"When beggars die, there are no comets seen;
The heavens themselves blaze forth the death of princes."

— William Shakespeare
Julius Cæsar

Feed aggregator

There Could be a Way to Fix Spacecraft at L2, Like Webb and Gaia

Universe Today - Tue, 09/17/2024 - 12:51pm

Billions of dollars of observatory spacecraft orbit around Earth or in the same orbit as our planet. When something wears out or goes wrong, it would be good to be able to fix those missions “in situ”. So far, only the Hubble Space Telescope (HST) has enjoyed regular visits for servicing. What if we could work on other telescopes “on orbit”? Such “fixit” missions to other facilities are the subject of a new NASA paper investigating optimal orbits and trajectories for making service calls on telescopes far beyond Earth.

Some of the most productive orbiting telescopes operate at the Sun-Earth Lagrange points L1 and L2. Currently, those positions afford us some very incredible science. What they can’t afford is easy access for repairs and servicing. That limits the expected lifetime of facilities such as JWST to about 10-15 years. In the future, more missions will be deployed a Lagrange points. These include the Nancy Grace Roman Telescope, ESA’s PLATO and ARIEL missions, and the Large Ultraviolet Optical Infrared Surveyor (LUVOIR).

Artist’s impression of the Nancy Grace Roman Space Telescope, named after NASA’s first Chief of Astronomy. This spacecraft will orbit at SEL2, far from Earth. Credits: NASA

These observatories need propellants for attitude thrusters to help them stay ‘in place’ during their observations. There’s only so much “gas” you can send along with these observatories. In addition, components wear out, as they did with HST. So, people are looking at ways to extend their lifetimes through servicing missions. If failing components can be replaced and propellant delivered, the lifetimes of these observatories should be extended quite a bit, giving astronomers more bang for the observational buck.

Planning Future Spacecraft Servicing Missions

Researchers at the Satellite Servicing Capability Office (SSCO) at the Goddard Space Flight Center (GSFC) investigated the possibilities for servicing missions to distant space telescopes. In a recently released paper, they focus on the feasibility of on-orbit refueling missions for space telescopes orbiting at Sun-Earth Lagrange 2 (SEL2).

There are many challenges. For one thing, present-day launch technologies are (at this writing) inadequate to do that kind of mission at such distances. Clearly, the technology has to advance for servicing visits to take place. In addition, it’s important to remember that current telescopes, such as Gaia and JWST, weren’t designed for such access. However, future telescopes can be fitted with servicing ports, etc. to enable servicing. Finally, there are the challenges of actually getting the servicing missions to the observatories.

Illustration of OSAM-1 (bottom) grappling Landsat 7. This servicing mission concept was discontinued by NASA, but remains a good example of what’s needed to perform repairs and refueling to orbiting spacecraft. Credits: NASA

The Goddard team focused on this final issue by computing models of various launch and orbital solutions for such missions. Not only did they take into account the launch trajectories themselves, but also Sun-Earth-Lagrange point dynamics, plus the relative positions of observatories at SEL2. In addition, the team considered the stability of the observatories during and after rendezvous and attachment. All of these factors count when planning whether or not a servicing vehicle can be launched at a reasonable cost to extend the lifetime of the observatory enough to make the effort worth the time and expense.

Getting a Spacecraft Refuelling Mission Underway

The team created models for a theoretical mission for on-orbit fuelling at SEL2. That’s where JWST and Gaia are sitting, for example, along with WMAP, Planck, and others. The paper examines robotic refueling missions out to SEL2 for modeling purposes.

To do that, however, there must be an optimal trajectory for the robotic spacecraft to take out to SEL2. They need to be able to perform autonomous navigation to the correct point in space. Once at the target observatory, the refueling robot would then need to make a careful approach for its docking maneuvers. That requires on-orbit assessment of the target’s motion in space with respect to the Sun as well as its position in its SEL2 orbit. Docking itself can affect the observatory’s position and motion and the robot needs to take that into account, as well. The idea is to keep the observatory in the same position after docking.

