Feed aggregator
Exhibition uses art to explore the mysteries of the quantum world
How we could achieve dog-level sense of smell – and what it would mean
How we could achieve dog-level sense of smell – and what it would mean
Is this the most glorious retraction notice a journal has ever made?
Content moderation offers little actual safety on Big Social Media
Are we really doomed? An entertaining guide to humanity's extinction
Is this the most glorious retraction notice a journal has ever made?
Content moderation offers little actual safety on Big Social Media
Are we really doomed? An entertaining guide to humanity's extinction
Understanding conscious experience isn’t beyond the realm of science
Understanding conscious experience isn’t beyond the realm of science
Dark Matter Could Be Charging Up Hydrogen in the Milky Way
Dark matter - that mysterious, unknown stuff that's detectable only by its effect on other matter - seems to be sparking strong emissions at the heart of the Milky Way Galaxy.
Whoa! Astronomers Found 128 New Moons Orbiting Saturn
Dutch astronomer Christiaan Huygens was the first to discover a Saturnian moon way back in 1655. Thanks to his skill as a lens grinder and polisher, he was the first person to see Titan. Over the centuries, we've discovered many more moons orbiting the ringed planet. In a surprising announcement on March 11th, the Minor Planet Center announced the discovery of 128 more moons, almost doubling the previous number.
NASA-ISRO Mission Will Map Farmland From Planting to Harvest
Data from the NISAR satellite will be used to map crop growth, track plant health, and monitor soil moisture — offering detailed, timely information for decision making.
When it launches this year, the NISAR (NASA-ISRO Synthetic Aperture Radar) satellite will provide a powerful data stream that could help farmers in the U.S. and around the world. This new Earth mission by NASA and the Indian Space Research Organisation will help monitor the growth of crops from planting to harvest, generating crucial insights on how to time plantings, adjust irrigation schedules, and, ultimately, make the most of another precious resource: time.
Using synthetic aperture radar, NISAR will discern the physical characteristics of crops, as well as the moisture content of the plants and the soil they grow in. The mission will have the resolution to see small plots of farmland, but a potentially more meaningful benefit will come from its broad, frequent coverage of agricultural regions.
The satellite will image nearly all of Earth’s land twice every 12 days and will be able to resolve plots down to 30 feet (10 meters) wide. The cadence and resolution could allow users to zoom in to observe week-to-week changes on small farms or zoom out to monitor thousands of farms for broader trends. Such big-picture perspective will be useful for authorities managing crops or setting farm policy.
Tapping NISAR data, decision-makers could, for example, estimate when rice seedlings were planted across a region and track their height and blooming through the season while also monitoring the wetness of the plants and paddies over time. An unhealthy crop or drier paddies may signal the need to shift management strategies.
NISAR will provide maps of croplands on a global basis every two weeks. Observations will be uninterrupted by weather and provide up-to-date information on the large-scale trends that affect international food security. Credit: NASA/JPL-Caltech“It’s all about resource planning and optimizing, and timing is very important when it comes to crops: When is the best time to plant? When is the best time to irrigate? That is the whole game here,” said Narendra Das, a NISAR science team member and agricultural engineering researcher at Michigan State University in East Lansing.
Mapping CropsNISAR is set to launch this year from ISRO’s Satish Dhawan Space Centre on India’s southeastern coast. Once in operation, it will produce about 80 terabytes of data products per day for researchers and users across numerous areas, including agriculture.
Satellites have been used for large-scale crop monitoring for decades. Because microwaves pass through clouds, radar can be more effective at observing crops during rainy seasons than other technologies such as thermal and optical imaging. The NISAR satellite will be the first radar satellite to employ two frequencies, L- and S-band, which will enable it to observe a broader range of surface features than a single instrument working at one frequency.
Microwaves from the mission’s radars will be able to penetrate the canopies of crops such as corn, rice, and wheat, then bounce off the plant stalks, soil, or water below, and then back to the sensor. This data will enable users to estimate the mass of the plant matter (biomass) that’s aboveground in an area. By interpreting the data over time and pairing it with optical imagery, users will be able to distinguish crop types based on growth patterns.
Data gathered in 2017 by the European Sentinel-1 SAR satellite program shows changes to croplands in the region southeast of Florida’s Lake Okeechobee. Colors in the fields indicate various crops in different parts of their growth and harvest cycles. NISAR will gather similar data in L- and S-band radar frequencies.ESA; processing and visualization by Earth Big Data LLCAdditionally, NISAR’s radars will measure how the polarization, or vertical and horizontal orientation of signals, changes after they bounce back to the satellite from the surface. This will enable a technique called polarimetry that, when applied to the data, will help identify crops and estimate crop production with better accuracy.
