Behold, directly overhead, a certain strange star was suddenly seen...
Amazed, and as if astonished and stupefied, I stood still.

— Tycho Brahe

Astronomy

Summer 2024 Was the Hottest Ever Measured, Beating Last Year

Scientific American.com - Fri, 09/13/2024 - 4:00pm

The year 2024 could easily shape up to be the hottest ever measured, climate scientists say

Categories: Astronomy

Polaris Dawn is Away, Sending Another Crew Into Orbit to Perform the First Private Spacewalk

Universe Today - Fri, 09/13/2024 - 3:28pm

We’ve officially entered a new era of private spaceflight. Yesterday, the crew of Polaris Dawn, a privately funded mission managed by SpaceX, officially performed the first private extra-vehicular activity, commonly known as a spacewalk. The spacewalk was a success, along with the rest of the mission so far. But it’s attracted detractors as well as supporters. Let’s take a look at the mission objectives and why some pundits are opposed to it.

There are two main “firsts” for the Polaris Dawn flight, which is the first in a series of private space missions that could include a third mission that would make the first crewed use of SpaceX’s massive Starship launcher. The most talked-about “first” of the mission was a spacewalk that mission commander Jared Isaacman and mission specialist Sarah Gillis took part in yesterday morning. They utilized SpaceX’s newly designed, more mobile EVA suits, which marks a clear departure from the previous bulky suit iterations.

Another first is that this crew is the farthest any private space passengers have ever been from Earth. In fact, they are farther away from Earth than anyone since to Apollo missions in the 1960s and 70s. Their list of things to do so far away from home includes monitoring 36 scientific experiments ranging from monitoring bone health to how to control motion sickness during spaceflight.

Full video of the Polaris Dawn spacewalk.
Credit – VideosfromSpace YouTube Channel

But the mission has attracted its share of detractors too. Some of the most well-reasoned include experts quoted in Al-Jazeera that SpaceX might be violating a clause in the Outer Space Treaty that requires governments to be responsible for the health and safety of their missions in space, even if the mission is run by a non-governmental agency. NASA has very clearly not contracted for the safety of the mission once it is in space. However it gave permission for the rocket launch that got them there, especially since it launched from the agency’s Kennedy Space Center.

Space policy experts argue that, since this is an entirely privately funded mission, it is in itself a violation of the Outer Space Treaty. They might be right, but an alternative interpretation is that the treaty, which was signed in early 1967, might be out of date for the more modern world of private spaceflight.

A less well-reasoned line of argument against the missions is the complaint that billionaires, which include the mission commander among their number, are simply blowing the Earth’s resources on their own pet projects. This line of reasoning is supported by the fact that the missions is supported by Doritos, who supplied a specially designed chip that wouldn’t get cheese dust everywhere inside the Dragon capsule the astronauts are using.

Fraser discusses the EVA suit used in the Polaris Dawn mission.

But it is also off-set by the fact the mission is donating much of its income (admittedly some of which is derived from merchandise sales) to St. Jude Children’s Hospital, to help kids fight cancer. Whether or not you agree with the motivations behind the mission, it doesn’t seem that anyone will get upset about trying to help kids with cancer.

And noone can take away the mission’s achievements so far. Of particular note is that the two female crew members – Sarah Gillis and Anna Menon – are now officially the women that have been the farthest away from the Earth ever. With the launch and spacewalk a success, the final real test of the mission will be its return. Given that Dragon has successfully returned to Earth dozens of times at this point, there’s a good chance that part will be successful too. And then humanity will have the opportunity to hope for, or complain about, the Polaris’ next step in private space flight.

Learn More:
Polaris Program – Polaris Dawn Successfully Launches to Earth’s Orbit and Begins Five-Day Mission 
UT – See a First-Person View of the First Private Spacewalk
UT – Civilian Astronauts are Going to try Spacewalking From a Crew Dragon Capsule
UT – NASA and SpaceX Will Study Low-Cost Plan to Give Hubble a Boost

Lead Image:
Shot of the curvature of the Earth from the Polaris Dawn mission.
Credit – Polaris Program

The post Polaris Dawn is Away, Sending Another Crew Into Orbit to Perform the First Private Spacewalk appeared first on Universe Today.