However, the big question is: how do we get it out there inexpensively, fast, and safe?

The Goddard team primarily investigated the best and most efficient trajectories to get to SEL2. In particular, they looked at the best approaches to get to the Gaia spacecraft, which will run out of its propellant sometime in the next year. They also examined JWST as a possible target for such a mission. If such a mission was possible today, those observatories would gain years of “point and shoot” access to the Universe.

How to Get There

In their paper, the team looks at two approaches to the SEL2 refueling mission. One is a direct launch trajectory from Earth and the other is a spacecraft leaving from a geostationary transfer orbit (GTO). They assumed that the point of the mission was the fastest possible restoration of telescope operation. That dictates the shortest and safest possible trajectory along which the spacecraft can maintain constant thrust.

The Goddard team created a “forward design” approach for computing low-energy and low-thrust transfers from an Earth departure orbit to a space telescope orbiting the SEL2 point. Then they did the same for a servicing spacecraft leaving from a point in geostationary space. Essentially, either an Earth-departure or GTO-centric departure will work. Once the robotic servicing mission leaves Earth orbit, it travels at low thrust during a spiraling transit to SEL2. Once there, it does a rendezvous with the target, matches its motion in space, and then “locks on” to perform its delivery mission.

It’s important to remember that a launch from Earth or GTO is part of several solutions to SEL2 servicing missions. The team’s analysis resulted in a simplified process of generating possible orbits and trajectories for such activities. You can read the full text of their detailed analysis of the different trajectory solutions at the link below.

For More Information

Mission Design for Space Telescope Servicing at Sun-Earth L2
JWST Home Page
Gaia Telescope

The post There Could be a Way to Fix Spacecraft at L2, Like Webb and Gaia appeared first on Universe Today.

Categories: Astronomy

We need to start telling women how pregnancy changes their brain

New Scientist Space - Space Headlines - Tue, 09/17/2024 - 12:35pm
Maternity services need to educate parents-to-be on how pregnancy will affect their brain - their life could depend on it, says Helen Thomson
Categories: Astronomy

We need to start telling women how pregnancy changes their brain

New Scientist Space - Cosmology - Tue, 09/17/2024 - 12:35pm
Maternity services need to educate parents-to-be on how pregnancy will affect their brain - their life could depend on it, says Helen Thomson
Categories: Astronomy

Some flowers may have evolved long stems to be better ‘seen’ by bats

New Scientist Space - Space Headlines - Tue, 09/17/2024 - 12:00pm
Echolocating bats can more easily find and pollinate long-stemmed flowers that stand out from the surrounding foliage, which may be why this floral trait evolved
Categories: Astronomy

Some flowers may have evolved long stems to be better ‘seen’ by bats

New Scientist Space - Cosmology - Tue, 09/17/2024 - 12:00pm
Echolocating bats can more easily find and pollinate long-stemmed flowers that stand out from the surrounding foliage, which may be why this floral trait evolved
Categories: Astronomy

Snoring isn't just a nuisance, it's dangerous. Why can't we treat it?

New Scientist Space - Cosmology - Tue, 09/17/2024 - 12:00pm
Snoring is often viewed as harmless, at least to the snorer, but we are now uncovering its potentially serious effects on cardiovascular health. And finding ways to stop is surprisingly challenging
Categories: Astronomy

Snoring isn't just a nuisance, it's dangerous. Why can't we treat it?

