"The large-scale homogeneity of the universe makes it very difficult to believe that the structure of the universe is determined by anything so peripheral as some complicated molecular structure on a minor planet orbiting a very average star in the outer suburbs of a fairly typical galaxy."

— Steven Hawking

Feed aggregator

We can repurpose retired coal plants to produce green energy

New Scientist Space - Cosmology - Tue, 08/05/2025 - 5:00pm
Piles of dirt can cheaply store renewable energy as heat – and that stored energy can reactivate the machinery of retired coal power plants, letting them provide backup power for the electricity grid
Categories: Astronomy

We can repurpose retired coal plants to produce green energy

New Scientist Space - Space Headlines - Tue, 08/05/2025 - 5:00pm
Piles of dirt can cheaply store renewable energy as heat – and that stored energy can reactivate the machinery of retired coal power plants, letting them provide backup power for the electricity grid
Categories: Astronomy

NASA awards Firefly Aerospace $177 million for 1st multi-rover mission to moon's south pole

Space.com - Tue, 08/05/2025 - 5:00pm
NASA has awarded Firefly Aerospace a $176.7 million contract to deliver a pair of rovers and three scientific instruments to the moon's south pole.
Categories: Astronomy

Curiosity Blog, Sols 4618-4619: The Boxwork Structures Continue to Call to Us

NASA News - Tue, 08/05/2025 - 4:58pm
Curiosity Navigation

3 min read

Curiosity Blog, Sols 4618-4619: The Boxwork Structures Continue to Call to Us NASA’s Mars rover Curiosity acquired this image using its Left Navigation Camera on Aug. 1, 2025 — Sol 4616, or Martian day 4,616 of the Mars Science Laboratory mission — at 03:36:56 UTC.NASA/JPL-Caltech

Written by Ashley Stroupe, Mission Operations Engineer and Rover Planner at NASA’s Jet Propulsion Laboratory

Earth planning date: Friday, Aug. 1, 2025.

Now that we have reached August, our “landiversary” (anniversary of landing — Aug. 5 PDT) is less than a week away! The team is looking forward to being able to celebrate the milestone of our rover becoming a teenager at 13. Today’s image is a beautiful back-lit late afternoon image of the nearby mountains and the distant crater rim. These views make working on Mars never get old!

The first sol of today’s plan is very busy because we will only have data from the first sol down in time for planning on Monday. Today I was working as a Rover Planner, supporting both arm and drive activities. We start first thing with arm activities; we DRT brush and do APXS integration on the target “San Cristóbal,” which is a bedrock target, and the only place in the workspace smooth and flat enough for us to brush. 

After a brief nap, we have an extensive imaging campaign. We take Mastcam images of the AEGIS target from the previous plan and two potential vein targets “Rio Satja” and “Río Ichilo.”  We then take Mastcam stereo mosaics of boxwork targets “Pontezuelo” and “Catedrales de Tara.”  Additionally we have stereo mosaics of “Llanos de Challe,” a transition between the bedrock in the boxwork hollow and the boxwork ridge, a nearby light-toned exposure, and some additional troughs and ridges. ChemCam then takes a LIBS observation of “Airport Domes,” which is another hollow in the boxworks. Finally, we take a ChemCam RMI and a Mastcam of Pontezuelo.

After finishing all the imaging, we continue with the rest of the arm activities. We split the arm activities to accommodate conflicting constraints — both APXS and ChemCam both need to be as early as possible. In this set of arm activities, we begin with MAHLI imaging of the two targets, San Cristóbal and “Salar de Agua Amara,” which consists of delicate branching structures likely made by groundwater. 

After another short nap, we do a small adjustment in our position to get another interesting piece of bedrock ridge in our workspace. In order to approach it at a good angle, we first drive parallel to the ridge to be lined up with the target, and then we turn and drive straight to it. Due to constraints on how we like to park at targets, sometimes these shorter drives can be more complicated than longer ones — but today it was simpler. After completing the drive, we unstow the arm to get a clear view of our workspace for Monday’s planning as well as our standard post-drive imaging and then Curiosity goes to sleep for the night. 

