The forces of rotation caused red hot masses of stones to be torn away from the Earth and to be thrown into the ether, and this is the origin of the stars.

— Anaxagoras 428 BC

Astronomy

SpaceX's Starship could help this start-up beam clean energy from space. Here's how (video)

Space.com - Tue, 04/30/2024 - 6:00am
SpaceX's Starship will make space-based solar power cheaper than nuclear, gas and coal-based electricity generation, start-up Virtus Solis believes.
Categories: Astronomy

ADHD Can Have Unexpected Benefits

Scientific American.com - Tue, 04/30/2024 - 6:00am

A new book by Penn and Kim Holderness seeks to correct misconceptions about ADHD and accentuate the plus side of the condition

Categories: Astronomy

India is poised to become a climate leader, but is it up to the task?

New Scientist Space - Cosmology - Tue, 04/30/2024 - 4:00am
As the world's third largest emitter of greenhouse gases, climate policy decisions taken by India will shape the fate of the entire world. But can it continue to develop its economy while keeping carbon dioxide down?
Categories: Astronomy

India is poised to become a climate leader, but is it up to the task?

New Scientist Space - Space Headlines - Tue, 04/30/2024 - 4:00am
As the world's third largest emitter of greenhouse gases, climate policy decisions taken by India will shape the fate of the entire world. But can it continue to develop its economy while keeping carbon dioxide down?
Categories: Astronomy

First Light from Einstein Probe: A Supernova Remnant

Universe Today - Mon, 04/29/2024 - 8:05pm

On 9 January 2024, the Einstein probe was launched, its mission to study the night sky in X-rays. The first image from the probe that explores the Universe in these energetic wavelengths has just been released. It shows Puppis A, the supernova remnant from a massive star that exploded 4,000 years ago. The image showed the expanding cloud of ejecta from the explosion but now, Einstein will continue to scan the skies for other X-ray events. 

The Chinese and European probe was designed to revolutionise our understanding of the Universe in X-rays. Named after none other than Albert Einstein, it houses cutting edge technology that will enable the observation of black holes, neutron stars and other events and phenomena emitting X-ray radiation. To achieve this it has two science instruments on board; the Wide-field X-ray Telescope (WXT) to give large field views of the sky and the Follow-up X-ray Telescope (FXT) which homes in on objects of interest identified by WXT.

The Einstein probe has three main questions it hopes to address focusing on black holes, gravity waves and supernovae. The recent image just released shows the stunning Puppis A supernova remnant. Supernova are a common process that takes place at the end of a massive star’s life. A star like the Sun is fusing hydrogen in its core into helium. The process is known as thermonuclear fusion and it releases heat, light and an outward pressure known as the thermonuclear force. While a star is stable, the thermonuclear force balances the force of gravity which is trying to collapse the star. 

Massive stars will continue fusing different elements in the core until an iron core remains. It’s not possible to fuse iron so the thermonuclear force ceases allowing gravity to win. the core collapses and the inward rushing material crashes down onto the core and rebounds into a massive explosion known as a supernova. 

Puppis A is one such object that is thought to have exploded 4,000 years ago. It lies about 7,000 light years from us which means the light that the radiation detected by the Einstein probe left about 7,000 years ago. 

In the image released from Einstein, the cloud like structure is all that remains of the star that went supernova. It is possible to see a bright dot at the centre of the cloud, this is the core of the star that remains, a neutron star. The FXT image was accompanied by a spectrum to show the distribution of energy to help understand the elements present. 

Source : Supernova remnant Puppis A imaged by Einstein Probe

The post First Light from Einstein Probe: A Supernova Remnant appeared first on Universe Today.

Categories: Astronomy

<p><a href="https://apod.nasa.gov/apod

APOD - Mon, 04/29/2024 - 8:00pm

What created this giant X in the clouds?


Categories: Astronomy, NASA

Evidence for Planet 9 found in icy bodies sneaking past Neptune

Space.com - Mon, 04/29/2024 - 8:00pm
The hypothetical ninth planet may be slingshotting Oort Cloud objects onto orbits that come closer to the sun than Neptune does.
Categories: Astronomy

Galaxies Evolved Surprisingly Quickly in the Early Universe

Universe Today - Mon, 04/29/2024 - 7:25pm

Anyone familiar with astronomy will know that galaxies come in a fairly limited range of shapes, typically; spiral, elliptical, barred-spiral and irregular. The barred-spiral galaxy has been known to be a feature of the modern universe but a study from astronomers using the Hubble Space Telescope has recently challenged that view. Following on observations using the James Webb Space Telescope has found the bar feature in some spiral galaxies as early as 11 billion years ago suggesting galaxies evolved faster in the early Universe than previously expected. 

