The universe is like a safe to which there is a combination. But the combination is locked up in the safe.

— Peter De Vries

Feed aggregator

A NASA spacecraft spotted something weird orbiting the moon. It was just a lunar neighbor (photos)

Space.com - Thu, 04/11/2024 - 3:00pm
NASA's Lunar Reconnaissance Orbiter (LRO) snapped a perfectly timed photo as it crossed paths with another spacecraft orbiting the moon.
Categories: Astronomy

NASA’s PACE Data on Ocean, Atmosphere, Climate Now Available

NASA - Breaking News - Thu, 04/11/2024 - 3:00pm

4 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA’s PACE satellite’s Ocean Color Instrument (OCI) detects light across a hyperspectral range, which gives scientists new information to differentiate communities of phytoplankton – a unique ability of NASA’s newest Earth-observing satellite. This first image released from OCI identifies two different communities of these microscopic marine organisms in the ocean off the coast of South Africa on Feb. 28, 2024. The central panel of this image shows Synechococcus in pink and picoeukaryotes in green. The left panel of this image shows a natural color view of the ocean, and the right panel displays the concentration of chlorophyll-a, a photosynthetic pigment used to identify the presence of phytoplankton.Credit: NASA

NASA is now publicly distributing science-quality data from its newest Earth-observing satellite, providing first-of-their-kind measurements of ocean health, air quality, and the effects of a changing climate.

The Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) satellite was launched on Feb. 8, and has been put through several weeks of in-orbit testing of the spacecraft and instruments to ensure proper functioning and data quality. The mission is gathering data that the public now can access at https://pace.oceansciences.org/access_pace_data.htm.

PACE data will allow researchers to study microscopic life in the ocean and particles in the air, advancing the understanding of issues including fisheries health, harmful algal blooms, air pollution, and wildfire smoke. With PACE, scientists also can investigate how the ocean and atmosphere interact with each other and are affected by a changing climate.  

“These stunning images are furthering NASA’s commitment to protect our home planet,” said NASA Administrator Bill Nelson. “PACE’s observations will give us a better understanding of how our oceans and waterways, and the tiny organisms that call them home, impact Earth. From coastal communities to fisheries, NASA is gathering critical climate data for all people.”

“First light from the PACE mission is a major milestone in our ongoing efforts to better understand our changing planet. Earth is a water planet, and yet we know more about the surface of the moon than we do our own oceans. PACE is one of several key missions – including SWOT and our upcoming NISAR mission – that are opening a new age of Earth science,” said Karen St. Germain, NASA Earth Science Division director.  

PACE’s OCI instrument also collects data that can be used to study atmospheric conditions. The top three panels of this OCI image depicting dust from Northern Africa carried into the Mediterranean Sea, show data that scientists have been able to collect in the past using satellite instruments – true color images, aerosol optical depth, and the UV aerosol index. The bottom two images visualize novel pieces of data that will help scientists create more accurate climate models. Single-Scattering Albedo (SSA) tells the fraction of light scattered or absorbed, which will be used to improve climate models. Aerosol Layer Height tells how low to the ground or high in the atmosphere aerosols are, which aids in understanding air quality.Credit: NASA/UMBC

The satellite’s Ocean Color Instrument, which was built and managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland, observes the ocean, land, and atmosphere across a spectrum of ultraviolet, visible, and near infrared light. While previous ocean color satellites could only detect a handful of wavelengths, PACE is detecting more than 200 wavelengths. With this extensive spectral range, scientists can identify specific communities of phytoplankton. Different species play different roles in the ecosystem and carbon cycle — most are benign, but some are harmful to human health — so distinguishing phytoplankton communities is a key mission of the satellite.

PACE’s two multi-angle polarimeters, HARP2 and SPEXone, measure polarized light that has reflected off clouds and tiny particles in the atmosphere. These particles, known as aerosols, can range from dust to smoke to sea spray and more. The two polarimeters are complementary in their capabilities. SPEXone, built at the Netherlands Institute for Space Research (SRON) and Airbus Netherlands B.V., will view Earth in hyperspectral resolution – detecting all the colors of the rainbow – at five different viewing angles. HARP2, built at the University of Maryland, Baltimore County (UMBC), will observe four wavelengths of light, with 60 different viewing angles.