The second sol of the plan is a bit more leisurely. Around midday, Curiosity will be taking some atmospheric observations, including a Navcam dust-devil survey and a south-facing suprahorizon movie, followed by an AEGIS activity where the rover gets to pick targets and observe them herself. Then, early the next morning, Curiosity will wake up to take some additional atmospheric observations, including Navcam zenith and suprahorizon movies, Navcam line-of-sight toward the crater rim, and a Mastcam solar tau to measure dust in the atmosphere. Finally, she’ll get a short nap before waking up to start the next plan.

Learn more about Curiosity’s science instruments For more Curiosity blog posts, visit MSL Mission Updates Share Details Last Updated Aug 05, 2025 Related Terms Explore More 4 min read Curiosity Blog, Sols 4616-4617: Standing Tall on the Ridge Article 1 day ago 2 min read Curiosity Blog, Sols 4614-4615: Driving Along the Boxwork Article 7 days ago 3 min read Spheres in the Sand Article 7 days ago Keep Exploring Discover More Topics From NASA Mars

Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…

All Mars Resources

Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…

Rover Basics

Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…

Mars Exploration: Science Goals

The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

Categories: NASA

Curiosity Blog, Sols 4618-4619: The Boxwork Structures Continue to Call to Us

NASA - Breaking News - Tue, 08/05/2025 - 4:58pm
Curiosity Navigation

3 min read

Curiosity Blog, Sols 4618-4619: The Boxwork Structures Continue to Call to Us NASA’s Mars rover Curiosity acquired this image using its Left Navigation Camera on Aug. 1, 2025 — Sol 4616, or Martian day 4,616 of the Mars Science Laboratory mission — at 03:36:56 UTC.NASA/JPL-Caltech

Written by Ashley Stroupe, Mission Operations Engineer and Rover Planner at NASA’s Jet Propulsion Laboratory

Earth planning date: Friday, Aug. 1, 2025.

Now that we have reached August, our “landiversary” (anniversary of landing — Aug. 5 PDT) is less than a week away! The team is looking forward to being able to celebrate the milestone of our rover becoming a teenager at 13. Today’s image is a beautiful back-lit late afternoon image of the nearby mountains and the distant crater rim. These views make working on Mars never get old!

The first sol of today’s plan is very busy because we will only have data from the first sol down in time for planning on Monday. Today I was working as a Rover Planner, supporting both arm and drive activities. We start first thing with arm activities; we DRT brush and do APXS integration on the target “San Cristóbal,” which is a bedrock target, and the only place in the workspace smooth and flat enough for us to brush. 

After a brief nap, we have an extensive imaging campaign. We take Mastcam images of the AEGIS target from the previous plan and two potential vein targets “Rio Satja” and “Río Ichilo.”  We then take Mastcam stereo mosaics of boxwork targets “Pontezuelo” and “Catedrales de Tara.”  Additionally we have stereo mosaics of “Llanos de Challe,” a transition between the bedrock in the boxwork hollow and the boxwork ridge, a nearby light-toned exposure, and some additional troughs and ridges. ChemCam then takes a LIBS observation of “Airport Domes,” which is another hollow in the boxworks. Finally, we take a ChemCam RMI and a Mastcam of Pontezuelo.

After finishing all the imaging, we continue with the rest of the arm activities. We split the arm activities to accommodate conflicting constraints — both APXS and ChemCam both need to be as early as possible. In this set of arm activities, we begin with MAHLI imaging of the two targets, San Cristóbal and “Salar de Agua Amara,” which consists of delicate branching structures likely made by groundwater. 

After another short nap, we do a small adjustment in our position to get another interesting piece of bedrock ridge in our workspace. In order to approach it at a good angle, we first drive parallel to the ridge to be lined up with the target, and then we turn and drive straight to it. Due to constraints on how we like to park at targets, sometimes these shorter drives can be more complicated than longer ones — but today it was simpler. After completing the drive, we unstow the arm to get a clear view of our workspace for Monday’s planning as well as our standard post-drive imaging and then Curiosity goes to sleep for the night. 

