The forces of rotation caused red hot masses of stones to be torn away from the Earth and to be thrown into the ether, and this is the origin of the stars.

— Anaxagoras 428 BC

Feed aggregator

Climate Change Research

NASA - Breaking News - Thu, 04/18/2024 - 11:00am
6 Min Read Climate Change Research The Kibo laboratory module from the Japan Aerospace Exploration Agency (comprised of a pressurized module and exposed facility, a logistics module, a remote manipulator system and an inter-orbit communication system unit) pictured as the International Space Station orbits over the southern Pacific Ocean east of New Zealand. Credits: NASA Science in Space: April 2024

Everyone on Earth is touched by the effects of climate change, such as hotter temperatures, shifts in rain patterns, and sea level rise. Collecting climate data helps communities better plan for these changes and build more resilience to them.

The International Space Station, one of dozens of NASA missions contributing to this effort, has multiple instruments collecting various types of climate-related data. Because the station’s orbit passes over 90 percent of Earth’s population and circles the planet 16 times each day, these instruments have views of multiple locations at different times of day and night. The data inform climate decisions and help scientists understand and solve the challenges created by climate change.

While crew members have little involvement in the ongoing operation of these instruments, they do play a critical role in unpacking hardware when it arrives at the space station and in assembling and installing the instruments via spacewalks or using the station’s robotic arm.

This ECOSTRESS evapotranspiration image of California’s Central Valley from May 22, 2022, shows high water use (blue) and dry conditions (brown).NASA

One investigation on the orbiting lab that contributes to efforts to monitor and address climate change is ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS). It provides thermal infrared measurements of Earth’s surface that help answer questions about water stress in plants and how specific regions respond to climate change. Research confirmed the accuracy of ECOSTRESS surface estimates1 and found that the process of photosynthesis in plants begins to fail at 46.7 degrees C (114 degrees F).2 Average temperatures have increased 0.5 degrees C per decade in some tropical regions, and temperature extremes are becoming more pronounced. Rainforests are a primary producer of oxygen and, without sufficient mitigation of the effects of climate change, leaf temperatures in these tropical forests soon could approach this failure threshold.

The Total and Spectral Solar Irradiance Sensor (TSIS) measures total solar irradiance (TSI) and solar spectral irradiance (SSI). TSI is the total solar energy input to Earth and SSI measures the Sun’s energy in individual wavelengths. Energy from the Sun drives atmospheric and oceanic circulations on Earth, and knowing its magnitude and variability is essential to understanding Earth’s climate. Researchers verified the instrument’s performance and showed that it made more accurate measurements than previous instruments.3,4 TSIS maintains a continuity of nearly 40 years of data on solar irradiance from space-based observations.

To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video

This visualization blends US Forest Service plot locations (orange dots) with vegetation height data from GEDI (green) across the continental US. Credits: NASA

The Global Ecosystem Dynamics Investigation (GEDI) observes global forests and topography using light detection and ranging (lidar). These observations could provide insight into important carbon and water cycling processes, biodiversity, and habitat. One study used GEDI data to estimate pan-tropical and temperate biomass densities at the national level for every country observed and the sub-national level for the United States.5

A cluster of methane plumes detected by EMIT in 2022 in a region approximately 150 square miles in Uzbekistan. EMIT captured in an instant what might have taken 65 hours of flight time with an airborne instrument.NASA

Earth Surface Mineral Dust Source Investigation (EMIT) determines the type and distribution of minerals in the dust of Earth’s arid regions using an imaging spectrometer. Mineral dust affects local warming and cooling, air quality, rate of snow melt, and ocean plankton growth. Researchers demonstrated that data from EMIT also can be used to identify and monitor specific sources of methane and carbon dioxide emissions. Carbon dioxide and methane are the primary human-caused drivers of climate change. Increasing emissions in areas with poor reporting requirements create significant uncertainty in the global carbon budget.6 The high spatial resolution of EMIT data could allow precise monitoring even of sources that are close together.