Categories: Astronomy

The Outer Reaches of the Milky Way are Full of Stars, and the JWST is Observing Them

Universe Today - Fri, 09/13/2024 - 3:22pm

The Milky Way’s outer reaches are coming into view thanks to the JWST. Astronomers pointed the powerful space telescope to a region over 58,000 light-years away called the Extreme Outer Galaxy (EOG). They found star clusters exhibiting extremely high rates of star formation.

The Milky Way’s EOG is defined as the part of the galaxy with a galactocentric radius of 18 kpc. That translates to almost 59,000 light-years, and for comparison, our Solar System is about 26,000 light-years from the galactic centre.

A team of astronomers used the JWST’s powerful NIRCam (Near-Infrared Camera) and MIRI (Mid-Infrared Instrument) to examine star formation in two specific regions of the EOG. They’re molecular clouds named Digel Cloud 1 and Digel Cloud 2. They’re named after the astronomer Seth Digel, who discovered them in 1994.

The environment in the EOG is different than our Solar System’s neighbourhood; their metallicity and gas density are significantly lower. Metallicity and gas density play huge roles in how Solar Systems evolve and how planets form. The JWST is giving astronomers an opportunity to examine star formation in the EOG at the same level of detail they can closer to home.

The JWST’s supreme observing power allowed the researchers to examine the regions, and they found nebular structures, extremely young protostars, and outflow jets. Their findings are in research published in the Astronomical Journal titled “Overview Results of JWST Observations of Star-forming Clusters in the Extreme Outer Galaxy.” The lead author is Natsuko Izumi of Gifu University and the National Astronomical Observatory of Japan.

“What was fascinating and astounding to me from the Webb data is that there are multiple jets shooting out in all different directions from this cluster of stars.”

Mike Ressler, NASA’s Jet Propulsion Laboratory

“In the past, we knew about these star forming regions but were not able to delve into their properties,” said Izumi. “The Webb data builds upon what we have incrementally gathered over the years from prior observations with different telescopes and observatories. We can get very powerful and impressive images of these clouds with Webb. In the case of Digel Cloud 2, I did not expect to see such active star formation and spectacular jets.”

Astronomers have previously observed the region with the Subaru 8.2 meter telescope at the Mauna Kea Observatory in Hawaii. In 2008, some of the same astronomers used the Subaru to observe star formation in the clusters in Digel Cloud 2S. In that research, the authors said that star-forming clusters were likely triggered by the same supernova.

This is an image of Digel Cloud2-S captured with the Subaru Telescope. If there was ever any doubt about what an improvement the JWST is over previous telescopes, this image puts it to rest. Image Credit: Yasui et al. 2008.

But the Webb’s NIR is from 10 to 80 times more sensitive than the Subaru. “Accordingly, the mass detection limit reaches to about 0.01–0.05 solar masses, which is about 10 times better than the previous observations,” the researchers explain in their paper.

This is Digel Cloud 2S, where a bright cluster of young stars has formed. The white arrows show extended jets emitted from some of the stars. To the upper right of the cluster is another, smaller sub-cluster. Astronomers suspected it was there in previous observations, and now the JWST has confirmed it. The red structures are gaseous, nebulous structures being carved and shaped by the powerful radiation coming from the young stars. The JWST captured invisible near- and mid-infrared wavelengths that have been translated into visible light. Image Credit: NASA, ESA, CSA, STScI, M. Ressler (NASA-JPL)

“We know from studying other nearby star-forming regions that as stars form during their early life phase, they start emitting jets of material at their poles,” said Mike Ressler, the study’s second author. Ressler is from NASA’s Jet Propulsion Laboratory and is the principal investigator of the observing program. “What was fascinating and astounding to me from the Webb data is that there are multiple jets shooting out in all different directions from this cluster of stars. It’s a little bit like a firecracker, where you see things shooting this way and that.”

This image from the research gives the overall context of the Digel Clouds in galactic coordinates. Star formation in Cloud 2N was likely triggered by a nearby huge supernova remnant, according to the authors. Izumi et al. 2024.