The second sol of the plan is a bit more leisurely. Around midday, Curiosity will be taking some atmospheric observations, including a Navcam dust-devil survey and a south-facing suprahorizon movie, followed by an AEGIS activity where the rover gets to pick targets and observe them herself. Then, early the next morning, Curiosity will wake up to take some additional atmospheric observations, including Navcam zenith and suprahorizon movies, Navcam line-of-sight toward the crater rim, and a Mastcam solar tau to measure dust in the atmosphere. Finally, she’ll get a short nap before waking up to start the next plan.

Learn more about Curiosity’s science instruments For more Curiosity blog posts, visit MSL Mission Updates Share Details Last Updated Aug 05, 2025 Related Terms Explore More 4 min read Curiosity Blog, Sols 4616-4617: Standing Tall on the Ridge Article 1 day ago 2 min read Curiosity Blog, Sols 4614-4615: Driving Along the Boxwork Article 7 days ago 3 min read Spheres in the Sand Article 7 days ago Keep Exploring Discover More Topics From NASA Mars

Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…

All Mars Resources

Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…

Rover Basics

Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…

Mars Exploration: Science Goals

The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

Categories: NASA

NASA Selects Six Companies to Provide Orbital Transfer Vehicle Studies

NASA News - Tue, 08/05/2025 - 4:09pm
Rendering of Quantum’s Ranger spacecraft engineered for rapid maneuverability and adaptability, enabling multi-destination delivery for missions from low Earth orbit to cislunar space.Credit: Arrow Science and Technology/Quantum Space   Rendering of Blue Ring, a large high-mobility space platform providing full-service payload delivery, on-board edge computing, hosting, and end-to-end mission operations.Credit: Blue Origin Rendering of Firefly’s Elytra Dark orbital vehicle deploying Firefly’s Blue Ghost lander into lunar orbit.Credit: Firefly Aerospace Mira, a high-thrust, highly maneuverable spacecraft for payload hosting and deployment.Credit: Impulse Space Helios, a high-energy kick stage to rapidly deliver payloads to medium Earth orbit, geosynchronous orbit, and beyond.Credit: Impulse Space Pictured, two spacecraft for NASA and the University of California at Berkeley’s Space Sciences Laboratory’s ESCAPADE (Escape and Plasma Acceleration and Dynamics Explorers) mission. The spacecraft are based on Rocket Lab’s Explorer spacecraft, a configurable, high delta-V interplanetary platform.Credit: Rocket Lab Rocket Lab’s reusable rocket Neutron, a medium-lift class rocket designed for reuse and launch frequency to deliver cost-effective, reliable, and responsive launch for commercial and government missions.Credit: Rocket Lab

NASA has selected six companies to produce studies focused on lower-cost ways to launch and deliver spacecraft of various sizes and forms to multiple, difficult-to-reach orbits.

The firm-fixed-price awards comprise nine studies with a maximum total value of approximately $1.4 million. The awardees are:

  • Arrow Science and Technology LLC, Webster, Texas
  • Blue Origin LLC, Merritt Island, Florida
  • Firefly Aerospace Inc., Cedar Park, Texas
  • Impulse Space Inc., Redondo Beach, California
  • Rocket Lab, Long Beach, California
  • United Launch Services LLC, Centennial, Colorado

“With the increasing maturity of commercial space delivery capabilities, we’re asking companies to demonstrate how they can meet NASA’s need for multi-spacecraft and multi-orbit delivery to difficult-to-reach orbits beyond current launch service offerings,” said Joe Dant, orbital transfer vehicle strategic initiative owner for the Launch Services Program at NASA’s Kennedy Space Center in Florida. “This will increase unique science capability and lower the agency’s overall mission costs.”

Each of the six companies will deliver studies exploring future application of orbital transfer vehicles for NASA missions:

Arrow will partner with Quantum Space for its study. Quantum’s Ranger provides payload delivery service as a multi-mission spacecraft engineered for rapid maneuverability and adaptability, enabling multi-destination delivery for missions from low Earth orbit to lunar orbit.

