moved to less-constrained parts of the plan, and other activities were placed in parallel with each other to take advantage of Curiosity’s ability to multitask.
Once our planning Jenga game was over, the team had won — we had a complete and perfectly balanced plan! Who says you cannot teach an old dog (4,546-sols-old) new tricks?
Share Details Last Updated May 22, 2025 Related Terms Explore More 5 min read Sols 4543-4545: Leaving the Ridge for the RidgesArticle
2 days ago
3 min read Sols 4541–4542: Boxwork Structure, or Just “Box-Like” Structure?
Article
3 days ago
1 min read Sols 4539-4540: Back After a Productive Weekend Plan
Article
1 week ago
Keep Exploring Discover More Topics From NASA Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
NASA’s Dragonfly Mission Sets Sights on Titan’s Mysteries
6 min read
NASA’s Dragonfly Mission Sets Sights on Titan’s MysteriesWhen it descends through the thick golden haze on Saturn’s moon Titan, NASA’s Dragonfly rotorcraft will find eerily familiar terrain. Dunes wrap around Titan’s equator. Clouds drift across its skies. Rain drizzles. Rivers flow, forming canyons, lakes and seas.
Artist’s concept of NASA’s Dragonfly on the surface of Saturn’s moon Titan. The car-sized rotorcraft will be equipped to characterize the habitability of Titan’s environment, investigate the progression of prebiotic chemistry in an environment where carbon-rich material and liquid water may have mixed for an extended period, and even search for chemical indications of whether water-based or hydrocarbon-based life once existed on Titan. NASA/Johns Hopkins APL/Steve GribbenBut not everything is as familiar as it seems. At minus 292 degrees Fahrenheit, the dune sands aren’t silicate grains but organic material. The rivers, lakes and seas hold liquid methane and ethane, not water. Titan is a frigid world laden with organic molecules.
Yet Dragonfly, a car-sized rotorcraft set to launch no earlier than 2028, will explore this frigid world to potentially answer one of science’s biggest questions: How did life begin?
Seeking answers about life in a place where it likely can’t survive seems odd. But that’s precisely the point.
“Dragonfly isn’t a mission to detect life — it’s a mission to investigate the chemistry that came before biology here on Earth,” said Zibi Turtle, principal investigator for Dragonfly and a planetary scientist at the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland. “On Titan, we can explore the chemical processes that may have led to life on Earth without life complicating the picture.”
On Earth, life has reshaped nearly everything, burying its chemical forebears beneath eons of evolution. Even today’s microbes rely on a slew of reactions to keep squirming.
“You need to have gone from simple to complex chemistry before jumping to biology, but we don’t know all the steps,” Turtle said. “Titan allows us to uncover some of them.”
Titan is an untouched chemical laboratory where all the ingredients for known life — organics, liquid water and an energy source — have interacted in the past. What Dragonfly uncovers will illuminate a past since erased on Earth and refine our understanding of habitability and whether the chemistry that sparked life here is a universal rule — or a wonderous cosmic fluke.
Before NASA’s Cassini-Huygens mission, researchers didn’t know just how rich Titan is in organic molecules. The mission’s data, combined with laboratory experiments, revealed a molecular smorgasbord — ethane, propane, acetylene, acetone, vinyl cyanide, benzene, cyanogen, and more.
These molecules fall to the surface, forming thick deposits on Titan’s ice bedrock. Scientists believe life-related chemistry could start there — if given some liquid water, such as from an asteroid impact.
Enter Selk crater, a 50-mile-wide impact site. It’s a key Dragonfly destination, not only because it’s covered in organics, but because it may have had liquid water for an extended time.
Selk crater, a 50-mile-wide impact site highlighted on this infrared image of Titan, is a key Dragonfly destination. Landing near Selk, Dragonfly will explore various sites, analyzing the surface chemistry to investigate the frozen remains of what could have been prebiotic chemistry in action. NASA/JPL-Caltech/University of Nantes/University of ArizonaThe impact that formed Selk melted the icy bedrock, creating a temporary pool that could have remained liquid for hundreds to thousands of years under an insulating ice layer, like winter ponds on Earth. If a natural antifreeze like ammonia were mixed in, the pool could have remained unfrozen even longer, blending water with organics and the impactor’s silicon, phosphorus, sulfur and iron to form a primordial soup.
“It’s essentially a long-running chemical experiment,” said Sarah Hörst, an atmospheric chemist at Johns Hopkins University and co-investigator on Dragonfly’s science team. “That’s why Titan is exciting. It’s a natural version of our origin-of-life experiments — except it’s been running much longer and on a planetary scale.”
