"When beggars die, there are no comets seen;
The heavens themselves blaze forth the death of princes."

— William Shakespeare
Julius Cæsar

Feed aggregator

Extreme magnetic fields near our galaxy's black hole are preventing stars from being born, JWST discovers

Space.com - Thu, 04/03/2025 - 12:36pm
New James Webb Space Telescope images of the stellar nursery Sgr C, near the galactic center, reveal why it contains fewer stars than expected.
Categories: Astronomy

The utterly beautiful destruction of a planet: Space photo of the day

Space.com - Thu, 04/03/2025 - 12:36pm
The Helix nebula may point to the ultimate fate of our sun — and Earth.
Categories: Astronomy

Xenolinguistics—the Study of Alien Languages—Helps to Reveal Why All Beings Communicate

Scientific American.com - Thu, 04/03/2025 - 12:15pm

Studying how extraterrestrials might communicate could help prepare for first contact and also hint at the point of language itself

Categories: Astronomy

A Mission That Could Reach Mercury on Solar Sails Alone

Universe Today - Thu, 04/03/2025 - 12:05pm

An innovative proposal would be a first for planetary exploration. Turns out, it’s as tough to drop inward into the inner solar system, as it is to head outward. The problem stems from losing momentum from a launch starting point on Earth. It can take missions several years and planetary flybys before capture and arrival in orbit around Mercury or Venus. Now, a new proposal would see a mission make the trip, using innovative and fuel efficient means.

Categories: Astronomy

We could make solar panels on the moon by melting lunar dust

New Scientist Space - Cosmology - Thu, 04/03/2025 - 12:00pm
Researchers used a synthetic version of moon dust to build working solar panels, which could eventually be created within – and used to power – a moon base of the future
Categories: Astronomy

We could make solar panels on the moon by melting lunar dust

New Scientist Space - Space Headlines - Thu, 04/03/2025 - 12:00pm
Researchers used a synthetic version of moon dust to build working solar panels, which could eventually be created within – and used to power – a moon base of the future
Categories: Astronomy

Trump Staff Cuts Hollow Out Extreme Heat Programs

Scientific American.com - Thu, 04/03/2025 - 12:00pm

Layoffs at the Department of Health and Human Services have dealt a critical blow to the agency's efforts to manage rising temperatures made worse by climate change

Categories: Astronomy

Go Inside a Mexican Wolf Recovery Project Whose Future Is Now Uncertain

Scientific American.com - Thu, 04/03/2025 - 11:00am

The critically endangered Mexican wolf was mounting a comeback, thanks to a conservation program that dropped fostered wolf pups into wild dens. Then politics happened.

Categories: Astronomy

Moon dust may help astronauts power sustainable lunar cities. Here's how.

Space.com - Thu, 04/03/2025 - 11:00am
Constructing solar arrays out of moon dust would reduce launch costs and make lunar bases more plausible, according to a new study.
Categories: Astronomy

NASA Langley’s Legacy of Landing

NASA News - Thu, 04/03/2025 - 10:19am
5 Min Read NASA Langley’s Legacy of Landing The first image of the Moon taken by the cameras on the Lunar Orbiter in 1966. Credits: NASA

Landing safely on the surface of another planetary body, like the Moon or Mars, is one of the most important milestones of any given space mission. From the very beginning, NASA’s Langley Research Center has been at the heart of the entry, descent and landing (EDL) research that enables our exploration. Today, NASA Langley’s legacy of landing continues at the forefront of present day lunar missions and as NASA prepares for future travel to more distant worlds.

Project Mercury: 1958

Project Mercury was the United States’ first human-in-space program, led by NASA’s Space Task Group located at NASA Langley. There were five major programs of study and experimentation.

  1. An airdrop study that helped us understand the characteristics of the Mercury capsule as it returned to Earth.
  2. A group of study focused on the escape systems, ultimately becoming known as the launch abort system.
  3. Exhaustive wind-tunnel studies of the blunt-nosed capsule design and its aerodynamic stability at various altitudes and speeds and angles of reentry, all with a focus on making the capsule safe and stable.
  4. A study on the problem of landing impact, resulting in the development of absorption systems that minimized the shock of impact to the capsule’s pilot.
  5. Studies into the use of drogue parachutes and their characteristics at high altitudes and speeds, ensuring that they would be able to stabilize and slow the capsule’s descent for a safe landing. All of this research went on to inform the subsequent Gemini and Apollo programs.

All of this research went on to inform the subsequent Gemini and Apollo programs.