Blue Origin will produce two studies, including one for Blue Ring, a large, high-mobility space platform providing full-service payload delivery, on-board edge computing, hosting, and end-to-end mission operations. It uses hybrid solar-electric and chemical propulsion capability to reach geostationary, cislunar, Mars, and interplanetary destinations. The second is a New Glenn upper stage study.

Firefly’s line of Elytra orbital vehicles offers on-demand payload delivery, imaging, long-haul communications, and domain awareness across cislunar space. Firefly’s Elytra Dark is equipped to serve as a transfer vehicle and enable ongoing operations in lunar orbit for more than five years.

Impulse Space will produce two studies. The company provides in-space mobility with two vehicles, Mira and Helios. Mira is a high-thrust, highly maneuverable spacecraft for payload hosting and deployment, while Helios is a high-energy kick stage to rapidly deliver payloads from low Earth to medium Earth orbits, geostationary orbits and beyond.

Rocket Lab’s two studies will feature the upper stage of the company’s Neutron rocket, as well as a long-life orbital transfer vehicle based on its Explorer spacecraft. Both vehicles are equipped with their own propulsion systems and other subsystems for missions to medium Earth and geosynchronous orbit and deep space destinations like the Moon, Mars, and near-Earth asteroids.

United Launch Alliance will assess the cislunar mission capabilities of an extended-duration Centaur V upper stage. Centaur would be capable of directly delivering multiple rideshare spacecraft to two different orbital destinations in cislunar space, avoiding the need for an additional rocket stage or orbital transfer vehicle.

The studies will be complete by mid-September. NASA will use the findings to inform mission design, planning, and commercial launch acquisition strategies for risk-tolerant payloads, with a possibility of expanding delivery services to larger-sized payloads and to less risk-tolerant missions in the future.

NASA’s Launch Services Program selected providers through the agency’s VADR (Venture-Class Acquisition of Dedicated and Rideshare Launch Services) contract, which helps foster growth of the U.S. commercial launch market, enabling greater access to space at a lower cost for science and technology missions.

For more information about NASA’s Launch Services Program, visit:

https://www.nasa.gov/launch-services-program

-end-

Josh Finch
Headquarters, Washington
202-358-1100
joshua.a.finch@nasa.gov

Leejay Lockhart
Kennedy Space Center, Florida
321-747-8310
leejay.lockhart@nasa.gov

Share Details Last Updated Aug 06, 2025 LocationKennedy Space Center Related Terms
Categories: NASA

NASA Selects Six Companies to Provide Orbital Transfer Vehicle Studies

NASA - Breaking News - Tue, 08/05/2025 - 4:09pm
Rendering of Quantum’s Ranger spacecraft engineered for rapid maneuverability and adaptability, enabling multi-destination delivery for missions from low Earth orbit to cislunar space.Credit: Arrow Science and Technology/Quantum Space   Rendering of Blue Ring, a large high-mobility space platform providing full-service payload delivery, on-board edge computing, hosting, and end-to-end mission operations.Credit: Blue Origin Rendering of Firefly’s Elytra Dark orbital vehicle deploying Firefly’s Blue Ghost lander into lunar orbit.Credit: Firefly Aerospace Mira, a high-thrust, highly maneuverable spacecraft for payload hosting and deployment.Credit: Impulse Space Helios, a high-energy kick stage to rapidly deliver payloads to medium Earth orbit, geosynchronous orbit, and beyond.Credit: Impulse Space Pictured, two spacecraft for NASA and the University of California at Berkeley’s Space Sciences Laboratory’s ESCAPADE (Escape and Plasma Acceleration and Dynamics Explorers) mission. The spacecraft are based on Rocket Lab’s Explorer spacecraft, a configurable, high delta-V interplanetary platform.Credit: Rocket Lab Rocket Lab’s reusable rocket Neutron, a medium-lift class rocket designed for reuse and launch frequency to deliver cost-effective, reliable, and responsive launch for commercial and government missions.Credit: Rocket Lab

NASA has selected six companies to produce studies focused on lower-cost ways to launch and deliver spacecraft of various sizes and forms to multiple, difficult-to-reach orbits.