For decades, scientists have simulated Earth’s early conditions, mixing water with simple organics to create a “prebiotic soup” and jumpstarting reactions with an electrical shock. The problem is time. Most tests last weeks, maybe months or years.
The melt pools at Selk crater, however, possibly lasted tens of thousands of years. Still shorter than the hundreds of millions of years it took life to emerge on Earth, but potentially enough time for critical chemistry to occur.
“We don’t know if Earth life took so long because conditions had to stabilize or because the chemistry itself needed time,” Hörst said. “But models show that if you toss Titan’s organics into water, tens of thousands of years is plenty of time for chemistry to happen.”
Dragonfly will test that theory. Landing near Selk, it will fly from site to site, analyzing the surface chemistry to investigate the frozen remains of what could have been prebiotic chemistry in action.
Morgan Cable, a research scientist at NASA’s Jet Propulsion Laboratory in Southern California and co-investigator on Dragonfly, is particularly excited about the Dragonfly Mass Spectrometer (DraMS) instrument. Developed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with a key subsystem provided by the CNES (Centre National d’Etudes Spatiales), DraMS will search for indicators of complex chemistry.
“We’re not looking for exact molecules, but patterns that suggest complexity,” Cable said. On Earth, for example, amino acids — fundamental to proteins — appear in specific patterns. A world without life would mainly manufacture the simplest amino acids and form fewer complex ones.
Generally, Titan isn’t regarded as habitable; it’s too cold for the chemistry of life as we know it to occur, and there’s is no liquid water on the surface, where the organics and likely energy sources exist.
Still, scientists have assumed that if a place has life’s ingredients and enough time, complex chemistry — and eventually life — should emerge. If Titan proves otherwise, it may mean we’ve misunderstood something about life’s start and it may be rarer than we thought.
“We won’t know how easy or difficult it is for these chemical steps to occur if we don’t go, so we need to go and look,” Cable said. “That’s the fun thing about going to a world like Titan. We’re like detectives with our magnifying glasses, looking at everything and wondering what this is.”
Dragonfly is being designed and built under the direction of the Johns Hopkins Applied Physics Laboratory (APL), which manages the mission for NASA. The team includes key partners at NASA’s Goddard Space Flight Center and NASA’s Jet Propulsion Laboratory. Dragonfly is managed by NASA’s Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Science Mission Directorate at NASA Headquarters in Washington.
For more information on Dragonfly, visit:
https://science.nasa.gov/mission/dragonfly/
By Jeremy Rehm
Johns Hopkins Applied Physics Laboratory, Laurel, Md.
Media Contacts:
Karen Fox / Molly Wasser
Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
Mike Buckley
Johns Hopkins Applied Physics Laboratory
443-567-3145
michael.buckley@jhuapl.edu
Saturn
Saturn Moons
Our Solar System
Asteroids, Comets & Meteors
NASA’s Dragonfly Mission Sets Sights on Titan’s Mysteries
6 min read
NASA’s Dragonfly Mission Sets Sights on Titan’s MysteriesWhen it descends through the thick golden haze on Saturn’s moon Titan, NASA’s Dragonfly rotorcraft will find eerily familiar terrain. Dunes wrap around Titan’s equator. Clouds drift across its skies. Rain drizzles. Rivers flow, forming canyons, lakes and seas.
Artist’s concept of NASA’s Dragonfly on the surface of Saturn’s moon Titan. The car-sized rotorcraft will be equipped to characterize the habitability of Titan’s environment, investigate the progression of prebiotic chemistry in an environment where carbon-rich material and liquid water may have mixed for an extended period, and even search for chemical indications of whether water-based or hydrocarbon-based life once existed on Titan. NASA/Johns Hopkins APL/Steve GribbenBut not everything is as familiar as it seems. At minus 292 degrees Fahrenheit, the dune sands aren’t silicate grains but organic material. The rivers, lakes and seas hold liquid methane and ethane, not water. Titan is a frigid world laden with organic molecules.
Yet Dragonfly, a car-sized rotorcraft set to launch no earlier than 2028, will explore this frigid world to potentially answer one of science’s biggest questions: How did life begin?
Seeking answers about life in a place where it likely can’t survive seems odd. But that’s precisely the point.
“Dragonfly isn’t a mission to detect life — it’s a mission to investigate the chemistry that came before biology here on Earth,” said Zibi Turtle, principal investigator for Dragonfly and a planetary scientist at the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland. “On Titan, we can explore the chemical processes that may have led to life on Earth without life complicating the picture.”
On Earth, life has reshaped nearly everything, burying its chemical forebears beneath eons of evolution. Even today’s microbes rely on a slew of reactions to keep squirming.