Apollo Program: 1962

In 1961, President John F. Kennedy committed to putting Americans on the surface of the Moon and shortly after that historic declaration, NASA’s Apollo program was born. In the years that followed, the original team of NASA astronauts completed their basic training at NASA Langley’s Lunar Landing Research Facility (LLRF). When Apollo 11 successfully landed the first humans on the Moon in 1969, NASA Langley had played a pivotal role in the monumental success.

Lunar Orbiter: 1966

The Lunar Orbiter missions launched with the purpose of mapping the lunar surface and identifying potential landing sites ahead of the Apollo landings. From 1966 to 1967, the five successful Lunar Orbiter missions, led and managed by Langley Research Center, resulted in 99% of the moon photographed and a suitable site selected for the upcoming human landings.

Viking: 1976

After the success of Apollo, NASA set its sights further across the solar system to Mars. Two Viking missions aimed to successfully place landers on the Red Planet and capture high resolution images of the Martian surfaces, assisting in the search for life. Langley Research Center was chosen to lead this inaugural Mars mission and went on to play key roles in the missions to Mars that followed.

HIAD: 2009 – Present

Successful landings on Mars led to more ambitious dreams of landing larger payloads, including those that could support future human exploration. In order to land those payloads safely, a new style of heat shield would be needed. Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology was positioned as an answer to the payload problem, enabling missions to use inflatable heat shields to slow down and protect a payload as it enters a planet’s atmosphere at hypersonic speeds.

IRVE – 2009-2012

Two successful Inflatable Reentry Vehicle Experiments (IRVE) proved the capability of inflatable heat shield technology and opened the door for larger iterations.

LOFTID – 2022

The Low Earth Orbit Flight Test of an Inflatable Decelerator (LOFTID) followed in the footsteps of its predecessor IRVE with a larger aeroshell that could be deployed to a scale much larger than the shroud. The 2022 successful test of this technology further proved the capability of HIAD technology.

MEDLI 1 and 2: 2012 & 2020

As a part of the Mars Science Laboratory (MSL) mission, NASA Langley’s Mars Entry, Descent and Landing Instrument (MEDLI) was designed to gather data from the MSL entry vehicle’s heatshield during its entry and descent to the surface of Mars. MEDLI2 expanded on that groundbreaking data during the Mars 2020 mission which safely landed the Perseverance rover after successfully entering the planet’s arid atmosphere, and enabling improvements on the design for future entry systems.

Curiosity Rover

Curiosity was the largest and most capable rover ever sent to Mars when it launched in 2011. Leading up the mission, Langley engineers performed millions of simulations of the entry, descent and landing phase — or the so-called “Seven Minutes of Terror” — that determines success or failure. Curiosity continues to look for signs that Mars once was – or still is – a habitable place for life as we know it.

CLPS: 2023 – Present

The Commercial Lunar Payload Services initiative takes the Artemis mission further by working with commercial partners to advance the technology needed to return humans to the Moon and enable humanity to explore Mars.

NDL

Navigation Doppler Lidar (NDL) technology, developed at Langley Research Center, uses lasers to assist spacecraft in identifying safe locations to land. In 2024, NDL flew on the Intuitive Machines’ uncrewed Nova-C lander, with its laser instruments designed to measure velocity and altitude to within a few feet. While NASA planetary landers have traditionally relied on radar and used radio waves, NDL technology has proven more accurate and less heavy, both major benefits for cost and space savings as we continue to pursue planetary missions.

SCALPSS

Like Lunar Orbiter and the Viking missions before it, Stereo Cameras for Lunar Plume Surface Studies (SCALPSS) set out to better understand the surface of another celestial body. These cameras affixed to the bottom of a lunar lander focus on the interaction between the lander’s rocket plumes and the lunar surface. The SCALPSS 1.1 instrument captured first-of-its-kind imagery as the engine plumes of Firefly’s Blue Ghost lander reached the Moon’s surface. These images will serve as key pieces of data as trips to the Moon increase in the coming years. 

About the AuthorAngelique Herring

Share Details Last Updated Apr 03, 2025 EditorAngelique HerringContactJoseph Scott Atkinsonjoseph.s.atkinson@nasa.govLocationNASA Langley Research Center Related Terms Explore More 4 min read NASA Cameras on Blue Ghost Capture First-of-its-Kind Moon Landing Footage Article 3 weeks ago 4 min read Six NASA Instruments Will Fly to Moon on Intuitive Machines Lander Article 1 year ago 4 min read Impact Story: Navigation Doppler Lidar Article 2 years ago 7 min read Langley’s Contributions to Artemis Article 3 years ago 1 min read 2024 Annual Report Highlights Langley’s Wonder at Work Article 2 months ago 12 min read 60 Years Ago: NASA Approves the Lunar Orbiter Program Article 2 years ago Keep Exploring Discover More Topics From NASA