“Another superpower of NISAR is that when its measurements are integrated with traditional satellite observations, especially vegetation health indexes, it will significantly enhance crop information,” added Brad Doorn, who oversees NASA’s water resources and agriculture research program.
The NISAR satellite’s high-resolution data on which crops are present and how well they are growing could feed into agricultural productivity forecasts.
“The government of India — or any government in the world — wants to know the crop acreage and the production estimates in a very precise way,” said Bimal Kumar Bhattacharya, the agricultural applications lead at ISRO’s Space Applications Centre in Ahmedabad. “The high-repeat time-series data of NISAR will be very, very helpful.”
Tracking Soil MoistureThe NISAR satellite can also help farmers gauge the water content in soil and vegetation. In general, wetter soils tend to return more signals and show up brighter in radar imagery than drier soils. There is a similar relationship with plant moisture.
A collaboration between NASA and the Indian Space Research Organisation, NISAR will use synthetic aperture radar to offer insights into change in Earth’s ecosystems, including its agricultural lands. The spacecraft, depicted here in an artist’s concept, will launch from India.NASA/JPL-CaltechThese capabilities mean that NISAR can estimate the water content of crops over a growing season to help determine if they are water-stressed, and it can use signals that have scattered back from the ground to estimate soil moisture.
The soil moisture data could potentially inform agriculture and water managers about how croplands respond to heat waves or droughts, as well as how quickly they absorb water and then dry out following rain — information that could support irrigation planning.
“Resource managers thinking about food security and where resources need to go are going to be able to use this sort of data to have a holistic view of their whole region,” said Rowena Lohman, an Earth sciences researcher at Cornell University in Ithaca, New York, and soil moisture lead on the NISAR science team.
More About NISARThe NISAR satellite is a joint collaboration between NASA and ISRO and marks the first time the two agencies have cooperated on flight hardware for an Earth-observing mission. Managed by Caltech, NASA’s Jet Propulsion Laboratory leads the U.S. component of the project and provided the L-band SAR. NASA JPL also provided the radar reflector antenna, the deployable boom, a high-rate communication subsystem for science data, GPS receivers, a solid-state recorder, and payload data subsystem. NASA’s Goddard Space Flight Center manages the Near Space Network, which will receive NISAR’s L-band data.
The ISRO Space Applications Centre is providing the mission’s S-band SAR. The U R Rao Satellite Centre provided the spacecraft bus. The launch vehicle is from Vikram Sarabhai Space Centre, launch services are through Satish Dhawan Space Centre, and satellite mission operations are by the ISRO Telemetry Tracking and Command Network. The National Remote Sensing Centre is responsible for S-band data reception, operational products generation, and dissemination.
To learn more about NISAR, visit:
How NISAR Will See Earth What Sets NISAR Apart From Other Earth Satellites News Media ContactsAndrew Wang / Jane J. Lee
Jet Propulsion Laboratory, Pasadena, Calif.
626-379-6874 / 818-354-0307
andrew.wang@jpl.nasa.gov / jane.j.lee@jpl.nasa.gov
2025-035
Share Details Last Updated Mar 12, 2025 Related Terms Explore More 8 min read NASA Researchers Study Coastal Wetlands, Champions of Carbon CaptureIn the Florida Everglades, NASA’s BlueFlux Campaign investigates the relationship between tropical wetlands and greenhouse…
Article 8 hours ago 3 min read NASA Analysis Shows Unexpected Amount of Sea Level Rise in 2024 Article 9 hours ago 5 min read NASA’s Record-Shattering, Theory-Breaking MMS Mission Turns 10Since its launch on March 12, 2015, NASA’s MMS, or Magnetospheric Multiscale, mission has been…
Article 1 day ago Keep Exploring Discover More Topics From NASAMissions
Humans in Space
Climate Change
Solar System
Sols 4477-4478: Bumping Back to Business
- Curiosity Home
- Science
- News and Features
- Multimedia
- Mars Missions
- Mars Home
2 min read
Sols 4477-4478: Bumping Back to Business NASA’s Mars rover Curiosity acquired this image using its Right Navigation Camera on March 10, 2025 — sol 4476, or Martian day 4,476 of the Mars Science Laboratory mission — at 04:15:44 UTC. NASA/JPL-CaltechWritten by Sharon Wilson Purdy, Planetary Geologist at the Smithsonian National Air and Space Museum
Earth planning date: Monday, March 10, 2025
The Curiosity rover is winding between the spectacular Gould mesa and Texoli butte through beautifully layered terrain. The end-of-drive target from last week’s plan was a rock with a knobby/bumpy texture that appears quite different from the typical surrounding bedrock. While this interesting rock was in our workspace today, we ended up being just a touch too close to do contact science. As a result, the science team decided to “bump back” (e.g., drive backwards) to get the rover in an ideal position to analyze and characterize this rock on Wednesday.