New Scientist Space - Space Headlines - Tue, 09/17/2024 - 12:00pm
Snoring is often viewed as harmless, at least to the snorer, but we are now uncovering its potentially serious effects on cardiovascular health. And finding ways to stop is surprisingly challenging
Categories: Astronomy

9 firsts in 5 days: Polaris Dawn crew lands from history-making SpaceX mission

Space.com - Tue, 09/17/2024 - 11:59am
Four private astronauts are back on Earth after a five-day mission that set firsts and broke records in an effort to advance human spaceflight.
Categories: Astronomy

Technicians Work to Prepare Europa Clipper for Propellant Loading

NASA - Breaking News - Tue, 09/17/2024 - 11:55am
Technicians work to complete operations before propellant load occurs ahead of launch for NASA’s Europa Clipper spacecraft inside the Payload Hazardous Servicing Facility at the agency’s Kennedy Space Center in Florida on Tuesday, Sept. 11, 2024. NASA/Kim Shiflett

NASA’s Europa Clipper mission moves closer to launch as technicians worked on Wednesday, Sept. 11, inside the Payload Hazardous Servicing Facility to prepare the spacecraft for upcoming propellant loading at the agency’s Kennedy Space Center in Florida. 

The spacecraft will explore Jupiter’s icy moon Europa, which is considered one of the most promising habitable environments in the solar system. The mission will research whether Europa’s subsurface ocean could hold the conditions necessary for life. Europa could have all the “ingredients” for life as we know it: water, organics, and chemical energy.

Europa Clipper’s launch period opens on Thursday, Oct. 10. It will lift off on a SpaceX Falcon Heavy rocket from Kennedy’s Launch Complex 39A. The spacecraft then will embark on a journey of nearly six years and 1.8 billion miles before reaching Jupiter’s orbit in 2030.

The spacecraft is designed to study Europa’s icy shell, underlying ocean, and potential plumes of water vapor using a gravity science experiment alongside a suite of nine instruments including cameras, spectrometers, a magnetometer, and ice-penetrating radar. The data Europa Clipper collects could improve our understanding of the potential for life elsewhere in the solar system.

Photo credit: NASA/Kim Shiflett

Categories: NASA

The Next President Should End NASA’s Space Launch System Rocket

Scientific American.com - Tue, 09/17/2024 - 11:30am

Rather than building an obsolescent, obscenely-over-budget jumbo rocket, NASA should turn to building truly innovative space technologies and plan a realistic lunar landing program

Categories: Astronomy

Celebrating the First Earth Day Event at NASA Headquarters

NASA - Breaking News - Tue, 09/17/2024 - 11:10am
Earth Observer

4 min read

Celebrating the First Earth Day Event at NASA Headquarters Photo. Young attendees pose in front of the NASA Worm at the Earth Day celebration at NASA HQ.Photo credit: NASA

Introduction

Organized by the Science Mission Directorate’s Science Support Office (SSO), NASA hosted its 12th annual Earth Day Celebration event from April 18–19, 2024. For the first time ever, the two-day event was held at NASA Headquarters (HQ) in Washington, DC.

The in-person event, which was free and open to the public, featured the newly installed Earth Information Center (EIC) exhibit –­­ see Photos 1–4. The event featured 17 hands-on activities offered in NASA HQ’s East Lobby as well as two adjacent outdoor tents­. Event participants were given an activity passport called the “Passport to Fun” listing all the activities and encouraging attendees to visit the stations and interact with NASA staff – see Figure 1. After completing six or more activities, attendees were able to claim giveaway items, e.g., lenticulars, NASA bags, posters, and calendars.

Photos 1–3. Student attendees at the Earth Information Center (EIC) interactive exhibit.Photo credits: NASA Photos 1–3. Student attendees at the Earth Information Center (EIC) interactive exhibit.Photo credits: NASA Photos 1–3. Student attendees at the Earth Information Center (EIC) interactive exhibit.Photo credits: NASA Photo 4. Mark Subbarao [GSFC—Scientific Visualization Studio Lead] engages attendees with NASA science in front of the EIC Hyperwall. Photo credit: NASA Figure 1. Earth Day Activity Passport.Figure credit: NASA

Prior to the event, Trena Ferrell [GSFC—Earth Science Education and Public Outreach Lead] arranged for groups of students from several local schools to visit the NASA Earth Day event. This included over 300 students from DuVal High School, Morgan State University, Howard University, Prince George’s County Environmental Academy, Prince George’s County Virtual Academy, International Hispanic School, and homeschoolers.  On April 19, all of the students who were present at that time gathered for a plenary in the Webb Auditorium. Ferrell welcomed the attendees and provided introductions to prepare them for a virtual presentation by former NASA astronaut Paul Richards, who interacted with attendees and answered questions for roughly 20 minutes.