The astronomers observed nebular structures both in and around all the main clusters. “Notably, distinct nebular structures are identified within Cloud 2N and 2S,” they write. In Cloud 2N, the nebular structures are cliff-like and pillar-like and are similar to the ones found in star-forming regions closer to home, like in the JWST’s well-known ‘Cosmic Cliffs‘ and ‘Pillars of Creation‘ images.

These images of the nebular structures in Cloud 2N show the JWST’s power to resolve detail compared to the Spitzer IR telescope. The features in the structures are similar to ones found in star-forming regions closer to home. Image Credit: Izumi et al. 2024.

These features are likely caused by intense ultraviolet radiation emitted by the nearby B-type star, MR 1, near Cloud 2N’s main structure.

This image from the research shows HI (neutral atomic hydrogen) near Digel Cloud 2. The MR1 star is labelled in the image. Its powerful UV radiation is likely responsible for carving some of the nebular cliffs and pillars. Image Credit: Izumi et al. 2024.

This research provides an overview of the JWST’s observing effort in the EOG and the Digel Clouds. The authors say it’s just a starting point, and there’s lots more to discover. They want to determine the relative abundance of stars of different masses in the EOG and understand how the different environments shape that abundance.

“I’m interested in continuing to study how star formation is occurring in these regions. By combining data from different observatories and telescopes, we can examine each stage in the evolution process,” said Izumi. “We also plan to investigate circumstellar disks within the Extreme Outer Galaxy. We still don’t know why their lifetimes are shorter than in star-forming regions much closer to us. And of course, I’d like to understand the kinematics of the jets we detected in Cloud 2S.”

The post The Outer Reaches of the Milky Way are Full of Stars, and the JWST is Observing Them appeared first on Universe Today.

Categories: Astronomy

More Bodies Discovered in the Outer Solar System

Universe Today - Fri, 09/13/2024 - 3:20pm

The outer Solar System has been a treasure trove of discoveries in recent decades. Using ground-based telescopes, astronomers have identified eight large bodies since 2002 – Quouar, Sedna, Orcus, Haumea, Salacia, Eris, Makemake, and Gonggang. These discoveries led to the “Great Planet Debate” and the designation “dwarf planet,” an issue that remains contentious today. On December 21st, 2018, the New Horizons mission made history when it became the first spacecraft to rendezvous with a Kuiper Belt Object (KBO) named Arrokoth – the Powhatan/Algonquin word for “sky.”

Since 2006, the Subaru Telescope at the Mauna Kea Observatory in Hawaii has been observing the outer Solar System to search for other KBOs the New Horizons mission could study someday. In that time, these observations have led to the discovery of 263 KBOs within the traditionally accepted boundaries of the Kuiper Belt. However, in a recent study, an international team of astronomers identified 11 new KBOs beyond the edge of what was thought to be the outer boundary of the Kuiper Belt. This discovery has profound implications for our understanding of the structure and evolution of the Solar System.

The research team was led by Wesley C. Fraser, a Plaskett Fellow and a Professor of Astronomy at the University of Victoria (UVic) and the Herzberg Astronomy and Astrophysics Research Centre. He was joined by colleagues from UVic, the National Astronomical Observatory of Japan (NAOJ), the Southwest Research Institute (SwRI), NOIRLab, the Centre National de la Recherche Scientifique (CNRS), the Instituto de Astrofisica de Andalucia, the John Hopkins University Applied Physics Laboratory (JHUAPL), the Space Telescope Science Institute (STScI), the NASA Goddard Space Flight Center, and many other institutes and universities. The paper that describes their findings recently appeared in the Planetary Science Journal.

Since its last flyby of the KBO Arrokoth, the New Horizons mission has been exploring objects in the Kuiper Belt as well as performing heliospheric and astrophysical observations. Courtesy: Credit: NASA/JHUAPL/SWRI/Roman Tkachenko

In recent years, mounting evidence has been provided that objects exist beyond the edge of the Kuiper Belt. However, this study is the first to provide clear evidence of a large number of objects in a relatively small search area that cannot be attributed to false positives. Moreover, these KBOs appear to represent a new class of objects that orbit in a ring separated from the known Kuiper Belt by a gap where very few objects exist. This type of structure has been observed around many young planetary systems observed by the Atacama Large Millimeter/submillimeter Array (ALMA) array.