In the middle of the rover’s workspace today there was a large patch of soil and sand that MAHLI and APXS teamed up to analyze at a target named “Angeles Crest.” Nearby, Mastcam imaged troughs (depressions) along the axis of the sand ridge to understand how they formed. Mastcam had several other targets in the plan that imaged the workspace and surroundings including “Potrero John,” the knobby rock in the workspace, a rock with similar nodular textures in the distance named “Modjeska Peak,” and a light tan rock with a dome-like structure in the vicinity of “Humber Park.”
ChemCam selected a slab of bedrock and loose (“float”) rock in the workspace to characterize their geochemistry with the LIBS instrument at “Millard Canyon” and “Cajon Pass,” respectively. Off in the distance, the science team selected the face of Gould mesa and upper Texoli butte for ChemCam long distance RMI imaging to get a closer look at the rocks, fractures, and layering.
The environmental theme group scheduled several activities to look at clouds, document the atmospheric opacity, and measure the optical depth of the atmosphere and constrain aerosol scattering properties. We have lots of exciting data in hand and more on the road ahead!
Share Details Last Updated Mar 12, 2025 Related Terms Explore More 3 min read Sols 4475-4476: Even the Best-Laid PlansArticle
17 hours ago
2 min read Sealing the Deal
Article
6 days ago
5 min read Sols 4473-4474: So Many Rocks, So Many Textures!
Article
6 days ago
Keep Exploring Discover More Topics From NASA Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
What do lunar eclipses teach us about Earth?
Water in the universe may have formed closer to the Big Bang than previously thought
NASA Invites Media to Annual FIRST Robotics Rocket City Competition
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)The Rocket City Regional – Alabama’s annual For Inspiration and Recognition of Science and Technology (FIRST) Robotics Regional Competition – is scheduled for Friday, March 14, through Saturday, March 15, at the Von Braun Center South Hall in Huntsville, Alabama.
FIRST Robotics is a global robotics competition for students in grades 9-12. Teams are challenged to raise funds, design a team brand, hone teamwork skills, and build and program industrial-sized robots to play a difficult field game against competitors.
Students from RAD Robotics Team 7111 – a FIRST Robotics team from Huntsville, Alabama, and sponsored by NASA’s Marshall Space Flight Center – make adjustments to their robot during the 2024 Rocket City Regional FIRST Robotics Competition in Huntsville.District and regional competitions – such as the Rocket City Regional – are held across the country during March and April, providing teams a chance to qualify for the 2025 FIRST Robotics Competition Championship events held in mid-April in Houston.
Hundreds of high school students from 44 teams from 10 states and 2 countries will compete in a new robotics game called, “REEFSCAPE.”
This event is free and open to the public. Opening ceremonies begin at 8:30 a.m. CDT followed by qualification matches on March 14 and March 15. The Friday awards ceremony will begin at 5:45 p.m., while the Saturday awards ceremony will begin at 1:30 p.m.
NASA and its Robotics Alliance Project provide grants for high school teams and support for FIRST Robotics competitions to address the critical national shortage of students pursuing STEM (Science, Technology, Engineering, and Mathematics) careers. The Rocket City Regional Competition is supported by NASA’s Marshall Space Flight Center in Huntsville, Alabama, and NASA’s Office of STEM Engagement.
News media interested in covering this event should respond no later than 4 p.m. on Thursday, March 13 by contacting Taylor Goodwin at 256-544-0034 or taylor.goodwin@nasa.gov.
Learn more about the Rocket City Regional event:
https://www.firstinspires.org/team-event-search/event?id=72593
Find more information about Marshall’s support for education programs:
https://www.nasa.gov/marshall/marshall-stem-engagement
Taylor Goodwin
256-544-0034
Marshall Space Flight Center, Huntsville, Alabama
taylor.goodwin@nasa.gov
NASA STEM Opportunities and Activities For Students
Marshall Space Flight Center
Marshall STEM Engagement
About STEM Engagement at NASA
Big Business Backs Away from Tackling Climate Change as Trump Axes Environmental Efforts
Tech giants joined states and cities as a pillar of resistance on climate action during President Trump’s first term. Now the coalition is in turmoil