After Richard’s presentation, the attendees heard from Karen St. Germain [NASA HQ—Director of NASA’s Earth Science Division], whose in-person remarks emphasized to the students the crucial albeit less publicized studies that NASA does of our home planet. Related to this year’s Earth Day theme, “Water Touches Everything,” she discussed the ability of NASA’s Earth observing satellites to track water in all its forms as it circulates throughout the Earth system. St. Germain then answered questions from the audience for 15 minutes – see Photos 5–8.

Photo 5.Trena Ferrell [GSFC—Earth Science Education and Public Outreach Lead] welcomed student attendees to the Earth Day event.Photo credit: NASA Photos 6–7. Former NASA astronaut Paul Richards takes audience questions at the NASA Earth Day event.Photo credit: NASA Photos 6–7. Former NASA astronaut Paul Richards takes audience questions at the NASA Earth Day event.Photo credit: NASA Photo 8. Karen St. Germain [NASA Headquarters—Director of NASA’s Earth Science Division] provided remarks and answered student questions in the Webb Auditorium.Photo credit: NASA

NASA Administrator Bill Nelson visited the event on April 19, accompanied by Karen St. Germain and several NASA staff members who guided him as he explored the activities offered – see Photos 9–10.

Photo 9. NASA Administrator Bill Nelson [center, rear] spent time circulating among the NASA Earth Day hands-on activities. Here, he visits the “Measuring Light the Landsat Way” activity station, where Mike Taylor [GSFC/Science Systems and Applications, Inc.—Landsat Outreach Team] [left] explains how Landsat utilizes the electromagnetic spectrum and spectral signatures to better understand Earth. Photo credit: NASA Photo 10. [Left to right] Faith McKie [Acting NASA Press Secretary], Bill Nelson, Karen St. Germain, and Tom Wagner [Associate Director for Earth Action in the Earth Science Division of NASA’s Science Mission Directorate] during the Earth Day media briefing. Photo credit: NASA

Throughout the two-day event, it is estimated that as many as 1500 public participants attended along with the 300 students already discussed. While SSO staff distributed 500 activity passports, many small groups and families shared a single passport. SSO staff estimates that the true number of participants may be close to 1500 – see Photos 11–19.

Photo 11. A young Earth Day participant interacts with Ellen Gray [NASA GSFC—Earth Science News Team].Photo credit: NASA Photo 12. Jenny Mottar [NASA HQ—Art  Director for the Science Mission Directorate] and Kevin Miller [GSFC—SSO Senior Graphic Designer] hand out “Water Touches Everything” NASA Earth Day posters to student attendees.Photo credit: NASA Photos 13. Ross Walter [GSFC—Data Visualizer and Animator, Landsat Outreach Team] engages with students at the “Viewing Earth From Above with Landsat” station.Photo credit: NASA Photos 14. Students explore the Chesapeake Bay as seen by Landsat 8 with a large, vinyl floor mat.Photo credit: NASA Photo 15. Students play a Global Ecosystem Dynamics Investigation (GEDI) Jeopardy game at the “GEDI Knights Measure Forests from Space” table.Photo credit: NASA Photo 16. Student attendees make ultraviolet-bead bracelets and Helio Big Year buttons at the Heliophysics station.Photo credit: NASA Photo 17. Young attendees engage with Valerie Casasanto [GSFC—Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) Outreach Lead], who helps them work on a three-dimensional glacier puzzle at the “ICESat-2: Ice, Trees, and Earth Height, If You Please!” station.Photo credit: NASA Photo 18. Young attendees engage with the “Meteorite Map Challenge.”Photo credit: NASA Photo 19. Dorian Janney [GSFC—GPM Outreach Specialist] engages visitors at the “Connect the Drops” station, where visitors learn how and why measuring global precipitation helps us better understand our home planet.Photo credit: NASA