This image accumulated data from OCO-3 to show carbon dioxide concentrations in Los Angeles.NASA

The station’s Orbiting Carbon Observatory-3 (OCO-3) collects data on global carbon dioxide during sunlit hours, mapping emissions of targeted local hotspots. This type of satellite-based remote sensing helps assess and verify emission reductions included in national and global plans and agreements. Monitoring by OCO-3 and the Italian Space Agency’s PRecursore IperSpettrale della Missione Applicativa (PRISMA) satellite of 30 coal-fired power plants between 2021 and 2022 showed agreement with on-site observations.7 This result suggests that under the right conditions, satellites can provide reliable estimates of emissions from discreet sources. Combustion for power and other industrial uses account for an estimated 59% of global human-caused carbon dioxide emissions.

This image shows approximately three years of SAGE III aerosol data from across the globe, showing the effect of wildfires and volcanic eruptions on the atmosphere. NASA

The Stratospheric Aerosol and Gas Experiment III-ISS (SAGE III-ISS) measures ozone and other gases and tiny particles in the atmosphere, called aerosols, that together act as Earth’s sunscreen. The instrument can distinguish between clouds and aerosols in the atmosphere. A study showed that aerosols dominate Earth’s tropical upper troposphere and lower stratosphere, a transition region between the two atmospheric levels. Continuous monitoring and identification of these layers of the atmosphere helps quantify their effect on Earth’s climate.8

An early remote sensing system, ISS SERVIR Environmental Research and Visualization System (ISERV), automatically took images of Earth to help scientists assess and monitor disasters and other significant events. Researchers reported that this type of Earth observation is critical for applications such as mapping land use and assessing carbon biomass and ocean health.9

John Love, ISS Research Planning Integration Scientist
Expedition 71

Search this database of scientific experiments to learn more about those mentioned above.

Citations:

1 Weidberg N, Lopez Chiquillo L, Roman S, Roman M, Vazquez E, et al. Assessing high resolution thermal monitoring of complex intertidal environments from space: The case of ECOSTRESS at Rias Baixas, NW Iberia. Remote Sensing Applications: Society and Environment. 2023 November; 32101055. DOI: 10.1016/j.rsase.2023.101055.

2 Doughty CE, Keany JM, Wiebe BC, Rey-Sanchez C, Carter KR, et al. Tropical forests are approaching critical temperature thresholds. Nature. 2023 August 23; 621105-111. DOI: 10.1038/s41586-023-06391-z.

3 Richard EC, Harber D, Coddington OM, Drake G, Rutkowski J, et al. SI-traceable spectral irradiance radiometric characterization and absolute calibration of the TSIS-1 Spectral Irradiance Monitor (SIM). Remote Sensing. 2020 January; 12(11): 1818. DOI: 10.3390/rs12111818.

4 Coddington OM, Richard EC, Harber D, Pilewskie P, Chance K, et al. The TSIS-1 hybrid solar reference spectrum. Geophysical Research Letters. 2021 April 26; 48(12): e2020GL091709. DOI: 10.1029/2020GL091709

5 Dubayah R, Armston J, Healey S, Bruening JM, Patterson PL, et al. GEDI launches a new era of biomass inference from space. Environmental Research Letters. 2022 August; 17(9): 095001. DOI: 10.1088/1748-9326/ac8694.

6 Thorpe A, Green RD, Thompson DR, Brodrick PG, Chapman DK, et al. Attribution of individual methane and carbon dioxide emission sources using EMIT observations from space. Science Advances. 2023 November 17; 9(46): eadh2391. DOI: 10.1126/sciadv.adh2391.

7 Cusworth DH, Thorpe A, Miller CE, Ayasse AK, Jiorle R, et al. Two years of satellite-based carbon dioxide emission quantification at the world’s largest coal-fired power plants. Atmospheric Chemistry and Physics. 2023 November 24; 23(22): 14577-14591. DOI: 10.5194/acp-23-14577-2023.

8 Bhatta S, Pandit AK, Loughman R, Vernier J. Three-wavelength approach for aerosol-cloud discrimination in the SAGE III/ISS aerosol extinction dataset. Applied Optics. 2023 May; 62(13): 3454-3466. DOI: 10.1364/AO.485466.