Early data from the SPEXone polarimeter instrument aboard PACE show aerosols in a diagonal swath over Japan on Mar. 16, 2024, and Ethiopia on Mar. 6, 2024. In the top two panels, lighter colors represent a higher fraction of polarized light. In the bottom panels, SPEXone data has been used to differentiate between fine aerosols, like smoke, and coarse aerosols, like dust and sea spray. SPEXone data can also measure how much aerosols are absorbing light from the Sun. Above Ethiopia, the data show mostly fine particles absorbing sunlight, which is typical for smoke from biomass burning. In Japan, there are also fine aerosols, but without the same absorption. This indicates urban pollution from Tokyo, blown toward the ocean and mixed with sea salt. The SPEXone polarization observations are displayed on a background true color image from another of PACE’s instruments, OCI.Credit: SRON

With these data, scientists will be able to measure cloud properties — which are important for understanding climate — and monitor, analyze, and identify atmospheric aerosols to better inform the public about air quality. Scientists will also be able to learn how aerosols interact with clouds and influence cloud formation, which is essential to creating accurate climate models.

Early images from PACE’s HARP2 polarimeter captured data on clouds over the west coast of South America on Mar. 11, 2024. The polarimetry data can be used to determine information about the cloud droplets that make up the cloudbow – a rainbow produced by sunlight reflected by cloud droplets instead of rain droplets. Scientists can learn how the clouds respond to man-made pollution and other aerosols and can measure the size of the cloud droplets with this polarimetry data.Credit: UMBC

“We’ve been dreaming of PACE-like imagery for over two decades. It’s surreal to finally see the real thing,” said Jeremy Werdell, PACE project scientist at NASA Goddard. “The data from all three instruments are of such high quality that we can start distributing it publicly two months from launch, and I’m proud of our team for making that happen. These data will not only positively impact our everyday lives by informing on air quality and the health of aquatic ecosystems, but also change how we view our home planet over time.”

The PACE mission is managed by NASA Goddard, which also built and tested the spacecraft and the ocean color instrument. The Hyper-Angular Rainbow Polarimeter #2 (HARP2) was designed and built by the University of Maryland, Baltimore County, and the Spectro-polarimeter for Planetary Exploration (SPEXone) was developed and built by a Dutch consortium led by Netherlands Institute for Space Research, Airbus Defence, and Space Netherlands.

By Erica McNamee
NASA’s Goddard Space Flight Center, Greenbelt, Md.

News Media Contact
Jacob Richmond
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Share Details Last Updated Apr 11, 2024 LocationGoddard Space Flight Center Related Terms Explore More 5 min read New NASA Satellite To Unravel Mysteries About Clouds, Aerosols Article 4 months ago 6 min read NASA Wants to Identify Phytoplankton Species from Space. Here’s Why. Article 10 months ago 8 min read NASA’s PACE To Investigate Oceans, Atmosphere in Changing Climate

Earth’s oceans and atmosphere are changing as the planet warms. Some ocean waters become greener…

Article 3 months ago
Categories: NASA

Monster star gains magnetic personality following stellar merger

Space.com - Thu, 04/11/2024 - 2:26pm
A rare massive star possessing a magnetic field could have produced its dynamo after merging with another star.
Categories: Astronomy

Quantum 'supersolid' matter stirred using magnets

New Scientist Space - Cosmology - Thu, 04/11/2024 - 2:00pm
We can’t stir ordinary solids, but one research team now claims to have stirred an extraordinary quantum “supersolid”, generating tiny vortices
Categories: Astronomy

Quantum 'supersolid' matter stirred using magnets

New Scientist Space - Space Headlines - Thu, 04/11/2024 - 2:00pm
We can’t stir ordinary solids, but one research team now claims to have stirred an extraordinary quantum “supersolid”, generating tiny vortices
Categories: Astronomy

Why Some People Always Get Lost—And Others Never Do

Scientific American.com - Thu, 04/11/2024 - 2:00pm

Experience may matter more than innate ability when it comes to a sense of direction

Categories: Astronomy

Car-sized asteroid gives Earth a super-close shave with flyby closer than some satellites