“You need to have gone from simple to complex chemistry before jumping to biology, but we don’t know all the steps,” Turtle said. “Titan allows us to uncover some of them.”
Titan is an untouched chemical laboratory where all the ingredients for known life — organics, liquid water and an energy source — have interacted in the past. What Dragonfly uncovers will illuminate a past since erased on Earth and refine our understanding of habitability and whether the chemistry that sparked life here is a universal rule — or a wonderous cosmic fluke.
Before NASA’s Cassini-Huygens mission, researchers didn’t know just how rich Titan is in organic molecules. The mission’s data, combined with laboratory experiments, revealed a molecular smorgasbord — ethane, propane, acetylene, acetone, vinyl cyanide, benzene, cyanogen, and more.
These molecules fall to the surface, forming thick deposits on Titan’s ice bedrock. Scientists believe life-related chemistry could start there — if given some liquid water, such as from an asteroid impact.
Enter Selk crater, a 50-mile-wide impact site. It’s a key Dragonfly destination, not only because it’s covered in organics, but because it may have had liquid water for an extended time.
Selk crater, a 50-mile-wide impact site highlighted on this infrared image of Titan, is a key Dragonfly destination. Landing near Selk, Dragonfly will explore various sites, analyzing the surface chemistry to investigate the frozen remains of what could have been prebiotic chemistry in action. NASA/JPL-Caltech/University of Nantes/University of ArizonaThe impact that formed Selk melted the icy bedrock, creating a temporary pool that could have remained liquid for hundreds to thousands of years under an insulating ice layer, like winter ponds on Earth. If a natural antifreeze like ammonia were mixed in, the pool could have remained unfrozen even longer, blending water with organics and the impactor’s silicon, phosphorus, sulfur and iron to form a primordial soup.
“It’s essentially a long-running chemical experiment,” said Sarah Hörst, an atmospheric chemist at Johns Hopkins University and co-investigator on Dragonfly’s science team. “That’s why Titan is exciting. It’s a natural version of our origin-of-life experiments — except it’s been running much longer and on a planetary scale.”
For decades, scientists have simulated Earth’s early conditions, mixing water with simple organics to create a “prebiotic soup” and jumpstarting reactions with an electrical shock. The problem is time. Most tests last weeks, maybe months or years.
The melt pools at Selk crater, however, possibly lasted tens of thousands of years. Still shorter than the hundreds of millions of years it took life to emerge on Earth, but potentially enough time for critical chemistry to occur.
“We don’t know if Earth life took so long because conditions had to stabilize or because the chemistry itself needed time,” Hörst said. “But models show that if you toss Titan’s organics into water, tens of thousands of years is plenty of time for chemistry to happen.”
Dragonfly will test that theory. Landing near Selk, it will fly from site to site, analyzing the surface chemistry to investigate the frozen remains of what could have been prebiotic chemistry in action.
Morgan Cable, a research scientist at NASA’s Jet Propulsion Laboratory in Southern California and co-investigator on Dragonfly, is particularly excited about the Dragonfly Mass Spectrometer (DraMS) instrument. Developed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with a key subsystem provided by the CNES (Centre National d’Etudes Spatiales), DraMS will search for indicators of complex chemistry.
“We’re not looking for exact molecules, but patterns that suggest complexity,” Cable said. On Earth, for example, amino acids — fundamental to proteins — appear in specific patterns. A world without life would mainly manufacture the simplest amino acids and form fewer complex ones.
Generally, Titan isn’t regarded as habitable; it’s too cold for the chemistry of life as we know it to occur, and there’s is no liquid water on the surface, where the organics and likely energy sources exist.
Still, scientists have assumed that if a place has life’s ingredients and enough time, complex chemistry — and eventually life — should emerge. If Titan proves otherwise, it may mean we’ve misunderstood something about life’s start and it may be rarer than we thought.
“We won’t know how easy or difficult it is for these chemical steps to occur if we don’t go, so we need to go and look,” Cable said. “That’s the fun thing about going to a world like Titan. We’re like detectives with our magnifying glasses, looking at everything and wondering what this is.”
Dragonfly is being designed and built under the direction of the Johns Hopkins Applied Physics Laboratory (APL), which manages the mission for NASA. The team includes key partners at NASA’s Goddard Space Flight Center and NASA’s Jet Propulsion Laboratory. Dragonfly is managed by NASA’s Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Science Mission Directorate at NASA Headquarters in Washington.
For more information on Dragonfly, visit:
https://science.nasa.gov/mission/dragonfly/
By Jeremy Rehm
Johns Hopkins Applied Physics Laboratory, Laurel, Md.