9 Kansakar P, Hossain F. A review of applications of satellite earth observation data for global societal benefit and stewardship of planet earth. Space Policy. 2016 May; 3646-54.

Keep Exploring Discover More Topics

Latest News from Space Station Research

Station Science 101: Earth and Space Science

Climate Change

NASA is a global leader in studying Earth’s changing climate.

Space Station Research and Technology

Categories: NASA

This Nearly 50-Foot Snake Was One of the Largest to Slither the Earth

Scientific American.com - Thu, 04/18/2024 - 11:00am

Fossilized vertebrae that were found in an Indian coal mine belonged to a gigantic and previously unknown snake species

Categories: Astronomy

'Devil Comet' 12P/Pons-Brooks is heading for the sun. Will it survive?

Space.com - Thu, 04/18/2024 - 10:30am
'Devil Comet' 12P/Pons-Brooks is hurtling toward the sun where it will make its closest approach on April 21. We take a look at whether this celestial vagabond will survive.
Categories: Astronomy

Jupiter's moon Io has been a volcanic inferno for billions of years

New Scientist Space - Cosmology - Thu, 04/18/2024 - 10:00am
Measurements of sulphur isotopes in Io’s atmosphere show that the moon may have been volcanically active for its entire lifetime
Categories: Astronomy

Jupiter's moon Io has been a volcanic inferno for billions of years

New Scientist Space - Space Headlines - Thu, 04/18/2024 - 10:00am
Measurements of sulphur isotopes in Io’s atmosphere show that the moon may have been volcanically active for its entire lifetime
Categories: Astronomy

Hubble Goes Hunting for Small Main Belt Asteroids

NASA - Breaking News - Thu, 04/18/2024 - 10:00am

5 min read

Hubble Goes Hunting for Small Main Belt Asteroids

Like boulders, rocks, and pebbles scattered across a landscape, asteroids come in a wide range of sizes. Cataloging asteroids in space is tricky because they are faint and they don’t stop to be photographed as they zip along their orbits around the Sun.

Astronomers recently used a trove of archived images taken by NASA’s Hubble Space Telescope to visually snag a largely unseen population of smaller asteroids in their tracks. The treasure hunt required perusing 37,000 Hubble images spanning 19 years. The payoff was finding 1,701 asteroid trails, with 1,031 of the asteroids previously uncatalogued. About 400 of these uncatalogued asteroids are below 1 kilometer in size.

This Hubble Space Telescope image of the barred spiral galaxy UGC 12158 looks like someone took a white marking pen to it. In reality it is a combination of time exposures of a foreground asteroid moving through Hubble’s field-of-view, photobombing the observation of the galaxy. Several exposures of the galaxy were taken, what is evidence in the dashed pattern.

The asteroid appears as a curved trail due to parallax: because Hubble is not stationary, but orbiting Earth, and this gives the illusion that the faint asteroid is swimming along a curved trajectory. The uncharted asteroid is in inside the asteroid belt in our solar system, and hence is 10 trillion times closer to Hubble than the background galaxy.

Rather than a nuisance, this type of data are useful to astronomers for doing a census of the asteroid population in our solar system.

NASA, ESA, Pablo García Martín (UAM); Image Processing: Joseph DePasquale (STScI); Acknowledgment: Alex Filippenko (UC Berkeley)
Download this image

Volunteers from around the world known as “citizen scientists” contributed to the identification of this asteroid bounty. Professional scientists combined the volunteers’ efforts with machine learning algorithm to identify the asteroids. It represents a new approach to finding asteroids in astronomical archives spanning decades, which may be effectively applied to other datasets, say the researchers.

“We are getting deeper into seeing the smaller population of main belt asteroids. We were surprised with seeing such a large number of candidate objects,” said lead author Pablo García Martín of the Autonomous University of Madrid, Spain. “There was some hint of this population existing, but now we are confirming it with a random asteroid population sample obtained using the whole Hubble archive. This is important for providing insights into the evolutionary models of our solar system.”

The large, random sample offers new insights into the formation and evolution of the asteroid belt. Finding a lot of small asteroids favors the idea that they are fragments of larger asteroids that have collided and broken apart, like smashed pottery. This is a grinding-down process spanning billions of years.