Space.com - Thu, 04/11/2024 - 1:29pm
A newly discovered space rock will harmlessly pass by Earth today. Still, at less than a tenth the distance to the moon, asteroid 2024 GJ2 will miss the planet by the skin of its teeth.
Categories: Astronomy

NASA Invites Media to Switzerland Artemis Accords Signing Ceremony

NASA - Breaking News - Thu, 04/11/2024 - 1:05pm
Credit: NASA

NASA will welcome Switzerland as the 37th country to sign the Artemis Accords during a ceremony at 11:30 a.m. EDT on Monday, April 15 at the agency’s headquarters in Washington. NASA Administrator Bill Nelson will host Swiss Federal Councillor Guy Parmelin, Minister for Economic Affairs, Education & Research, along with other officials from Switzerland and the U.S. Department of State.

This event is in-person only. Media interested in attending must RSVP no later than 9 a.m. April 15, to hq-media@mail.nasa.gov. NASA’s media accreditation policy is online.

The Artemis Accords establish a practical set of principles to guide space exploration cooperation among nations, including those participating in NASA’s Artemis program.

NASA, in coordination with the U.S. Department of State, announced the establishment of the Artemis Accords in 2020. The Artemis Accords reinforce the 1967 Outer Space Treaty as well as the commitment by the United States and partner nations to the Registration Convention, the Rescue and Return Agreement, as well as best practices and norms of responsible behavior that NASA and its partners have supported, including the public release of scientific data.

Learn more about the Artemis Accords at:

https://www.nasa.gov/artemis-accords/

-end-

Faith McKie / Lauren Low
Headquarters, Washington
202-358-1600
faith.mckie@nasa.gov / lauren.e.low@nasa.gov

Share Details Last Updated Apr 11, 2024 LocationNASA Headquarters Related Terms
Categories: NASA

'Star Wars: Tales of the Empire' sets surprise May the 4th debut on Disney Plus (video)

Space.com - Thu, 04/11/2024 - 1:00pm
A surprise to be sure, but a welcome one. Before The Acolyte, Star Wars animation will return to our screens with Tales of the Empire, a brand-new anthology series.
Categories: Astronomy

Gravitational waves reveal 1st-of-its-kind merger between neutron star and mystery object

Space.com - Thu, 04/11/2024 - 12:33pm
The mystery object, which falls right within the mass-gap range, sheds light on a long-sought, murky realm.
Categories: Astronomy

Trains, planes and a total solar eclipse! Watching the moon block the sun was a transportation adventure (exclusive)

Space.com - Thu, 04/11/2024 - 12:00pm
My family has been in transportation for generations, in planes and trains. I finally got my two ancestral lines to meet, eclipse-style, at a Canadian rail station near an airport.
Categories: Astronomy

Soviet-era cosmonaut Vladimir Aksyonov, who flew into space twice, dies at 89

Space.com - Thu, 04/11/2024 - 12:00pm
Soviet-era cosmonaut Vladimir Aksyonov, who flew into space twice, has died at the age of 89. Aksyonov logged almost 12 days in space and orbited Earth 189 times.
Categories: Astronomy

How Peter Higgs revealed the forces that hold the universe together

New Scientist Space - Cosmology - Thu, 04/11/2024 - 11:40am
The physicist Peter Higgs quietly revolutionised quantum field theory, then lived long enough to see the discovery of the Higgs boson he theorised. Despite receiving a Nobel prize, he remained in some ways as elusive as the particle that shares his name
Categories: Astronomy

How Peter Higgs revealed the forces that hold the universe together

New Scientist Space - Space Headlines - Thu, 04/11/2024 - 11:40am
The physicist Peter Higgs quietly revolutionised quantum field theory, then lived long enough to see the discovery of the Higgs boson he theorised. Despite receiving a Nobel prize, he remained in some ways as elusive as the particle that shares his name
Categories: Astronomy

U.S. Carbon Removal Needs Have a $100-Billion Price Tag—Per Year

Scientific American.com - Thu, 04/11/2024 - 11:30am

The U.S. needs to vastly increase taxpayer spending on direct carbon removal technology to meet President Biden’s climate goals, the Rhodium Group says

Categories: Astronomy

NASA’s Jet Propulsion Laboratory Announces 3 Personnel Appointments

NASA - Breaking News - Thu, 04/11/2024 - 11:29am

4 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) Left to right: JPL’s Keyur Patel, Howard Eisen, and Todd Gaier NASA/JPL-Caltech

The staff changes tap into a deep well of talent and experience across JPL as the laboratory looks to the future.