Media Contacts:
Karen Fox / Molly Wasser
Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
Mike Buckley
Johns Hopkins Applied Physics Laboratory
443-567-3145
michael.buckley@jhuapl.edu
Saturn
Saturn Moons
Our Solar System
Asteroids, Comets & Meteors
Winners Announced in NASA’s 2025 Gateways to Blue Skies Competition
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater) A team from South Dakota State University with their project, “Soil Testing and Plant Leaf Extraction Drone,” took first place at the 2025 Gateways to Blue Skies Forum held May 20-21 in Palmdale, California. Advisor Todd Lechter, left, along with team members Nick Wolles, Keegan Visher, Nathan Kuehl and Laura Peterson, and graduate advisor Allea Klauenberg, right, accepted the award.NASAA team from South Dakota State University, with their project titled “Soil Testing and Plant Leaf Extraction Drone” took first place at the 2025 NASA Gateways to Blue Skies Competition, which challenged student teams to research aviation solutions to support U.S. agriculture.
The winning project proposed a drone-based soil and tissue sampling process that would automate a typically labor-intensive farming task. The South Dakota State team competed among eight finalists at the 2025 Blue Skies Forum May 20-21 in Palmdale, California, near NASA’s Armstrong Flight Research Center. Subject matter experts from NASA and industry served as judges.
“This competition challenges students to think creatively, explore new possibilities, and confront the emerging issues and opportunity spaces solvable through aviation platforms,” said Steven Holz, assistant project manager for University Innovation with NASA’s Aeronautics Research Mission Directorate and Blue Skies judge and co-chair. “They bring imaginative ideas, interesting insights, and an impressive level of dedication. It’s always an honor to work with the next generation of innovators participating in our competition.”
This competition challenges students to think creatively, explore new possibilities, and confront the emerging issues and opportunity spaces solvable through aviation platformsSteven holz
Assistant Project Manager for University Innovation
The winning team members were awarded an opportunity to intern during the 2025-26 academic year at any of four aeronautics-focused NASA centers — Langley Research Center in Hampton, Virginia, Glenn Research Center in Cleveland, Ames Research Center in California’s Silicon Valley, or Armstrong Flight Research Center in Edwards, California.
“It’s been super-rewarding for our team to see how far we’ve come, especially with all these other amazing projects that we were competing against,” said Nathan Kuehl, team lead at South Dakota State University. “It wouldn’t have been possible without our graduate advisor, Allea Klauenberg, and advisor, Todd Lechter. We want to thank everybody that made this experience possible.”
Other awards included:
- Second Place — University of Tulsa, CattleLog Cattle Management System
- Best Technical Paper — Boston University, PLAANT: Precision Land Analysis and Aerial Nitrogen Treatment
Sponsored by NASA’s Aeronautics Research Mission Directorate, this year’s competition asked teams of university students to research new or improved aviation solutions to support agriculture that could be applied by 2035 or sooner. The goal of the competition, titled AgAir: Aviation Solutions for Agriculture, was to enhance production, efficiency, sustainability, and resilience to extreme weather.
At the forum, finalist teams presented concepts of aviation systems that could help the agriculture industry.Students had the opportunity to meet with NASA and industry experts, tour NASA Armstrong, and gain insight into the agency’s aviation mission.
U.S. agriculture provides food, fuel, and fiber to the nation and the world. However, the industry faces significant challenges. NASA Aeronautics is committed to supporting commercial, industrial, and governmental partners in advancing aviation systems to modernize agricultural capabilities.
The Gateways to Blue Skies competition is sponsored by NASA’s Aeronautics Research Mission Directorate’s University Innovation Project and is managed by the National Institute of Aerospace.
The National Institute of Aerospace has made available a livestream of the competition, as well as information about the finalists and their projects, and details about the 2025 competition.
Facebook logo @NASA@NASAaero@NASAes @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More 3 min read NASA’s Moffett Federal Airfield Hosts Boeing Digital Taxi Tests Article 15 hours ago 5 min read NASA X-59’s Latest Testing Milestone: Simulating Flight from the Ground Article 7 days ago 4 min read Top Prize Awarded in Lunar Autonomy Challenge to Virtually Map Moon’s Surface Article 1 week ago Keep Exploring Discover More Topics From NASAAeronautics
Aeronautics STEM
Transformative Aeronautics Concepts Program
NASA History
Share Details Last Updated May 22, 2025 EditorLillian GipsonContactRobert Margettarobert.j.margetta@nasa.gov Related TermsWinners Announced in NASA’s 2025 Gateways to Blue Skies Competition
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater) A team from South Dakota State University with their project, “Soil Testing and Plant Leaf Extraction Drone,” took first place at the 2025 Gateways to Blue Skies Forum held May 20-21 in Palmdale, California. Advisor Todd Lechter, left, along with team members Nick Wolles, Keegan Visher, Nathan Kuehl and Laura Peterson, and graduate advisor Allea Klauenberg, right, accepted the award.NASAA team from South Dakota State University, with their project titled “Soil Testing and Plant Leaf Extraction Drone” took first place at the 2025 NASA Gateways to Blue Skies Competition, which challenged student teams to research aviation solutions to support U.S. agriculture.