This suggests that the Solar System has more in common with extrasolar systems than previously thought, which could have implications for astrobiology—the search for extraterrestrial life in the Universe. Dr. Fraser, who is also a co-investigator on the New Horizons mission science team, explained in a NOAJ press release:

“Our Solar System’s Kuiper Belt long appeared to be very small in comparison with many other planetary systems, but our results suggest that idea might just have arisen due to an observational bias. So maybe, if this result is confirmed, our Kuiper Belt isn’t all that small and unusual after all compared to those around other stars.”

As any astrobiologist knows, the search for life is a major challenge because of our limited perspective. To date, we know of only one planet where life emerged and evolved (i.e., Earth), making it difficult to understand what conditions life can arise from. As such, scientists are eager to identify what sets our Solar System apart from others to constrain the prerequisites for life. Discovering that the Kuiper Belt may be larger than previously thought eliminates the idea that larger belts are an impediment to the emergence of life in extrasolar systems (possibly because they constitute a larger population of potential comets).

Artist’s impression of NASA’s New Horizons spacecraft. Credit: NASA/APL/SwRI and NASA/JPL-Caltech

“If this is confirmed, it would be a major discovery,” said study co-author Dr. Fumi Yoshida of the University of Occupational and Environmental Health and the Planetary Exploration Research Center. “The primordial solar nebula was much larger than previously thought, and this may have implications for studying the planet formation process in our Solar System.”

“This is a groundbreaking discovery revealing something unexpected, new, and exciting in the distant reaches of the Solar System; this discovery probably would not have been possible without the world-class capabilities of Subaru Telescope,” added New Horizons mission Principal Investigator Dr. Alan Stern.

These results indicate that more discoveries await beyond the traditionally recognized edge of the Kuiper Belt, which was thought to be a cold, empty end of space. They also entice astronomers to conduct follow-up studies to confirm these results and identify additional families of objects. Last but certainly not least, they offer a tantalizing clue as to what objects the New Horizons mission may be able to study someday.

Further Reading: NAOJ, Planetary Science Journal

The post More Bodies Discovered in the Outer Solar System appeared first on Universe Today.

Categories: Astronomy

The best 70s sci-fi movies

Space.com - Fri, 09/13/2024 - 3:00pm
Sci-fi in the 1970s was weird, wonderful, and where franchises were born.
Categories: Astronomy

Watch space aliens invade in wild new 'Venom: The Last Dance' trailer (video)

Space.com - Fri, 09/13/2024 - 2:59pm
Sony Pictures released a final launch trailer for "Venom: The Last Dance," which premieres on Oct. 25, 2024.
Categories: Astronomy

Waxing Gibbous Moon over Minnesota

NASA Image of the Day - Fri, 09/13/2024 - 2:30pm
The waxing gibbous Moon is pictured from the International Space Station as it orbited 265 miles above the U.S. state of Minnesota on Dec. 17, 2021.
Categories: Astronomy, NASA

SpaceX Super Heavy rocket gets supersonic wind tunnel test for NASA's Artemis moon missions (photos)

Space.com - Fri, 09/13/2024 - 2:00pm
A 1.2% scale model of SpaceX's Starship Super Heavy rocket underwent NASA wind tunnel testing, during which high-speed forced air simulated varying flight conditions.
Categories: Astronomy

A Huge Tsunami Caused by a Thinning Glacier Created a Seismic Event for Nine Days

Scientific American.com - Fri, 09/13/2024 - 2:00pm

Scientists have traced a baffling monotonous planetary hum that lasted for nine days back to a glacier in Greenland

Categories: Astronomy

'Star Wars Outlaws' finally lets fans play as the scoundrel (review)

Space.com - Fri, 09/13/2024 - 1:06pm
The first open-word game from the galaxy far, far away feels like the Han Solo simulator we've been waiting for.
Categories: Astronomy

Antidote to deadly pesticides boosts bee survival

New Scientist Space - Space Headlines - Fri, 09/13/2024 - 1:00pm
Feeding bees edible bits of hydrogel increases their odds of surviving pesticide exposure by 30 per cent
Categories: Astronomy