NASA’s Jet Propulsion Laboratory is pleased to announce three key staff appointments, naming Keyur Patel the associate director for Flight Projects and Mission Success, Howard Eisen chief engineer, and Todd Gaier director for Astronomy and Physics.

Associate Director for Flight Projects and Mission Success

As associate director for Flight Projects and Mission Success, Keyur Patel oversees the implementation and operations of all JPL flight missions. (JPL currently manages more than three dozen flying missions and science instruments to study Earth, our solar system, and beyond.) He succeeds Leslie Livesay, who became JPL’s deputy director in March.

Since beginning at JPL in 1985, Patel has served as director for Astronomy and Physics, deputy director for Planetary Science, director for the Interplanetary Network Directorate, deputy director for Solar System Exploration, and deputy director for the Office of Safety and Mission Success. He has led flight projects as project manager for the Dawn mission, deputy project manager and chief engineer for Deep Impact, and flight engineering office manager for the Spitzer Space Telescope. Patel holds master’s and bachelor’s degrees in aerospace engineering from California State Polytechnic University, Pomona.

JPL Chief Engineer

Howard Eisen, who for the past year has served as the deputy associate director for Flight Projects and Mission Success, has assumed the role of chief engineer while continuing with his deputy associate director duties. He takes over the role from Rob Manning, who will remain in the Office of the Chief Engineer, applying his decades of experience and institutional knowledge in service of missions and projects across the laboratory. Manning will work with Eisen as he transitions into his new role.

A JPL Fellow, Eisen has over 36 years of experience at JPL in technical and leadership roles. He previously served as chief engineer for the Planetary Science Directorate, deputy project manager for the Asteroid Redirect Robotic Mission, flight system manager for the Mars 2020/Perseverance Mars rover and Mars Reconnaissance Orbiter, project manager for the International Space Station Rapid Scatterometer mission, and deputy flight system manager for the Mars Science Laboratory/Curiosity Mars rover. He holds a master’s degree in aerospace systems and bachelor’s degrees in astronautics/avionics and physics from Massachusetts Institute of Technology, as well as a master’s in business administration from the University of Redlands.

Director for Astronomy and Physics

Todd Gaier becomes director of Astronomy and Physics after previously serving as its deputy director and chief technologist. He was also co-investigator and project manager for the Temporal Experiment for Storms and Tropical Systems Demonstration (TEMPEST-D). He joined JPL in 1996, leading a group that developed technologies and instruments using monolithic microwave integrated circuit components. His group supported projects that include the Planck Low Frequency Instrument, the advanced microwave radiometers for the Jason-2 and -3 missions, the integrated receivers for the Juno microwave radiometers, and the Compact Ocean Wind Vector Radiometer (COWVR). He holds a doctorate in physics from the University of California, Santa Barbara and a bachelor’s in physics from Tufts University.

Gaier is a JPL Fellow and a senior research scientist. He is the recipient of NASA’s Exceptional Public Achievement and Outstanding Public Leadership medals.

About JPL

A division of Caltech in Pasadena, California, JPL began in 1936 and ultimately built and helped launch America’s first satellite, Explorer 1, in 1958. By the end of that year, Congress established NASA, and JPL became a part of the agency. Since then, JPL has managed such historic deep space missions as Voyager, Galileo, Cassini, and a continuous fleet of landers, orbiters, and rovers at Mars since 1997. JPL managed the Spitzer Space Telescope and built the Wide Field and Planetary Camera 2 for Hubble as well as the Mid-Infrared instrument (MIRI) on the James Webb Space Telescope. Around our home planet, JPL has over two dozen spacecraft and instruments studying our atmosphere, climate change, sea level, and more.