Our own Galaxy, the Milky Way is a spiral galaxy with a central nucleus and spiral arms emanating out from the centre. Our Solar System lies about 25,000 light years from the centre. Look at the galaxies in the sky though and you will see a real mix but generally they fall under the four main categories. Edwin Hubble tried to bring some structure to the different shapes by developing his galaxy classification scheme to articulate not only the shape but also the sub categories within them. 

This research published in Nature is the first direct confirmation that supermassive black holes are capable of shutting down galaxies

It has been known for some time that galaxies aren’t static. They move and they evolve and change. Spiral galaxies for example, as they age, they often develop a bar feature. The bar joins up the spiral arms instead of a nucleus connecting them and it is believed they are temporary, forming when a build of gas creates a burst of star formation. 

The existence of a bar in a spiral galaxy suggests that the galaxy is fairly stable. Understanding just how the bar feature forms is key to understanding the evolutionary process of the galaxy itself. All previous observations showed that the appearance of the bar significantly reduces from the nearby Universe to redshifts near a value of one. This tells us that the bar seemed to be a modern feature and not present in the early Universe. 

The barred spiral galaxy NGC 1300. Credit: NASA, ESA, and The Hubble Heritage Team (STScI/AURA)

In a new paper by lead author Zoe A Le Conte, observations from the more sensitive James Webb Space Telescope report that galaxies to greater redshift are studied for bar features. Data is used from the Cosmic Evolution Early Release Science Survey and the observations from the Public Release Imaging for Extragalactic Research studies. Only the galaxies that also appear in the Cosmic Assembly Near Infra Red Deep Extragalactic Legacy Survey are used giving a sample of 368 face on galaxies. 

The team visually searched through the 368 galaxy selection to classify and identify those with bars between redshifts 1 and 2 and then repeated the exercise for those between redshift 2 and 3. As expected, the fraction of bars reduced from around 17.8% between a red shift of 1 and 2 down to 13.8% at the greater red shift of 2 to 3. 

The study revealed that JWST’s infra-red sensitivity picked up twice as many barred-spiral galaxies than the HST’s more blue sensitive imaging platform. Le Conte and her team conclude that the evolution of bars in spiral galaxies began to appear at a much earlier epoch, around 11 billion years ago. 

Source : A JWST investigation into the bar fraction at redshifts 1 ? z ? 3

The post Galaxies Evolved Surprisingly Quickly in the Early Universe appeared first on Universe Today.

Categories: Astronomy

NASA crew announced for simulated Mars mission next month

Space.com - Mon, 04/29/2024 - 6:00pm
NASA picked a crew of four volunteers to undergo a simulation of life on Mars. The project will begin on May 10.
Categories: Astronomy

NASA's Viper moon rover gets its 'neck' and 'head' installed for mission later this year

Space.com - Mon, 04/29/2024 - 5:00pm
With its "mighty mast," NASA's Polar Exploration Rover dubbed VIPER continues to be prepped for its mission to the moon slated for late 2024.
Categories: Astronomy

Ep. 717: Understanding the Ages of Distant Cosmic Objects

Astronomy Cast - Mon, 04/29/2024 - 5:00pm

How old is that star? That planet? That nebula? Figuring out the ages of astronomical objects is surprisingly challenging. Fortunately, astronomers have developed a series of techniques they can use to work out the ages of stuff.

Download Now

Categories: Astronomy

Plastic pollution treaty would be 'failure' without tackling emissions

New Scientist Space - Cosmology - Mon, 04/29/2024 - 4:44pm
Plastic production is responsible for more greenhouse gas emissions than flying – at a summit in Canada, countries were divided on how to deal with this under-recognised part of the plastic problem
Categories: Astronomy

Plastic pollution treaty would be 'failure' without tackling emissions

New Scientist Space - Space Headlines - Mon, 04/29/2024 - 4:44pm
Plastic production is responsible for more greenhouse gas emissions than flying – at a summit in Canada, countries were divided on how to deal with this under-recognised part of the plastic problem
Categories: Astronomy

Foxes' skulls are specially adapted for diving into snow

New Scientist Space - Cosmology - Mon, 04/29/2024 - 4:00pm
Red foxes and Arctic foxes dive headfirst into snow at up to 4 metres per second to catch small rodents, and the shape of their snouts reduces the impact force
Categories: Astronomy

Foxes' skulls are specially adapted for diving into snow

New Scientist Space - Space Headlines - Mon, 04/29/2024 - 4:00pm
Red foxes and Arctic foxes dive headfirst into snow at up to 4 metres per second to catch small rodents, and the shape of their snouts reduces the impact force
Categories: Astronomy

China releases world's most detailed moon atlas (video)

Space.com - Mon, 04/29/2024 - 4:00pm
The atlas, which is available in Chinese and English, depicts the surface of the moon with a scale of 1:2.5 million. It highlights many intriguing geological features, such as impact craters.
Categories: Astronomy

How Knot Theory Can Help Spacecraft Can Change Orbits Without Using Fuel

Universe Today - Mon, 04/29/2024 - 3:58pm

When a spacecraft arrives at its destination, it settles into an orbit for science operations. But after the primary mission is complete, there might be other interesting orbits where scientists would like to explore. Maneuvering to a different orbit requires fuel, limiting a spacecraft’s number of maneuvers.