An alternative theory for the existence of smaller fragments is that they formed that way billions of years ago. But there is no conceivable mechanism that would keep them from snowballing up to larger sizes as they agglomerated dust from the planet-forming circumstellar disk around our Sun. “Collisions would have a certain signature that we can use to test the current main belt population,” said co-author Bruno Merín of the European Space Astronomy Centre, in Madrid, Spain .

Amateur Astronomers Teach AI to Find Asteroids

Because of Hubble’s fast orbit around the Earth, it can capture wandering asteroids through their telltale trails in the Hubble exposures. As viewed from an Earth-based telescope, an asteroid leaves a streak across the picture. Asteroids “photobomb” Hubble exposures by appearing as unmistakable, curved trails in Hubble photographs.

As Hubble moves around the Earth, it changes its point of view while observing an asteroid, which also moves along its own orbit. By knowing the position of Hubble during the observation and measuring the curvature of the streaks, scientists can determine the distances to the asteroids and estimate the shapes of their orbits.

The asteroids snagged mostly dwell in the main belt, which lies between the orbits of Mars and Jupiter. Their brightness is measured by Hubble’s sensitive cameras. And comparing their brightness to their distance allows for a size estimate. The faintest asteroids in the survey are roughly one forty-millionth the brightness of the faintest star that can be seen by the human eye.

“Asteroid positions change with time, and therefore you cannot find them just by entering coordinates, because at different times, they might not be there,” said Merín. “As astronomers we don’t have time to go looking through all the asteroid images. So we got the idea to collaborate with over 10,000 citizen-science volunteers to peruse the huge Hubble archives.”

In 2019 an international group of astronomers launched the Hubble Asteroid Hunter, a citizen-science project to identify asteroids in archival Hubble data. The initiative was developed by researchers and engineers at the European Science and Technology Centre (ESTEC) and the European Space Astronomy Centre’s science data center (ESDC), in collaboration with the Zooniverse platform, the world’s largest and most popular citizen-science platform, and Google.

This graph is based on Hubble Space Telescope archival data that was used to identify a largely unseen population of very small asteroids in their tracks. The asteroids were not the intended targets, but instead photobombed background stars and galaxies in Hubble images. The comprehensive treasure hunt required perusing 37,000 Hubble images spanning 19 years. This was accomplished by using “citizen science” volunteers and artificial intelligence algorithms. The payoff was finding 1,701 asteroid trails of previously undetected asteroids. Pablo García Martín (UAM), Elizabeth Wheatley (STScI)
Download this image

A total of 11,482 citizen-science volunteers, who provided nearly 2 million identifications, were then given a training set for an automated algorithm to identify asteroids based on artificial intelligence. This pioneering approach may be effectively applied to other datasets.

The project will next explore the streaks of previously unknown asteroids to characterize their orbits and study their properties, such as rotation periods. Because most of these asteroid streaks were captured by Hubble many years ago, it is not possible to follow them up now to determine their orbits.

The findings are published in the journal Astronomy and Astrophysics.

To learn how you can participate in citizen science projects related to NASA, visit https://science.nasa.gov/citizen-science/. Participation is open to everyone around the world, not limited to U.S. citizens or residents.

The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, Colorado, also supports mission operations at Goddard. The Space Telescope Science Institute (STScI) in Baltimore, Maryland, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.

Learn More:
Hubble Sees Nearby Asteroids Photobombing Distant Galaxies


Tracking Evolution in the Asteroid Belt


Uncovering Icy Objects in the Kuiper Belt

Media Contact:

Claire Andreoli
NASA’s Goddard Space Flight CenterGreenbelt, MD
claire.andreoli@nasa.gov

Ray Villard
Space Telescope Science Institute, Baltimore, MD

Science Contact:
Pablo García Martín
Autonomous University of Madrid, Madrid, Spain

Share

Details

Last Updated

Apr 18, 2024

Editor Andrea Gianopoulos

Related Terms Keep Exploring Discover More Topics From NASA

Hubble Space Telescope

Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


Galaxies Stories


Asteroids


Citizen Science

Categories: NASA

'Star Trek: Discovery' season 5 episode 4 uses time travel to remember the past 5 seasons