The winning project proposed a drone-based soil and tissue sampling process that would automate a typically labor-intensive farming task. The South Dakota State team competed among eight finalists at the 2025 Blue Skies Forum May 20-21 in Palmdale, California, near NASA’s Armstrong Flight Research Center. Subject matter experts from NASA and industry served as judges.
“This competition challenges students to think creatively, explore new possibilities, and confront the emerging issues and opportunity spaces solvable through aviation platforms,” said Steven Holz, assistant project manager for University Innovation with NASA’s Aeronautics Research Mission Directorate and Blue Skies judge and co-chair. “They bring imaginative ideas, interesting insights, and an impressive level of dedication. It’s always an honor to work with the next generation of innovators participating in our competition.”
This competition challenges students to think creatively, explore new possibilities, and confront the emerging issues and opportunity spaces solvable through aviation platformsSteven holz
Assistant Project Manager for University Innovation
The winning team members were awarded an opportunity to intern during the 2025-26 academic year at any of four aeronautics-focused NASA centers — Langley Research Center in Hampton, Virginia, Glenn Research Center in Cleveland, Ames Research Center in California’s Silicon Valley, or Armstrong Flight Research Center in Edwards, California.
“It’s been super-rewarding for our team to see how far we’ve come, especially with all these other amazing projects that we were competing against,” said Nathan Kuehl, team lead at South Dakota State University. “It wouldn’t have been possible without our graduate advisor, Allea Klauenberg, and advisor, Todd Lechter. We want to thank everybody that made this experience possible.”
Other awards included:
- Second Place — University of Tulsa, CattleLog Cattle Management System
- Best Technical Paper — Boston University, PLAANT: Precision Land Analysis and Aerial Nitrogen Treatment
Sponsored by NASA’s Aeronautics Research Mission Directorate, this year’s competition asked teams of university students to research new or improved aviation solutions to support agriculture that could be applied by 2035 or sooner. The goal of the competition, titled AgAir: Aviation Solutions for Agriculture, was to enhance production, efficiency, sustainability, and resilience to extreme weather.
At the forum, finalist teams presented concepts of aviation systems that could help the agriculture industry.Students had the opportunity to meet with NASA and industry experts, tour NASA Armstrong, and gain insight into the agency’s aviation mission.
U.S. agriculture provides food, fuel, and fiber to the nation and the world. However, the industry faces significant challenges. NASA Aeronautics is committed to supporting commercial, industrial, and governmental partners in advancing aviation systems to modernize agricultural capabilities.
The Gateways to Blue Skies competition is sponsored by NASA’s Aeronautics Research Mission Directorate’s University Innovation Project and is managed by the National Institute of Aerospace.
The National Institute of Aerospace has made available a livestream of the competition, as well as information about the finalists and their projects, and details about the 2025 competition.
Facebook logo @NASA@NASAaero@NASAes @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More 3 min read NASA’s Moffett Federal Airfield Hosts Boeing Digital Taxi Tests Article 7 hours ago 5 min read NASA X-59’s Latest Testing Milestone: Simulating Flight from the Ground Article 7 days ago 4 min read Top Prize Awarded in Lunar Autonomy Challenge to Virtually Map Moon’s Surface Article 1 week ago Keep Exploring Discover More Topics From NASAAeronautics
Aeronautics STEM
Transformative Aeronautics Concepts Program
NASA History
Share Details Last Updated May 22, 2025 EditorLillian GipsonContactRobert Margettarobert.j.margetta@nasa.gov Related TermsWhat is Lunar Regolith? (Grades 5-8)
This article is for students grades 5-8.
The surface of the Moon is covered in a thick layer of boulders, rocks, and dust. This dusty, rocky layer is called lunar regolith. It was created a long time ago when meteorites crashed into the Moon and broke up the ground. NASA scientists study the regolith to learn more about the Moon’s history. But the smallest parts of the regolith make exploring the Moon very hard! That is why scientists are working to understand it better and to keep astronauts safe during future lunar missions.