Missions

Humans in Space

Climate Change

Solar System

Categories: NASA

NASA Langley’s Legacy of Landing

NASA - Breaking News - Thu, 04/03/2025 - 10:19am
5 Min Read NASA Langley’s Legacy of Landing The first image of the Moon taken by the cameras on the Lunar Orbiter in 1966. Credits: NASA

Landing safely on the surface of another planetary body, like the Moon or Mars, is one of the most important milestones of any given space mission. From the very beginning, NASA’s Langley Research Center has been at the heart of the entry, descent and landing (EDL) research that enables our exploration. Today, NASA Langley’s legacy of landing continues at the forefront of present day lunar missions and as NASA prepares for future travel to more distant worlds.

Project Mercury: 1958

Project Mercury was the United States’ first human-in-space program, led by NASA’s Space Task Group located at NASA Langley. There were five major programs of study and experimentation.

  1. An airdrop study that helped us understand the characteristics of the Mercury capsule as it returned to Earth.
  2. A group of study focused on the escape systems, ultimately becoming known as the launch abort system.
  3. Exhaustive wind-tunnel studies of the blunt-nosed capsule design and its aerodynamic stability at various altitudes and speeds and angles of reentry, all with a focus on making the capsule safe and stable.
  4. A study on the problem of landing impact, resulting in the development of absorption systems that minimized the shock of impact to the capsule’s pilot.
  5. Studies into the use of drogue parachutes and their characteristics at high altitudes and speeds, ensuring that they would be able to stabilize and slow the capsule’s descent for a safe landing. All of this research went on to inform the subsequent Gemini and Apollo programs.

All of this research went on to inform the subsequent Gemini and Apollo programs.

Apollo Program: 1962

In 1961, President John F. Kennedy committed to putting Americans on the surface of the Moon and shortly after that historic declaration, NASA’s Apollo program was born. In the years that followed, the original team of NASA astronauts completed their basic training at NASA Langley’s Lunar Landing Research Facility (LLRF). When Apollo 11 successfully landed the first humans on the Moon in 1969, NASA Langley had played a pivotal role in the monumental success.

Lunar Orbiter: 1966

The Lunar Orbiter missions launched with the purpose of mapping the lunar surface and identifying potential landing sites ahead of the Apollo landings. From 1966 to 1967, the five successful Lunar Orbiter missions, led and managed by Langley Research Center, resulted in 99% of the moon photographed and a suitable site selected for the upcoming human landings.

Viking: 1976

After the success of Apollo, NASA set its sights further across the solar system to Mars. Two Viking missions aimed to successfully place landers on the Red Planet and capture high resolution images of the Martian surfaces, assisting in the search for life. Langley Research Center was chosen to lead this inaugural Mars mission and went on to play key roles in the missions to Mars that followed.

HIAD: 2009 – Present

Successful landings on Mars led to more ambitious dreams of landing larger payloads, including those that could support future human exploration. In order to land those payloads safely, a new style of heat shield would be needed. Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology was positioned as an answer to the payload problem, enabling missions to use inflatable heat shields to slow down and protect a payload as it enters a planet’s atmosphere at hypersonic speeds.

IRVE – 2009-2012

Two successful Inflatable Reentry Vehicle Experiments (IRVE) proved the capability of inflatable heat shield technology and opened the door for larger iterations.

LOFTID – 2022

The Low Earth Orbit Flight Test of an Inflatable Decelerator (LOFTID) followed in the footsteps of its predecessor IRVE with a larger aeroshell that could be deployed to a scale much larger than the shroud. The 2022 successful test of this technology further proved the capability of HIAD technology.

MEDLI 1 and 2: 2012 & 2020

As a part of the Mars Science Laboratory (MSL) mission, NASA Langley’s Mars Entry, Descent and Landing Instrument (MEDLI) was designed to gather data from the MSL entry vehicle’s heatshield during its entry and descent to the surface of Mars. MEDLI2 expanded on that groundbreaking data during the Mars 2020 mission which safely landed the Perseverance rover after successfully entering the planet’s arid atmosphere, and enabling improvements on the design for future entry systems.

Curiosity Rover

Curiosity was the largest and most capable rover ever sent to Mars when it launched in 2011. Leading up the mission, Langley engineers performed millions of simulations of the entry, descent and landing phase — or the so-called “Seven Minutes of Terror” — that determines success or failure. Curiosity continues to look for signs that Mars once was – or still is – a habitable place for life as we know it.

CLPS: 2023 – Present

The Commercial Lunar Payload Services initiative takes the Artemis mission further by working with commercial partners to advance the technology needed to return humans to the Moon and enable humanity to explore Mars.