Conclusion

NASA’s first Earth Day Celebration at NASA Headquarters was quite successful. While attendance was lower than previous events held at the more heavily trafficked Union Station or the National Mall, there was a steady stream of people throughout the exhibit on both days. It was also a great opportunity to showcase the new EIC to the public.  Earth Day is the largest event organized annually by the SSO. This event requires months of planning, cross-divisional coordination, and intensive design of the hands-on activities – all carried from conceptualization through numerous revisions to implementation by more than 100 individuals from across the agency. This combined effort of SSO staff and assisting organizations results in an event that brings together thousands of visitors from a broad spectrum of ages and backgrounds to enjoy NASA science. This event would not have been possible were it not for the incredible efforts and collaboration put forth by so many of NASA’s outreach professionals. The SSO is grateful for all who helped to make this year’s Earth Day event a success and looks forward to Earth Day 2025.

Dalia Kirshenblat
NASA’s Goddard Space Flight Center/Global Science & Technology, Inc. (GSFC/GST)
dalia.p.zelmankirshenblat@nasa.gov

Share Details Last Updated Sep 17, 2024 Related Terms
Categories: NASA

Could We Find Primordial Black Holes in the Solar System?

Universe Today - Tue, 09/17/2024 - 11:07am

Astronomers have observed three types of black holes in the Universe. Stellar-mass black holes formed from the collapse of a massive star, intermediate mass black holes found in some star clusters, and supermassive black holes that lurk in the centers of galaxies. But there is a fourth type that remains hypothetical an unobserved. Known as primordial black holes, they are thought to have formed from tiny fluctuations in the hot and dense early cosmos. Since they wouldn’t have formed from stars or mergers, they could have a much smaller mass. And with small masses, primordial black holes would be tiny. Their event horizons would be smaller than an apple, perhaps as small as a grain of sand. You can see why they would be hard to find.

If they exist, these dustmote singularities would be a perfect candidate for dark matter. This is not a new idea. Observations of dark matter have ruled out stellar-mass black holes and even planet-mass ones, but they haven’t quite ruled out primordial black holes. So they are a possible explanation for dark matter, but how would we prove it? A new study on the arXiv tries to find out.

Observational constraints on primordial black holes over various mass ranges. Credit: M. Cirelli (2016)

The authors begin by noting that if dark matter really is composed of primordial black holes, then they must be clustered around regular matter in the way dark matter does. There must be a halo of tiny black holes surrounding the Milky Way, and there must be primordial black holes scattered throughout our solar system. The gravitational pull of these tiny black holes should therefore affect the motion of planets, asteroids, and comets in detectable ways. Previous searches turned up nothing, but the authors wanted to know whether the effect would be significant enough to observe with our current technology.

So they ran several computer simulations to calculate the size of the effect. Since the gravitational pull of a single black hole would be tiny, the team looked at how nearby encounters would shift the orbits of solar system bodies. We describe orbital motion by ephemerides tables, so they used simulations to determine how the ephemerides would change over time. What they found was that even if we took a decade’s worth of ephemerides observations, the effect of primordial black holes would be an order of magnitude smaller than the limits of observation. In other words, even if primordial black holes exist their effect is way too tiny to observe in our solar system.

While the result is a bit disappointing, it does contradict a few studies that argue current observations rule out primordial black holes as dark matter. Though they are an unlikely solution to this cosmic mystery, they are still in the game.

Reference: Thoss, Valentin, and Andreas Burkert. “Primordial Black Holes in the Solar System.” arXiv preprint arXiv:2409.04518 (2024).

