Astronomy
Black holes that transform matter into dark energy could solve 'cosmic hiccups' mystery
Advancing Lunar Habitats with Thermoelectric Power Generation
How can thermoelectric generators (TEGs) help advance future lunar surface habitats? This is what a recent study published in Acta Astronautica hopes to address as a team of researchers from the Republic of Korea investigated a novel technique for improving power efficiency and reliability under the Moon’s harsh conditions. This study has the potential to help mission planners, engineers, and future astronauts develop technologies necessary for deep space human exploration to the Moon and beyond.
New Study Suggests We Should Search for "Spillover" from Extraterrestrial Radio Communications
New analysis of human deep space communications suggests the most likely places to detect signals from an extraterrestrial intelligence.
The Moon’s Dirty Past
How do you tell how old an astronomical object is? I mean, the next time the Moon is in the sky, take a look at it. How would you even begin to answer that question?
A Bone Loss Experiment is Headed For the ISS
The 33rd SpaceX commercial resupply services mission for NASA, scheduled to lift off from the agency's Kennedy Space Center in Florida in late August, is heading to the International Space Station with an important investigation for the future of bone health.
Stem Cells Preserved in Space Have Produced Healthy "Space Mice"
Using stem cells from mice, researchers from Kyoto University tested the potential damage spaceflight can have on spermatazoa stem cells and the resulting offspring. After six months aboard the ISS, the stem cells were used to successfully produce healthy offspring.
What is the Moon Made Of? (Hint: It’s Not Cheese)
A set of instruments shut off almost 50 years ago are still producing useful results. It’s the seismometers left by the Apollo missions to monitor moonquakes, which as the name suggests are earthquakes but on the Moon.
Halley-Like Comets Could Have Seeded Earth With Water
Comets are like the archeological sites of the solar system. They formed early on, and their composition helps us understand what the area around the early Sun was like, potentially even before any planets were formed. A new paper from researchers at a variety of US and European institutions used the Atacama Large Millimeter Array (ALMA) to capture detailed spatial spectral images of comet 12P/Pons-Brooks, which is very similar to the famous Halley’s comet, and might hold clues to where the water on the Earth came from.
Another Earth-like Exoplanet Crossed Off The List: The JWST Shows That GJ 3929b Has No Atmosphere
In 2022, astronomers announced the discovery of GJ 3929b. It's a rocky planet, similar to Earth in both mass and size. Astronomers have examined the planet with the JWST and concluded that it's a barren world with no atmosphere.
Uranus' 29th Moon Can't Hide From The JWST
The JWST has found another moon orbiting Uranus. It's the planet's 29th known moon, and it bears the uninspiring, temporary name S/2025 U1. It's too small and faint to be detected by the Hubble, or by Voyager 2, the only spacecraft to visit the ice giant.
The Stunning Astrogeology of the Apollo Missions
Neil Armstrong almost made a mistake. He had found an interesting rock sticking out of a formation. Curious to see what the rock was made of, he needed to examine its interior more closely. So he reached for his hammer and took a swing.
Sensors Could Permanently Fly In The "Ignorosphere" Using Novel Propulsion Technique
Earth’s atmosphere is large, extending out to around 10,000 km from the surface of the planet. It’s so large, in fact, that scientists break it into five separate sections, and there’s one particular section that hasn’t got a whole lot of attention due to the difficulty in keeping any craft afloat there. Planes and balloons can visit the troposphere and stratosphere, the two sections closest to the ground, while satellites can sit in orbit in the thermosphere and exosphere, allowing for a platform for consistent observations. But the mesosphere, the section in the middle, is too close to have a stable orbit, but too sparse in air for traditional airplanes or balloons to work. As a result, we don’t have a lot of data on it, but it impacts climate and weather forecasting, so scientists have simply had to make a lot of assumptions about what it's like up there. But a new study from researchers at Harvard and the University of Chicago might have found a way to put stable sensing platforms into the mesosphere, using a novel flight mechanism known as photophoresis.
A New Model for Early Black Hole Formation Could Revolutionize Cosmologicy
A new theoretical study by University of Virginia astrophysicist Jonathan Tan, a research professor with the College and Graduate School of Arts & Sciences’ Department of Astronomy, proposes a comprehensive framework for the birth of supermassive black holes.