NDL

Navigation Doppler Lidar (NDL) technology, developed at Langley Research Center, uses lasers to assist spacecraft in identifying safe locations to land. In 2024, NDL flew on the Intuitive Machines’ uncrewed Nova-C lander, with its laser instruments designed to measure velocity and altitude to within a few feet. While NASA planetary landers have traditionally relied on radar and used radio waves, NDL technology has proven more accurate and less heavy, both major benefits for cost and space savings as we continue to pursue planetary missions.

SCALPSS

Like Lunar Orbiter and the Viking missions before it, Stereo Cameras for Lunar Plume Surface Studies (SCALPSS) set out to better understand the surface of another celestial body. These cameras affixed to the bottom of a lunar lander focus on the interaction between the lander’s rocket plumes and the lunar surface. The SCALPSS 1.1 instrument captured first-of-its-kind imagery as the engine plumes of Firefly’s Blue Ghost lander reached the Moon’s surface. These images will serve as key pieces of data as trips to the Moon increase in the coming years. 

About the AuthorAngelique Herring

Share Details Last Updated Apr 03, 2025 EditorAngelique HerringContactJoseph Scott Atkinsonjoseph.s.atkinson@nasa.govLocationNASA Langley Research Center Related Terms Explore More 4 min read NASA Cameras on Blue Ghost Capture First-of-its-Kind Moon Landing Footage Article 3 weeks ago 4 min read Six NASA Instruments Will Fly to Moon on Intuitive Machines Lander Article 1 year ago 4 min read Impact Story: Navigation Doppler Lidar Article 2 years ago 7 min read Langley’s Contributions to Artemis Article 3 years ago 1 min read 2024 Annual Report Highlights Langley’s Wonder at Work Article 2 months ago 12 min read 60 Years Ago: NASA Approves the Lunar Orbiter Program Article 2 years ago Keep Exploring Discover More Topics From NASA

Missions

Humans in Space

Climate Change

Solar System

Categories: NASA

How a 'mudball' meteorite survived space to land in the jungles of Central America

Space.com - Thu, 04/03/2025 - 10:16am
A fall of rare meteorites in Costa Rica has revealed new details about a similar space rock that fell in Australia 50 years earlier.
Categories: Astronomy

JWST’s Fourth Year of Amazing Science Faces Funding Woes

Scientific American.com - Thu, 04/03/2025 - 10:00am

The next year of science on the James Webb Space Telescope has been announced amid mounting budgetary uncertainty that could affect the unparalleled observatory

Categories: Astronomy

Pioneering Female Doctor Evangelina Rodríguez Faced a Dictator’s Reign of Terror

Scientific American.com - Thu, 04/03/2025 - 9:00am

Beginning in the 1930s, the work—and eventually the life—of Andrea Evangelina Rodríguez Perozo, the Dominican Republic’s first female doctor, became threatened by the country’s then new dictator

Categories: Astronomy

Powerful solar winds squish Jupiter's magnetic field 'like a giant squash ball'

Space.com - Thu, 04/03/2025 - 9:00am
A massive solar windstorm in 2017 compressed Jupiter's magnetosphere "like a giant squash ball," a new study reports.
Categories: Astronomy

Why Some People Follow Authoritarian Leaders—And The Key to Stopping It

Scientific American.com - Thu, 04/03/2025 - 8:00am

To protect democracy and counteract the allure of authoritarianism, reduce people's sense of fear and insecurity, psychology research says

Categories: Astronomy

NASA proves its electric moon dust shield works on the lunar surface

Space.com - Thu, 04/03/2025 - 8:00am
New NASA shielding technology that protects against damaging lunar dust just passed a trial run on the moon, marking an important milestone in the agency's lunar aspirations.
Categories: Astronomy

Webb Scans Asteroid 2024 YR4, it's 60 Meters Across

Universe Today - Thu, 04/03/2025 - 7:42am

The Torino scale assess’ the risk of a near-Earth object impacting Earth. The list has just had a new addition, asteroid 2024 YR4 which poses a risk to Earth in 2032. The risk has been downgraded to 0% but there’s still value in studying asteroids that are going to come close to Earth. The James Webb Space Telescope just joined in the study by observing the asteroid to provide a new estimate of its size and showed that it’s spinning rapidly.

Categories: Astronomy

New Plan for Particle Physics Megaproject Leaves out Funding Details

Scientific American.com - Thu, 04/03/2025 - 7:00am

A long-awaiting report from CERN explores the feasibility of building a supersized successor to the Large Hadron Collider

Categories: Astronomy