The post Could We Find Primordial Black Holes in the Solar System? appeared first on Universe Today.

Categories: Astronomy

NASA Completes Spacecraft to Transport, Support Roman Space Telescope

NASA - Breaking News - Tue, 09/17/2024 - 11:05am
This enormous piece of space hardware is NASA’s Nancy Grace Roman Space Telescope’s spacecraft bus, which will maneuver the observatory to its place in space and enable it to function while there. It is photographed here in the largest clean room at NASA’s Goddard Space Flight Center, where engineers are inspecting it upon delivery. The bus rests atop an aluminum ring that will temporarily protect its underside. The two copper-colored flaps are Roman’s Lower Instrument Sun Shade –– deployable panels designed to help shield the observatory from sunlight.NASA/Chris Gunn

The spacecraft bus that will deliver NASA’s Nancy Grace Roman Space Telescope to its orbit and enable it to function once there is now complete after years of construction, installation, and testing.

Now that the spacecraft is assembled, engineers will begin working to integrate the observatory’s other major components, including the science instruments and the telescope itself.

“They call it a spacecraft bus for a reason — it gets the telescope to where it needs to be in space,” said Jackie Townsend, the Roman deputy project manager at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “But it’s really more like an RV because it has a whole assortment of functions that enable Roman to accomplish its scientific goals while out there too.”

Those goals include surveying wide swaths of the universe to study things like: dark energy, a mysterious cosmic pressure thought to accelerate the universe’s expansion; dark matter, invisible matter seen only via its gravitational influence; and exoplanets, worlds beyond our solar system.

The mission’s science wouldn’t be possible without a spacecraft to transport the telescope, point the observatory toward different cosmic targets, provide power, communicate with Earth, control and store instrument data, and regulate Roman’s temperature. Nearly 50 miles of electrical cabling are laced throughout the assembly to enable different parts of the observatory to communicate with each other.

The spacecraft will also deploy several major elements that will be stowed for launch, including the solar panels, deployable aperture cover, lower instrument Sun shade, and high-gain antenna. It’s also responsible for collecting and beaming down data, which is no small task for a space observatory that will survey the cosmos like Roman will.

“Roman will send back 1.4 terabytes of data per day, compared to about 50 to 60 gigabytes from the James Webb Space Telescope and three gigabytes from the Hubble Space Telescope,” said Jason Hylan, the Roman observatory manager at NASA Goddard. “Webb’s daily downlink is roughly comparable to 13 hours of YouTube video at the highest quality while Roman’s would amount to about 2 weeks.”

This top-down view shows NASA’s Nancy Grace Roman Space Telescope’s spacecraft bus from another angle. It rests atop an aluminum ring that will not be part of the observatory and is surrounded by an enclosure used in testing to ensure electromagnetic interference will not affect the bus’s sensitive electronics. The bus is covered in gray bagging material to prevent contamination –– even tiny stray particles could affect its performance.NASA/Chris Gunn A Goddard Grand Slam

This milestone is the culmination of eight years of spacecraft design work, building, and testing by hundreds of people at Goddard.

“Goddard employees were the brains, designers, and executors. And they worked with vendors who supplied all the right parts,” Townsend said. “We leaned on generations of expertise in the spacecraft arena to work around cost and schedule challenges that arose from supply chain issues and the pandemic.”

One time- and money-saving technique the team came up with was building a spacecraft mockup, called the structural verification unit. That allowed them to do two things at once: complete strength testing on the mockup, designed specifically for that purpose, while also assembling the actual spacecraft.

The spacecraft’s clever layout also allowed the team to adapt to changing schedules. It’s designed to be modular, “more like Trivial Pursuit pie pieces than a nesting egg, where interior components are buried inside,” Townsend said. “That’s been a game-changer because you can’t always count on things arriving in the order you planned or working perfectly right away with no tweaks.” It also increased efficiency because people could work on different portions of the bus at the same time without interfering with each other.