Antidote to deadly pesticides boosts bee survival

New Scientist Space - Cosmology - Fri, 09/13/2024 - 1:00pm
Feeding bees edible bits of hydrogel increases their odds of surviving pesticide exposure by 30 per cent
Categories: Astronomy

Apollo 11 moonwalk footprint featured on Sprayground's latest backpack

Space.com - Fri, 09/13/2024 - 11:59am
Follow in the footsteps of Apollo astronauts with a new space-themed backpack that aims to inspire a sense of exploration and transport wearers to the lunar surface.
Categories: Astronomy

How the ESA’s Rosalind Franklin Rover Will Drill for Samples on Mars

Universe Today - Fri, 09/13/2024 - 11:38am

Russia’s attack on Ukraine has delayed its launch, but the ESA’s Rosalind Franklin rover is heading toward completion. It was originally scheduled to launch in 2018, but technical delays prevented it. Now, after dropping Russia from the project because of their invasion, the ESA says it won’t launch before 2028.

But when it does launch and then land on Mars, it will do something no other rover has done: drill down two meters into Mars and collect samples.

The Rosalind Franklin Rover (RFR) was initially called the ExoMars Rover. ExoMars was a two-part joint mission between the ESA and Roscosmos (Russia). The first part is the ExoMars Trace Gas Orbiter, which is currently in orbit around Mars. The rover is meant to follow the orbiter and has been renamed in honour of British chemist and DNA researcher Rosalind Franklin.

The rover will land in Oxia Planum, a 3.9 billion-year-old, 200-km-wide plain that contains one of the largest regions of exposed clay-bearing rocks on the planet. Oxia Planum was initially a candidate landing site for NASA’s Perseverance Rover, which eventually landed in Jezero Crater. There’s overwhelming evidence that this region was once watery. Oxia Planum is also geologically diverse, with plains, craters, and hills, and is flat and mostly free of obstacles.

Ancient water channels flowed into Oxia Planum in Mars’ past, and it’s possible that these flows carried evidence of life with them. In that sense, the water did some of the work for the rover. Rather than have to traverse a much larger area looking for evidence of life, nature might have delivered it to Oxia Planum for the RFR to find.

The Oxia Planum landing site. Image Credit: By NASA – http://marsnext.jpl.nasa.gov/workshops/2014_05/14_Oxia_Thollot_webpage.pdf, Public Domain, https://commons.wikimedia.org/w/index.php?curid=44399172

The RFR is aimed at astrobiology rather than geology, and if there’s any astrobiological evidence for it to find, it’ll be buried. The subsurface is protected from harmful radiation that could degrade evidence of life. As it moves around Oxia Planum, the RFR will use its ground-penetrating radar to study the subsurface. The radar is called WISDOM for Water Ice Subsurface Deposits Observation on Mars. Its data will be transmitted to Earth, where the ESA will create images of the subsurface, looking for ideal places to drill. Other instruments, like the Adron-RM neutron spectrometer, will help it find desirable water-rich deposits underground.

It will also discover buried obstacles that could make drilling difficult. Though the drill is robust and designed to operate in Mars’ harsh conditions, it could still be damaged.

The Rosalind Franklin Rover will map the subsurface, looking for desirable drilling sites. It can drill down as deep as two meters and collect samples. Image Credit: ESA

The RFR also has wide-angle cameras on a mast to help it investigate its surroundings and find routes. The cameras will also identify hydrothermal deposits for further investigation.

Once a drilling site is selected, the RFR will drill down to a maximum depth of two meters, collecting either a rock core or loose material. After withdrawing its drill, it will place the sample in its Analytical Laboratory Drawer (ALD), where a suite of instruments will examine it for both chemical and morphological evidence of past life.

The suite of instruments is called the Pasteur Payload and includes spectrometers, imagers, molecular analyzers, and other instruments.

The mission will also showcase advanced technologies. It’ll use machine learning to analyze data from its Mars Organic Molecule Analyzer(MOMA) instrument. Its PanCam (Panoramic Camera) system is an advanced system that will provide high-resolution, 3D, multispectral images of the Martian landscape. It even has a miniaturized infrared spectrometer integrated into the drill, called Ma_MISS (Mars Multispectral Imager for Subsurface Studies), to analyze the walls of the borehole as the drill penetrates the surface.