Researchers have discovered that some orbital paths allow for no-fuel orbital changes. But the figuring out these paths also are computationally expensive. Knot theory has been shown to find these pathways more easily, allowing the most fuel-efficient routes to be plotted. This is similar to how our GPS mapping software plots the most efficient routes for us here on Earth.

In mathematics, knot theory is the study of closed curves in three dimensions. Think of it as looking at a knotted necklace or a tangle of fishing line, and figuring out how to untangle them in the most efficient manner.

In the same way, a spacecraft’s path could be computed in a crowded planetary system – around Jupiter and all its moons, for example – where the best, simplest and least tangled route could be computed mathematically.

A graphic showing the orbital path the Danuri Lunar Pathfinder spacecraft will take to go into orbit around the Moon. Credit: Korea Aerospace Research Institute (KARI)

According to a new paper in the journal Astrodynamics, “Applications of knot theory to the detection of heteroclinic connections between quasi-periodic orbits,” using knot theory to untangle complicated spacecraft routes would decrease the amount of computer power or just plain guesswork in plotting out changes in spacecraft orbits.

“Previously, when the likes of NASA wanted to plot a route, their calculations relied on either brute force or guesswork,” said Danny Owen, a postgraduate research student in astrodynamics, in a press release from the University of Surrey. “Our new technique neatly reveals all possible routes a spacecraft could take from A to B, as long as both orbits share a common energy level.”

Owen added that this new process makes the task of planning missions much simpler. “We think of it as a tube [subway] map for space,” he said.

Spacecraft navigation is complicated by the fact that nothing in space is a fixed position. Navigators must meet the challenges of calculating the exact speeds and orientations of a rotating Earth, a rotating target destination, as well as a moving spacecraft, while all are simultaneously traveling in their own orbits around the Sun.

Since fuel is a limited resource for most missions, it would be beneficial to require the least amount of fuel possible in making any changes to the course of a spacecraft in orbit.  

Spacecraft navigators use something called heteroclinic orbits — often called heteroclinic connections — which are paths that allow a spacecraft to travel from one orbit to another using the most efficient amount of fuel – or sometimes no fuel at all. But this usually takes a large amount of computer power or a lot of time to figure out.  

Artist’s impession of the Lunar Gateway with the Orion spacecraft docked on the left side. Credit: ESA

But Owen and co-author Nicola Baresi, a lecturer in Orbital Mechanics at the University of Surrey, wrote that by using knot theory, they have developed “a method of robustly detecting heteroclinic connections,” they wrote in their paper, to quickly generate rough trajectories – which can then be refined. This gives spacecraft navigators a full list of all possible routes from a designated orbit, and the one that best fits the mission can be chosen. They can then choose the one that best suits their mission.

The researchers tested their technique on various planetary systems, including the Moon, and the Galilean moons of Jupiter.

“Spurred on by NASA’s Artemis program, the new Moon race is inspiring mission designers around the world to research fuel-efficient routes that can better and more efficiently explore the vicinity of the Moon,” said Baresi. “Not only does our technique make that cumbersome task more straightforward, but it can also be applied to other planetary systems, such as the icy moons of Saturn and Jupiter.”

The post How Knot Theory Can Help Spacecraft Can Change Orbits Without Using Fuel appeared first on Universe Today.

Categories: Astronomy

Another New Molecule Discovered Forming in Space

Universe Today - Mon, 04/29/2024 - 3:14pm

The list of chemicals found in space is growing longer and longer. Astronomers have found amino acids and other building blocks of life on comets, asteroids, and even floating freely in space. Now, researchers have found another complex chemical to add to the list.

The new chemical is known as 2-methoxyethanol (CH3OCH2CH2OH). It’s one of several methoxy molecules that scientists have found in space. But with 13 atoms, it’s one of the largest and most complex ones ever detected.

A team of scientists called the McGuire Group specializes in detecting chemicals in space. The McGuire Group and other researchers from institutions in Florida and France worked together to find 2-methoxyethanol.

The researchers published their findings in The Astrophysical Journal Letters. It’s titled “Rotational Spectrum and First Interstellar Detection of 2-methoxyethanol Using ALMA Observations of NGC 6334I.” The lead author is Zachary Fried, a graduate student in the McGuire Group at MIT.