The slightly asymmetrical and hexagonal spacecraft bus is about 13 feet (4 meters) wide by 6.5 feet (2 meters) tall and weighs in at 8,400 pounds (3,800 kilograms).

While it may look small in this photo, the spacecraft bus for NASA’s Nancy Grace Roman Space Telescope is 13 feet (4 meters) wide by 6.5 feet (2 meters) tall and weighs in at 8,400 pounds (3,800 kilograms). In this photo, it rests atop an aluminum ring that will not be part of the observatory. The bundles of wires on top are part of more than 50 miles of cabling laced throughout the assembly to enable different parts of the observatory to communicate with each other.NASA/Chris Gunn

One reason it doesn’t weigh more is that some components have been partially hollowed out. If you could peel back some of the spacecraft’s panels, you’d find superthin metallic honeycomb sandwiched between two slim layers of metal. And many of the components, such as the antenna dish, are made of strong yet lightweight composite materials.

When the spacecraft bus was fully assembled, engineers conducted a comprehensive performance test. Prior to this, each component had been tested individually, but just like with a sports team, the whole unit has to perform well together.

“The spacecraft passed the test, and now we’re getting ready to install the payload –– Roman’s instruments and the telescope itself,” said Missie Vess, a spacecraft systems engineer for Roman at NASA Goddard. “Next year, we’ll test these systems together and begin integrating the final components of the observatory, including the deployable aperture cover, outer barrel assembly, and solar panels. Then we’ll finally have ourselves a complete observatory, on track for launch by May 2027.”

To virtually tour an interactive version of the telescope, visit:

https://roman.gsfc.nasa.gov/interactive

The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory and Caltech/IPAC in Southern California, the Space Telescope Science Institute in Baltimore, and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems, Inc in Boulder, Colorado; L3Harris Technologies in Rochester, New York; and Teledyne Scientific & Imaging in Thousand Oaks, California.

By Ashley Balzer
NASA’s Goddard Space Flight Center, Greenbelt, Md.

​​Media Contact:
Claire Andreoli
claire.andreoli@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.
301-286-1940

Explore More 2 min read Solar Panels for NASA’s Roman Space Telescope Pass Key Tests Article 3 weeks ago 6 min read Primary Instrument for Roman Space Telescope Arrives at NASA Goddard Article 1 month ago 6 min read How NASA’s Roman Space Telescope Will Illuminate Cosmic Dawn Article 2 months ago Share Details Last Updated Sep 17, 2024 EditorAshley BalzerContactAshley Balzerashley.m.balzer@nasa.govLocationGoddard Space Flight Center Related Terms
Categories: NASA

Space missions are getting more complex − lessons from Amazon and FedEx can inform satellite and spacecraft management in orbit

Space.com - Tue, 09/17/2024 - 11:00am
Space mission designers plan their routes in order to deliver their payloads to the Moon or Mars, or orbit efficiently within a set of cost, timeline and capacity constraints. But when they need to coordinate multiple space vehicles working together, route planning can get complicated.
Categories: Astronomy

What time is the Harvest Moon Supermoon lunar eclipse tonight?

Space.com - Tue, 09/17/2024 - 10:29am
The full moon of September will put on a dramatic show tonight, the exact timing of which will depend on your location.
Categories: Astronomy

Sentinel-2C delivers stunning first images

ESO Top News - Tue, 09/17/2024 - 10:20am

Less than two weeks after being launched into orbit, Sentinel-2C has delivered its first images. These spectacular views of Earth offer a sneak peek at the data that this new satellite will provide for Copernicus – Europe’s world-leading Earth observation programme.

Categories: Astronomy

Hubble finds more black holes in the early Universe

ESO Top News - Tue, 09/17/2024 - 10:00am

With the help of the NASA/ESA Hubble Space Telescope, an international team of researchers led by scientists in the Department of Astronomy at Stockholm University has found more black holes in the early Universe than has previously been reported. The new result can help scientists understand how supermassive black holes were created.