The firm-fixed-price awards comprise nine studies with a maximum total value of approximately $1.4 million. The awardees are:

  • Arrow Science and Technology LLC, Webster, Texas
  • Blue Origin LLC, Merritt Island, Florida
  • Firefly Aerospace Inc., Cedar Park, Texas
  • Impulse Space Inc., Redondo Beach, California
  • Rocket Lab, Long Beach, California
  • United Launch Services LLC, Centennial, Colorado

“With the increasing maturity of commercial space delivery capabilities, we’re asking companies to demonstrate how they can meet NASA’s need for multi-spacecraft and multi-orbit delivery to difficult-to-reach orbits beyond current launch service offerings,” said Joe Dant, orbital transfer vehicle strategic initiative owner for the Launch Services Program at NASA’s Kennedy Space Center in Florida. “This will increase unique science capability and lower the agency’s overall mission costs.”

Each of the six companies will deliver studies exploring future application of orbital transfer vehicles for NASA missions:

Arrow will partner with Quantum Space for its study. Quantum’s Ranger provides payload delivery service as a multi-mission spacecraft engineered for rapid maneuverability and adaptability, enabling multi-destination delivery for missions from low Earth orbit to lunar orbit.

Blue Origin will produce two studies, including one for Blue Ring, a large, high-mobility space platform providing full-service payload delivery, on-board edge computing, hosting, and end-to-end mission operations. It uses hybrid solar-electric and chemical propulsion capability to reach geostationary, cislunar, Mars, and interplanetary destinations. The second is a New Glenn upper stage study.

Firefly’s line of Elytra orbital vehicles offers on-demand payload delivery, imaging, long-haul communications, and domain awareness across cislunar space. Firefly’s Elytra Dark is equipped to serve as a transfer vehicle and enable ongoing operations in lunar orbit for more than five years.

Impulse Space will produce two studies. The company provides in-space mobility with two vehicles, Mira and Helios. Mira is a high-thrust, highly maneuverable spacecraft for payload hosting and deployment, while Helios is a high-energy kick stage to rapidly deliver payloads from low Earth to medium Earth orbits, geostationary orbits and beyond.

Rocket Lab’s two studies will feature the upper stage of the company’s Neutron rocket, as well as a long-life orbital transfer vehicle based on its Explorer spacecraft. Both vehicles are equipped with their own propulsion systems and other subsystems for missions to medium Earth and geosynchronous orbit and deep space destinations like the Moon, Mars, and near-Earth asteroids.

United Launch Alliance will assess the cislunar mission capabilities of an extended-duration Centaur V upper stage. Centaur would be capable of directly delivering multiple rideshare spacecraft to two different orbital destinations in cislunar space, avoiding the need for an additional rocket stage or orbital transfer vehicle.

The studies will be complete by mid-September. NASA will use the findings to inform mission design, planning, and commercial launch acquisition strategies for risk-tolerant payloads, with a possibility of expanding delivery services to larger-sized payloads and to less risk-tolerant missions in the future.

NASA’s Launch Services Program selected providers through the agency’s VADR (Venture-Class Acquisition of Dedicated and Rideshare Launch Services) contract, which helps foster growth of the U.S. commercial launch market, enabling greater access to space at a lower cost for science and technology missions.

For more information about NASA’s Launch Services Program, visit:

https://www.nasa.gov/launch-services-program

-end-

Josh Finch
Headquarters, Washington
202-358-1100
joshua.a.finch@nasa.gov

Leejay Lockhart
Kennedy Space Center, Florida
321-747-8310
leejay.lockhart@nasa.gov

Share Details Last Updated Aug 06, 2025 LocationKennedy Space Center Related Terms
Categories: NASA

NASA aiming to build nuclear reactor on the moon by 2030

Space.com - Tue, 08/05/2025 - 3:48pm
NASA is accelerating its plans for a nuclear reactor on the moon, aiming to establish such a power outpost by 2030, according to Politico.
Categories: Astronomy