A ball and stick model of 2-methoxyethanol (CH3OCH2CH2OH). With 13 atoms, it’s one of the largest complex chemicals ever found in space. Image Credit: By Ben Mills – Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=3081683

“There are a number of ‘methoxy’ molecules in space, like dimethyl ether, methoxymethanol, ethyl methyl ether, and methyl formate, but 2-methoxyethanol would be the largest and most complex ever seen,” said lead author Fried.

The researchers didn’t stumble upon the large molecule. It was found as part of a concerted effort to detect new chemicals in space. It all started with machine learning. In 2023, one machine-learning model suggested they look for 2-methoxyethanol. The next step was the lab, where researchers performed experiments that measured and analyzed the molecule’s rotational spectrum here on Earth.

“We do this by looking at the rotational spectra of molecules, the unique patterns of light they give off as they tumble end-over-end in space,” said Fried. “These patterns are fingerprints (barcodes) for molecules. To detect new molecules in space, we first must have an idea of what molecule we want to look for, then we can record its spectrum in the lab here on Earth, and then finally we look for that spectrum in space using telescopes.”

The researchers measured the molecule’s spectrum over a broadband region of frequencies ranging from the microwave to sub-millimetre wave regimes (from about 8 to 500 gigahertz).

With that data in hand, the researchers turned to ALMA, the Atacama Large Millimetre/sub-millimetre Array. ALMA gathered data from two star-forming regions: NGC 6334I and IRAS 16293-2422B. Researchers from the McGuire Group, the National Radio Astronomy Observatory, and the University of Copenhagen all worked on analyzing ALMA’s observations.

“Ultimately, we observed 25 rotational lines of 2-methoxyethanol that lined up with the molecular signal observed toward NGC 6334I (the barcode matched!), thus resulting in a secure detection of 2-methoxyethanol in this source,” said Fried. “This allowed us to then derive physical parameters of the molecule toward NGC 6334I, such as its abundance and excitation temperature. It also enabled an investigation of the possible chemical formation pathways from known interstellar precursors.”

NGC 6334m the Cat’s Paw Nebula. Image Credit: ESO

Here on Earth, 2-methoxyethanol is used mostly as a solvent. It’s toxic to bone marrow and testicles. But its status here on Earth isn’t relevant to its discovery.

The large molecule isn’t a building block for life, either. It’s significant because of its size and complexity. Scientists are interested in understanding how chemistry evolves and forms large molecules in regions where stars and planets are forming.

“Our group tries to understand what molecules are present in regions of space where stars and solar systems will eventually take shape,” explained Fried. “This allows us to piece together how chemistry evolves alongside the process of star and planet formation.”

Molecular complexity is the hallmark of life, so, of course, scientists want to understand molecular complexity in space. As of 2021, scientists only found six molecules in space larger than 13 atoms outside our Solar System. McGuire’s team found many of them.

Finding them is the first step. The next step is to figure out how and where they form. Though there are no direct links between 2-methoxyethanol and life, all complex chemistry has something to tell us about complex chemistry in general.

“Continued observations of large molecules and subsequent derivations of their abundances allows us to advance our knowledge of how efficiently large molecules can form and by which specific reactions they may be produced,” said Fried. “Additionally, since we detected this molecule in NGC 6334I but not in IRAS 16293-2422B, we were presented with a unique opportunity to look into how the differing physical conditions of these two sources may be affecting the chemistry that can occur.”

IRAS 16293?2422 in the star-forming region Rho Ophiuchi. Image Credit: ESO

NGC 6334I is a higher-mass star-forming region compared to IRAS 16293-2422B. That means it could have a potentially enhanced radiation field. That enhanced radiation could produce more precursors for 2-methoxyethanol, eventually leading to more of the molecule itself. Warmer dust temperatures may have contributed, too. Warmer dust allows greater dust mobility, leading to chemical fragments being allowed to recombine.

Thanks to ever-improving observational tools and methods, including machine learning, astrochemistry is a blossoming field. If we’re ever going to understand how life on Earth arose and where it may likely rise elsewhere in the galaxy, astrochemistry will play a leading role. Though 2-methoxyethanol isn’t directly related to life, its detection still tells scientists something.

The post Another New Molecule Discovered Forming in Space appeared first on Universe Today.

Categories: Astronomy

What would happen if the moon disappeared?

Space.com - Mon, 04/29/2024 - 3:00pm
What would happen if our closest neighbor, the moon, disappeared? Here we explore the possible effects it could have on the environment and life on Earth.
Categories: Astronomy

Bird Flu Virus Has Been Spreading in U.S. Cows for Months

Scientific American.com - Mon, 04/29/2024 - 2:30pm

Genomic analysis suggests that the outbreak probably began in December or January, but a shortage of data is hampering efforts to pin down the source

Categories: Astronomy