What is lunar regolith like?Lunar regolith is full of tiny, sharp pieces that can act like little bits of broken glass. Unlike the dust and soil on Earth, the smallest pieces of regolith have not been worn down by wind or rain. These bits are rough, jagged, and cling to everything they touch – boots, gloves, tools, and even spacecraft! In pictures it might look like soft, harmless gray powder, but it is actually scratchy and can damage lunar landers, spacesuits, and robots. This makes working on the Moon a lot harder than it looks!
Is regolith harmful to astronauts?The small parts of lunar regolith get stuck on spacesuits and can be brought inside the spacecraft. Once it is inside, it can cause some serious problems. The tiny, sharp pieces can make astronauts’ skin itchy, irritate their eyes, and even make them cough. If it gets into their lungs, it can make them sick. Scientists worry the damage from breathing in lunar regolith could keep bothering astronauts for a long time, even after they are back on Earth. That is why NASA scientists and technologists are working hard to find smart ways to deal with regolith and protect astronauts!
Can regolith damage NASA equipment?Regolith doesn’t just cause trouble for astronauts. It can also damage important machines! It can scratch tools and cover up solar panels, causing them to stop working. It can also clog radiators, which are used to keep machines cool. The small bits of regolith can make surfaces slippery and hard to walk on. It can even make it tough for robots to move around. Unlike Earth’s soil, the Moon’s regolith isn’t packed down. Any time we move things around on the Moon’s surface, we spread the rough, dusty particles around. Can you imagine what a mess launching and landing a spacecraft would make?
All of this can make exploring the Moon much more difficult and even dangerous!
What is NASA doing to understand lunar regolith?NASA is building many cool technologies to help deal with the harm regolith can cause. One of the tools technologists have already developed is call an Electrodynamic Dust Shield (EDS). It uses electricity to create a kind of force field that pushes the small particles away from tools on the Moon!
There are many ways NASA is working to understand lunar regolith. One interesting way is by using special cameras and lasers on landers to watch how the regolith moves when a spacecraft lands. This system is called SCALPPS, which stands for Stereo Cameras for Lunar Plume-Surface Studies. SCALPSS helps scientists see how the lunar regolith gets blown around during landings. It helps scientists to measure the size of the regolith pieces and the amount that flies up into the air during landing.
The more NASA knows about how regolith behaves, the better they can plan for safe missions!
Career CornerMany types of scientists and engineers work together to understand lunar regolith. If you want to study space, here are some cool jobs you could have!
Planetary Geologist: These scientists are like detectives. They study how the things in space were formed, how they have changed, and what they can tell us about the rest of the solar system. Their work helps us understand what is in space.
Chemist: Chemists look at space rocks and space dust. They want to know what these materials are made of and how they were created.
Astrobiologist: Astrobiologists are studying to find clues of life beyond Earth. They study space to find out if life ever existed – or could exist – somewhere else in the universe.
Planetary Scientist: These scientists use pictures, data from spacecraft, and even samples from rocks and dust to learn about other worlds. They explore space without ever leaving Earth!
Remote Sensing Scientist: These scientists use satellites, drones, and special cameras to study planets from far away. It is like being a space spy who looks for clues from above.
Engineers: Engineers solve problems! Civil engineers, materials engineers, and geotechnical engineers work together to understand how regolith can best be used for building materials and get useful resources on the Moon.
Explore MoreWatch: Mitigating Lunar Dust
Watch: NASA SCALPSS
Watch: Surprisingly STEM: Exploration Geologist Surprisingly STEM: Moon Rock Processors
Explore More For Students Grades 5-8What is Lunar Regolith? (Grades 5-8)
This article is for students grades 5-8.
The surface of the Moon is covered in a thick layer of boulders, rocks, and dust. This dusty, rocky layer is called lunar regolith. It was created a long time ago when meteorites crashed into the Moon and broke up the ground. NASA scientists study the regolith to learn more about the Moon’s history. But the smallest parts of the regolith make exploring the Moon very hard! That is why scientists are working to understand it better and to keep astronauts safe during future lunar missions.
What is lunar regolith like?Lunar regolith is full of tiny, sharp pieces that can act like little bits of broken glass. Unlike the dust and soil on Earth, the smallest pieces of regolith have not been worn down by wind or rain. These bits are rough, jagged, and cling to everything they touch – boots, gloves, tools, and even spacecraft! In pictures it might look like soft, harmless gray powder, but it is actually scratchy and can damage lunar landers, spacesuits, and robots. This makes working on the Moon a lot harder than it looks!