News Media Contacts

Veronica McGregor / Matthew Segal
Jet Propulsion Laboratory, Pasadena, Calif.
veronica.c.mcgregor@jpl.nasa.gov / matthew.j.segal@jpl.nasa.gov
818-354-9452 / 818-354-8307

2024-039

Share Details Last Updated Apr 11, 2024 Related Terms Explore More 4 min read Media Get Close-Up of NASA’s Jupiter-Bound Europa Clipper Article 11 hours ago 6 min read NASA’s NEOWISE Extends Legacy With Decade of Near-Earth Object Data Article 1 week ago 5 min read Rock Sampled by NASA’s Perseverance Embodies Why Rover Came to Mars Article 1 week ago Keep Exploring Discover Related Topics

Missions

Humans in Space

Climate Change

Solar System

Categories: NASA

Astro Chat with Sophie Adenot | ESA Explores podcast

ESO Top News - Thu, 04/11/2024 - 11:00am
Video: 00:27:08

Sophie Adenot is one of ESA's five astronaut candidates currently undergoing basic astronaut training at the European Astronaut Centre in Cologne, Germany. Tune in as she shares her experiences in astronaut training, her favourite lessons, as well as tips on maintaining the balance and achieving your dreams.

This is Episode 6 of our ESA Explores podcast series introducing the ESA astronaut class of 2022, recorded in November 2023.

Music and audio editing by Denzel Lorge. Cover art by Gaël Nadaud.

Access all ESA Explores podcasts.

Categories: Astronomy

NASA’s SERT II: ‘A Genuine Space Success Story’

NASA - Breaking News - Thu, 04/11/2024 - 10:10am

5 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) An illustration of the SERT II spacecraft, which was comprised of the Agena upper stage, the experimental thrusters and associated equipment, and two large solar arrays.Credit: NASA

“A genuine space success story,” is how Experiments Manager William Kerslake described NASA’s second Space Electric Rocket Test (SERT II), the first long-duration operation of ion thrusters in space. SERT II provided researchers with data for years beyond its expected lifetime and was a rare example of an entire mission – including the launch, propulsion system, spacecraft, and control center – being handled by one organization: NASA’s Lewis Research Center in Cleveland (today, NASA Glenn).

The concept of electric propulsion thrusters dates back to the early 20th century, but because they must operate in a vacuum, there was no practical application for these systems until the space program decades later. In the late 1950s, researchers at NASA Lewis began investigating types of electric propulsion and analyzing missions that could use these systems. They produce low amounts of thrust by creating and accelerating small particles at high velocities, and over time, can accelerate spacecraft at very high rates of speed. Their ability to operate continuously for years at a time with little propellant makes them ideal for long-duration missions or keeping satellites in orbit.

This work was expanded in the early 1960s with the creation of Lewis’ Electromagnetic Propulsion Division and the construction of large vacuum facilities, including the Electric Propulsion and Power Laboratory (EPPL). Lewis engineer Harold Kaufman’s electron bombardment ion engine, which used liquid mercury as its propellant, was the most promising option. While Kaufman’s thruster was undergoing extensive testing in the EPPL tanks, Lewis engineers began developing a spacecraft to test the thruster. During the 50-minute suborbital SERT I flight on July 20, 1964, the Kaufman thruster became the first ion engine to operate in space.

In early 1968, the experimental portion of SERT II underwent six months of testing in Tank 5 at NASA Lewis Research Center’s (now, NASA Glenn’s) Electric Propulsion and Power Laboratory in conditions that simulated the temperatures and pressures it would encounter in space. The two thrusters can be seen in this photograph.Credit: NASA/ Paul Riedel

Lewis continued improving the thruster system, and in August 1966 received approval for SERT II. Researchers wanted to verify the thrusters could operate for longer durations in space, determine their effect on other spacecraft systems, and measure the degradation of solar arrays over time.

The center began simultaneous development of the SERT II ion thruster system and the spacecraft that would place it into orbit: a Thorad-Agena rocket. SERT II had two 15-centimeter diameter electron bombardment thrusters affixed to the back end and a 5-by-40 foot solar array, the largest ever flown by NASA at that time, at the other end.