Categories: Astronomy

Earth will get another moon this month  — but not for long!

Space.com - Tue, 09/17/2024 - 9:59am
Earth will grab itself another moon this month, but only briefly. The "mini-moon" in the form of asteroid 2024 PT5 will stick around for just two months.
Categories: Astronomy

Earth Might Have Had Rings Half a Billion Years Ago

Universe Today - Tue, 09/17/2024 - 9:41am

Saturn is well known for its ring system and many recognise that the planets Jupiter, Uranus and Neptune also have rings. Did Earth ever have rings though? A team of researchers suggests that a worldwide collection of impact craters points to the existence of a ring around Earth millions of years ago. It’s possible that Earth captured and destroyed an asteroid that passed too close 466 million years ago. The asteroids torn up debris orbited the Earth as a ring and then the individual chunks entered the atmosphere, landed on the surface and produced the craters observed today. 

Seeing the rings of Saturn against an inky black sky are the very things that grabbed my attention as a ten year old boy. Since then I have been fascinated by all things space. The rings of Saturn, and Jupiter, Uranus and Neptune are made up of a collection of lumps of ice and rock all orbiting around the host planet in the same way our Moon orbits around the Earth. Collectively, and from a distance, they look like a complex system of rings. 

This NASA Hubble Space Telescope photo of Saturn reveals the planet’s cloud bands and a phenomenon called ring spokes. NASA, ESA, STScI, Amy Simon (NASA-GSFC)

The origin of the rings of the giant gas planets has been the cause of many debates over the decades. The most likely explanation is that the rings formed from the remains of moons or other celestial bodies that wondered a  little too close. The intense gravitational force from the planets tore the objects apart in a process known as tidal disruption. 

In a paper published by Andrew G. Tomkins and a team of researchers they suggest Earth too may have had its own rings in the past. Interactions between Earth and material from within our Solar System has been clearly evident. The Arizona crater and the Chicxulub impact event have left their scars on our planet but in the last 540 million years there was an increase in cratering events. Recorded in limestone deposits around the world are higher levels of chondrite (stony) meteorites and micrometeorite debris. At the same time there seems to have been an increase in seismic and tsunami activity although the correlation between the two is not confirmed. 

Barringer Crater, also known as Meteor Crater, in Arizona. This crater was formed around 50,000 years ago by the impact of a nickel-iron meteorite. Near the top of the image, the visitors center, complete with tour buses on the parking lot, provides a sense of scale. Credit: National Map Seamless Viewer/US Geological Service

The increase in meteoric material in limestone has been suggested as being caused by a general increase in asteroid dust across the inner Solar System but an interesting alternative theory has been suggested by Tomkins and his team. They propose instead that a large chondrite asteroid experienced a near-miss with Earth around 466 million years ago. If the object passed within the Roche limit of Earth, then Earth’s gravitational field will be strong enough to stop any smaller object from being held together by gravity. It would therefore break-up and lead to the formation of a debris ring.

The team investigated the impact sites of the 21 meteorite impacts known to coincide with the increase in meteorite activity in the Ordovician period. They then calculated the probability that the identified impact points resulted from randomly distributed impact events. This would be the likely cause of all the impactors came from the asteroid belt scenario. Instead the team concluded that the impact structure were located near to the equator as would be the case if they came from a single body that broke up in orbit. The resultant decay of the ring particles would have lasted several tens of millions of years before finally settling in the limestone records for future researchers to unearth. 

Source : Evidence suggesting that earth had a ring in the Ordovician

The post Earth Might Have Had Rings Half a Billion Years Ago appeared first on Universe Today.

Categories: Astronomy

Hopes for new physics dashed by ordinary-looking W bosons at CERN

New Scientist Space - Cosmology - Tue, 09/17/2024 - 9:20am
In 2022, physicists were excited by hints that something was wrong with our understanding of the universe - but new results have put that in doubt
Categories: Astronomy