Is regolith harmful to astronauts?The small parts of lunar regolith get stuck on spacesuits and can be brought inside the spacecraft. Once it is inside, it can cause some serious problems. The tiny, sharp pieces can make astronauts’ skin itchy, irritate their eyes, and even make them cough. If it gets into their lungs, it can make them sick. Scientists worry the damage from breathing in lunar regolith could keep bothering astronauts for a long time, even after they are back on Earth. That is why NASA scientists and technologists are working hard to find smart ways to deal with regolith and protect astronauts!
Can regolith damage NASA equipment?Regolith doesn’t just cause trouble for astronauts. It can also damage important machines! It can scratch tools and cover up solar panels, causing them to stop working. It can also clog radiators, which are used to keep machines cool. The small bits of regolith can make surfaces slippery and hard to walk on. It can even make it tough for robots to move around. Unlike Earth’s soil, the Moon’s regolith isn’t packed down. Any time we move things around on the Moon’s surface, we spread the rough, dusty particles around. Can you imagine what a mess launching and landing a spacecraft would make?
All of this can make exploring the Moon much more difficult and even dangerous!
What is NASA doing to understand lunar regolith?NASA is building many cool technologies to help deal with the harm regolith can cause. One of the tools technologists have already developed is call an Electrodynamic Dust Shield (EDS). It uses electricity to create a kind of force field that pushes the small particles away from tools on the Moon!
There are many ways NASA is working to understand lunar regolith. One interesting way is by using special cameras and lasers on landers to watch how the regolith moves when a spacecraft lands. This system is called SCALPPS, which stands for Stereo Cameras for Lunar Plume-Surface Studies. SCALPSS helps scientists see how the lunar regolith gets blown around during landings. It helps scientists to measure the size of the regolith pieces and the amount that flies up into the air during landing.
The more NASA knows about how regolith behaves, the better they can plan for safe missions!
Career CornerMany types of scientists and engineers work together to understand lunar regolith. If you want to study space, here are some cool jobs you could have!
Planetary Geologist: These scientists are like detectives. They study how the things in space were formed, how they have changed, and what they can tell us about the rest of the solar system. Their work helps us understand what is in space.
Chemist: Chemists look at space rocks and space dust. They want to know what these materials are made of and how they were created.
Astrobiologist: Astrobiologists are studying to find clues of life beyond Earth. They study space to find out if life ever existed – or could exist – somewhere else in the universe.
Planetary Scientist: These scientists use pictures, data from spacecraft, and even samples from rocks and dust to learn about other worlds. They explore space without ever leaving Earth!
Remote Sensing Scientist: These scientists use satellites, drones, and special cameras to study planets from far away. It is like being a space spy who looks for clues from above.
Engineers: Engineers solve problems! Civil engineers, materials engineers, and geotechnical engineers work together to understand how regolith can best be used for building materials and get useful resources on the Moon.
Explore MoreWatch: Mitigating Lunar Dust
Watch: NASA SCALPSS
Watch: Surprisingly STEM: Exploration Geologist Surprisingly STEM: Moon Rock Processors
Explore More For Students Grades 5-8NASA-French Satellite Spots Large-Scale River Waves for First Time
6 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater) The SWOT satellite is helping scientists size up flood waves on waterways like the Yellowstone River, pictured here in October 2024 in Montana. SWOT measures the height of surface waters, including the ocean, and hundreds of thousands of rivers, lakes, and reservoirs in the U.S. alone.NPSIn a first, researchers from NASA and Virginia Tech used satellite data to measure the height and speed of potentially hazardous flood waves traveling down U.S. rivers. The three waves they tracked were likely caused by extreme rainfall and by a loosened ice jam. While there is currently no database that compiles satellite data on river flood waves, the new study highlights the potential of space-based observations to aid hydrologists and engineers, especially those working in communities along river networks with limited flood control structures such as levees and flood gates.
Unlike ocean waves, which are ordinarily driven by wind and tides, and roll to shore at a steady clip, river waves (also called flood or flow waves) are temporary surges stretching tens to hundreds of miles. Typically caused by rainfall or seasonal snowmelt, they are essential to shuttling nutrients and organisms down a river. But they can also pose hazards: Extreme river waves triggered by a prolonged downpour or dam break can produce floods.
“Ocean waves are well known from surfing and sailing, but rivers are the arteries of the planet. We want to understand their dynamics,” said Cedric David, a hydrologist at NASA’s Jet Propulsion Laboratory in Southern California and a coauthor of a new study published May 14 in Geophysical Research Letters.