After a series of tests in the EPPL, SERT II blasted off on February 3, 1970. Project Manager Raymond Rulis called the launch “one of the smoothest operations I’ve seen.” SERT II was placed into a circular polar orbit that provided its solar arrays with the continuous sunlight required to power its thrusters and electronic systems.

A Thorad-Agena rocket lifts off from Vandenberg Air Force Base on February 3, 1970, with the SERT II spacecraft. NASA Lewis Research Center (now, NASA Glenn) managed the Agena Program between 1962 and 1970, with SERT II being the last of the center’s 28 successful launches.Credit: NASA

On February 14, 1970, Lewis engineers activated the first thruster, beginning its six-month operational test. Three weeks later, operators shut the thruster down just before the vehicle passed through the path of a solar eclipse. It was restarted without issue afterwards and continued operation as the spacecraft encountered the eclipse a second time later that day.

The thruster operated successfully for five months until an electrical short in the grid caused it to fail on July 22, 1970. Two days later, the second thruster was activated. It operated smoothly for three-and-a-half months until a similar short occurred in mid-October. Though the SERT II thrusters failed to meet their six-month objectives, they did operate for extended periods, confirming data obtained in Lewis’ vacuum tanks.

The mission continued when Lewis engineers reactivated SERT II in 1973 to demonstrate cathode restarting, and the following year, they resolved an electrical short in one of the thrusters. During periods of intermittent sunlight, operators demonstrated restarting the thruster with less than an hour of power available. SERT II’s return to an orbit in continuous sunlight in 1979 provided Lewis researchers the opportunity to conduct over 500 restarts. They operated the thruster for 18,000 hours before the propellant ran out in the spring of 1981.

William Kerslake (seen in this 1981 photograph) and Louis Ignaczak managed the SERT II operations from a specially designed control center in NASA’s Lewis Research Center’s (now, NASA Glenn’s) 10-by 10-Foot Supersonic Wind Tunnel building. The control center allowed engineers to monitor the mission and send commands to the spacecraft through NASA’s satellite communication system. Credit: NASA/Daniel Laiety

Over eleven years, SERT II provided data on hundreds of thruster restarts, restarts after shutdowns as long as 18 months, ion beam neutralization of one thruster by the other, and discovery of a new plasma thrust mode. SERT II also verified that thruster operation had no harmful impact on spacecraft and solar arrays.

Still, SERT II continued to be an asset to NASA researchers. In the late 1980s, Lewis engineers realized that an auxiliary experiment on SERT II that analyzed the effect of micrometeoroids on solar mirrors could be beneficial to research on solar dynamic systems to power space stations. During six months in sunlight in 1990, the Lewis team determined that after 20 years in orbit, there was no degradation of the solar mirror’s optical properties.

Many technological components of the SERT II thruster system were incorporated into subsequent generations of ion thrusters. By the time the mission was terminated, Lewis was already ground testing thrusters twice the size of those on SERT II. The center has continued to lead NASA’s electric propulsion efforts, developing an array of technologies, including the NEXT-C thrusters that powered the Deep Space 1 and Dawn spacecraft. In support of the agency’s Artemis missions, NASA Glenn recently tested the thrusters that will power Gateway, NASA’s future lunar space station.

Additional Information:

Development and Flight History of SERT II Spacecraft

NASA Glenn Solar Electric Propulsion

Explore More 5 min read 60 Years Ago: Gemini 1 Flies a Successful Uncrewed Test Flight Article 3 days ago 6 min read From NASA’s First Astronaut Class to Artemis II: The Importance of Military Jet Pilot Experience Article 3 days ago 3 min read NASA Names Finalists of the Power to Explore Challenge Article 4 days ago
Categories: NASA

Space weather can make it hard to predict satellite trajectories. Here's why that's a problem

Space.com - Thu, 04/11/2024 - 10:00am
Satellites in low Earth orbit can be hundreds of miles off their expected trajectories when bad space weather hits.
Categories: Astronomy

Stars make a bigger mess in old galaxies, and scientists just figured out why

Space.com - Thu, 04/11/2024 - 9:00am
More evolved galaxies demonstrate a greater range of stellar motions compared to the orderly, circular orbits of stars like our sun in the Milky Way.
Categories: Astronomy