The RFR will have solar panels, but it’ll also be powered by an Americium power unit called a radioisotope heater unit (RHU). This is the first time Americium-241 has been used on a spacecraft, and its job is to keep the rover’s components warm in Mars’ frigid temperatures.

The Rosalind Franklin Rover will be more agile and autonomous than other rovers. It can drive over boulders as large as its wheels and should be able to safely navigate steep slopes. It also has the ability to lift its wheels if they’re stuck in sand or loose material. It can use its wheels to “walk” its way out of the sand.

The ESA deserves credit for severing its relationship with Russia after its invasion of Ukraine and pivoting to complete the mission without Roscosmos’ involvement.

“The war in Ukraine has had a big impact on ExoMars. The spacecraft was ready to move to the launch campaign in Baikonur in April 2022 but was halted because of the invasion and the subsequent termination of the cooperation with Roscosmos, with whom the mission was partnered,” the ESA said in a statement in 2023. “The impact on the team and the disappointment for what happened was tangible, as a lot of effort had been spent in preparing this long-awaited mission.”

Russia was originally going to supply the launch vehicle and the landing platform for the rover. However, after Russia was ousted from the mission, the USA stepped in to provide the launch vehicle. The mission still needs a replacement landing platform, which is one of the reasons for the delayed launch. The ESA says that, unlike the original landing platform, the replacement will be simpler and won’t perform any science of its own. It won’t even have solar panels and once the rover is functioning, the platform will shut down a few days after deploying the lander.

This mission is about science, intellectual curiosity, and nature, not politics. Despite humanity’s woeful behaviour towards one another, our appetite for knowledge remains robust. Many missions suffer delays and other problems, so the RFR is in good company.

If the ESA can achieve its 2028 launch date, the RFR will arrive on Mars six to nine months later, most likely, and begin its scheduled seven-month-long mission to search for evidence of past life. Despite Russia’s bluster and terrible decisions, the mission will continue.

The Rosalind Franklin Rover is a remarkable machine. There’s still a lot of work to do, and the mission still has to land successfully, which is a daunting challenge. But if it does, it may finally provide an answer to one of our most pressing questions: Was there ever life on Mars?

The post How the ESA’s Rosalind Franklin Rover Will Drill for Samples on Mars appeared first on Universe Today.

Categories: Astronomy

OpenAI’s warnings about risky AI are mostly just marketing

New Scientist Space - Cosmology - Fri, 09/13/2024 - 11:12am
A powerful new AI called o1 is the most dangerous that OpenAI has ever released, the firm claims – but who are these warnings for, asks Chris Stokel-Walker
Categories: Astronomy

OpenAI’s warnings about risky AI are mostly just marketing

New Scientist Space - Space Headlines - Fri, 09/13/2024 - 11:12am
A powerful new AI called o1 is the most dangerous that OpenAI has ever released, the firm claims – but who are these warnings for, asks Chris Stokel-Walker
Categories: Astronomy

Cats have brain activity recorded with the help of crocheted hats

New Scientist Space - Cosmology - Fri, 09/13/2024 - 11:00am
Custom-made wool caps have enabled scientists to record electroencephalograms in awake cats for the first time, which could help assess their pain levels
Categories: Astronomy

Cats have brain activity recorded with the help of crocheted hats

New Scientist Space - Space Headlines - Fri, 09/13/2024 - 11:00am
Custom-made wool caps have enabled scientists to record electroencephalograms in awake cats for the first time, which could help assess their pain levels
Categories: Astronomy

Iron winds and molten metal rains ravage a hellish hot Jupiter exoplanet

Space.com - Fri, 09/13/2024 - 10:59am
"Iron Winds and Metal Rain." Not the title of a heavy metal album but an accurate weather prediction for a hellish exoplanet called WASP-76b.
Categories: Astronomy

SpaceX launches 21 Starlink satellites from California's Vandenberg Space Force Base, lands rocket (video)

Space.com - Fri, 09/13/2024 - 10:03am
SpaceX's latest Starlink satellite launch lifted off from Vandenberg Space Force Base on Sept. 12, adding to a constellation of more than 6,300 operational satellites.
Categories: Astronomy