Space.com - Thu, 04/18/2024 - 10:00am
Tragically, in an attempt to make the actual plot work, we're drowned in absurd amounts of technobabble. Once you get past that, it's actually all right.
Categories: Astronomy

Hubble goes hunting for small main-belt asteroids

ESO Top News - Thu, 04/18/2024 - 10:00am

Astronomers recently used a trove of archived images taken by the NASA/ESA Hubble Space Telescope to visually snag a largely unseen population of smaller asteroids in their tracks. The treasure hunt required pursuing 37 000 Hubble images spanning 19 years. The payoff was finding 1701 asteroid trails, with 1031 of those asteroids uncatalogued. About 400 of these uncatalogued asteroids are about below a km in size.

Categories: Astronomy

Mathematicians Explain Why Some Lengths Can’t Be Measured

Scientific American.com - Thu, 04/18/2024 - 10:00am

Can you assign a size to every object? The surprising answer is no

Categories: Astronomy

Jupiter's violent moon Io has been the solar system's most volcanic body for around 4.5 billion years

Space.com - Thu, 04/18/2024 - 9:00am
Jupiter's moon Io is the solar system's most volcanic body thanks to a gravitational tug of war that rages below its surface. But now scientists know the violent moon has always been this way.
Categories: Astronomy

Dubai floods seen from space

ESO Top News - Thu, 04/18/2024 - 8:45am
Image: Dubai floods seen from space
Categories: Astronomy

AI Report Shows ‘Startlingly Rapid’ Progress—And Ballooning Costs

Scientific American.com - Thu, 04/18/2024 - 8:30am

A new report finds that AI matches or outperforms people at tasks such as competitive math and reading comprehension

Categories: Astronomy

Alt-space history series 'For All Mankind' gets 5th season, new 'Star City' spinoff

Space.com - Thu, 04/18/2024 - 8:00am
Apple TV+ is headed back to the past, and the future, with a fifth season of "For All Mankind" and new spinoff "Star City." Ronald D. Moore, Matt Wolpert and Ben Nedivi are returning to lead both.
Categories: Astronomy

NASA greenlights 2028 launch for epic Dragonfly mission to Saturn's huge moon Titan

Space.com - Thu, 04/18/2024 - 8:00am
The Dragonfly mission is set to launch in July 2028 on a six-year journey to Saturn's largest moon, Titan.
Categories: Astronomy

SpaceX’s Starship Could Save NASA’s Beleaguered Mars Sample Return Mission

Scientific American.com - Thu, 04/18/2024 - 8:00am

Facing budgetary pressure for its Mars Sample Return program, NASA has turned to private industry for ideas—perhaps with one specific company in mind

Categories: Astronomy

It’s Time to Act on Pilots’ Mental Health

Scientific American.com - Thu, 04/18/2024 - 7:00am

Mental health recommendations for pilots and air traffic controllers bring new ideas to old problems; the FAA must decide what’s next

Categories: Astronomy

What Philosopher Ibn Sina Can Teach Us about AI

Scientific American.com - Thu, 04/18/2024 - 7:00am

A philosopher who lived centuries before artificial intelligence might be able to help us understand the field's personhood questions

Categories: Astronomy

Quantum-proof encryption may not actually stop quantum hackers

New Scientist Space - Cosmology - Thu, 04/18/2024 - 6:31am
Cryptographers are scrambling to understand an algorithm that could undermine the mathematics behind next-generation encryption methods, which are intended to protect against quantum computers
Categories: Astronomy

Quantum-proof encryption may not actually stop quantum hackers

New Scientist Space - Space Headlines - Thu, 04/18/2024 - 6:31am
Cryptographers are scrambling to understand an algorithm that could undermine the mathematics behind next-generation encryption methods, which are intended to protect against quantum computers
Categories: Astronomy

Hollywood Should Give Brain Science a Star Turn

Scientific American.com - Thu, 04/18/2024 - 6:30am

Movies and TV shows frequently depict physical and biological sciences well, but often depict psychological and brain sciences poorly. Here’s why, and what we can do about it

Categories: Astronomy