SWOT is depicted in orbit in this artist’s concept, with sunlight glinting off one of its solar panels and both antennas of its key instrument — the Ka-band Radar Interferometer (KaRIn) — extended. The antennas collect data along a swath 30 miles (50 kilometers) wide on either side of the satellite.CNES Measuring Speed and SizeTo search for river waves for her doctoral research, lead author Hana Thurman of Virginia Tech turned to a spacecraft launched in 2022. The SWOT (Surface Water and Ocean Topography) satellite is a collaboration between NASA and the French space agency CNES (Centre National d’Études Spatiales). It is surveying the height of nearly all of Earth’s surface waters, both fresh and salty, using its sensitive Ka-band Radar Interferometer (KaRIn). The instrument maps the elevation and width of water bodies by bouncing microwaves off the surface and timing how long the signal takes to return.
“In addition to monitoring total storage of waters in lakes and rivers, we zoom in on dynamics and impacts of water movement and change,” said Nadya Vinogradova Shiffer, SWOT program scientist at NASA Headquarters in Washington.
Thurman knew that SWOT has helped scientists track rising sea levels near the coast, spot tsunami slosh, and map the seafloor, but could she identify river height anomalies in the data indicating a wave on the move?
She found that the mission had caught three clear examples of river waves, including one that arose abruptly on the Yellowstone River in Montana in April 2023. As the satellite passed overhead, it observed a 9.1-foot-tall (2.8-meter-tall) crest flowing toward the Missouri River in North Dakota. It was divided into a dramatic 6.8-mile-long (11-kilometer-long) peak followed by a more drawn‐out tail. These details are exciting to see from orbit and illustrate the KaRIn instrument’s uniquely high spatial resolution, Thurman said.
Sleuthing through optical Sentinel-2 imagery of the area, she determined that the wave likely resulted from an ice jam breaking apart upstream and releasing pent-up water.
The other two river waves that Thurman and the team found were triggered by rainfall runoff. One, spotted by SWOT starting on Jan. 25, 2024, on the Colorado River south of Austin, Texas, was associated with the largest flood of the year on that section of river. Measuring over 30 feet (9 meters) tall and 166 miles (267 kilometers) long, it traveled around 3.5 feet (1.07 meters) per second for over 250 miles (400 kilometers) before discharging into Matagorda Bay.
The other wave originated on the Ocmulgee River near Macon, Georgia, in March 2024. Measuring over 20 feet (6 meters) tall and extending more than 100 miles (165 kilometers), it traveled about a foot (0.33 meters) per second for more than 124 miles (200 kilometers).
“We’re learning more about the shape and speed of flow waves, and how they change along long stretches of river,” Thurman said. “That could help us answer questions like, how fast could a flood get here and is infrastructure at risk?”
Complementary ObservationsEngineers and water managers measuring river waves have long relied on stream gauges, which record water height and estimate discharge at fixed points along a river. In the United States, stream gauge networks are maintained by agencies including the U.S. Geological Survey. They are sparser in other parts of the world.
“Satellite data is complementary because it can help fill in the gaps,” said study supervisor George Allen, a hydrologist and remote sensing expert at Virginia Tech.
If stream gauges are like toll booths clocking cars as they pass, SWOT is like a traffic helicopter taking snapshots of the highway.
The wave speeds that SWOT helped determine were similar to those calculated using gauge data alone, Allen said, showing how the satellite could help monitor waves in river basins without gauges. Knowing where and why river waves develop can help scientists tracking changing flood patterns around the world.
Orbiting Earth multiple times each day, SWOT is expected to observe some 55% of large-scale floods at some stage in their life cycle. “If we see something in the data, we can say something,” David said of SWOT’s potential to flag dangerous floods in the making. “For a long time, we’ve stood on the banks of our rivers, but we’ve never seen them like we are now.”
More About SWOTThe SWOT satellite was jointly developed by NASA and CNES, with contributions from the Canadian Space Agency (CSA) and the UK Space Agency. NASA’s Jet Propulsion Laboratory, managed for the agency by Caltech in Pasadena, California, leads the U.S. component of the project. For the flight system payload, NASA provided the Ka-band radar interferometer (KaRIn) instrument, a GPS science receiver, a laser retroreflector, a two-beam microwave radiometer, and NASA instrument operations. The Doppler Orbitography and Radioposition Integrated by Satellite system, the dual frequency Poseidon altimeter (developed by Thales Alenia Space), the KaRIn radio-frequency subsystem (together with Thales Alenia Space and with support from the UK Space Agency), the satellite platform, and ground operations were provided by CNES. The KaRIn high-power transmitter assembly was provided by CSA.
News Media ContactsJane J. Lee / Andrew Wang
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-0307 / 626-379-6874
Written by Sally Younger
2025-074
Missions
Humans in Space
Climate Change
Solar System