NASA’s SpaceX Crew-10 Looks Back at Science Mission

NASA News - Tue, 08/05/2025 - 3:44pm
7 Min Read NASA’s SpaceX Crew-10 Looks Back at Science Mission NASA’s SpaceX Crew-10 Looks Back at Science Mission

NASA’s SpaceX Crew-10 mission with agency astronauts Anne McClain and Nichole Ayers, JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi, and Roscosmos cosmonaut Kirill Peskov is preparing to return to Earth in early August after a long-duration mission aboard the International Space Station. During their stay, McClain, Ayers, and Onishi completed dozens of experiments and technology demonstrations, helping push the boundaries of scientific discovery aboard the orbiting laboratory.

Here’s a look at some scientific milestones accomplished during the Crew-10 mission:

Orbital effects on plants NASA

The canisters floating in the cupola of the International Space Station contain wild-type and genetically-modified thale cress plants for the Rhodium Plant LIFE experiment. The investigation studies how radiation and gravity environments at different orbital altitudes affect plant growth by comparing Crew-10 data with plants flown aboard the Polaris Dawn mission, which flew deeper into space. Studies have shown microgravity affects growth rates, and a better understanding of the mechanisms behind this could improve plant growth techniques in space and on Earth.

Solar spacewalk NASA

NASA astronaut Anne McClain conducts a spacewalk to upgrade the International Space Station’s power generation systems, which include main solar arrays like the one visible behind her. McClain is installing hardware to support an IROSA (International Space Station Roll-Out Solar Array), a type of array that is more compact and produces more power than the station’s original ones. The IROSAs were first demonstrated aboard the orbiting laboratory in June 2017, and eight have been installed to augment the power available for scientific research and other activities.

Microalgae on the menu NASA

NASA astronaut Nichole Ayers uses the International Space Station’s Space Automated Bioproduct Laboratory to process samples for SOPHONSTER, a study of microgravity’s effects on the protein yield of microalgae. These organisms are highly nutritious, producing amino acids, fatty acids, B vitamins, iron, and fiber. The microalgae could provide sustainable meat and dairy alternatives during long-duration space missions. It also could be used to make biofuels and bioactive compounds in medicines in space and on Earth.

Looking down on lightning NASA

The International Space Station orbits more than 250 miles above Earth, giving astronauts a unique view of their home planet, where they can photograph familiar places and interesting phenomena. While passing over a stormy night, NASA astronaut Nichole Ayers captured this image of simultaneous lightning at the top of two thunderstorms. Scientists use instruments installed on the space station to study lightning and other weather conditions in Earth’s upper atmosphere. This research helps protect communication systems and aircraft while improving atmospheric models and weather predictions.

Testing the tips of DNA

To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video

NASA

In this time-lapse video, JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi and NASA astronaut Nichole Ayers harvest samples for the APEX-12 investigation, which examines how space radiation affects telomere activity in thale cress plants. Telomeres, which are repetitive DNA sequences that protect the ends of chromosomes, become shorter each time a cell divides and indicate cell aging. The APEX-12 investigation could clarify the role of telomeres in aging and diseases and help scientists equip plants and other organisms for the stress of long-duration spaceflight.

Microscopic motion NASA

A fluorescent microscope, known as ELVIS, captures the motion of microscopic algae and bacteria in 3D, a new capability aboard the International Space Station. The technology could be helpful in various applications in space and on Earth, such as monitoring water quality and detecting potentially infectious organisms. NASA astronaut Anne McClain prepares bacterial samples for viewing with the microscope.

How cells sense gravity NASA

Individual cells in our bodies can respond to the effects of gravity, but how they do this is largely unknown. The Cell Gravisensing investigation is an effort to observe the mechanism that enables cells to sense gravity and could lead to therapies to treat muscle and bone conditions, like muscle atrophy during long-duration spaceflight and osteoporosis on Earth. JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi processes research samples in the International Space Station’s Kibo laboratory module.

Water works NASA

NASA astronauts Nichole Ayers and Anne McClain work on installing hardware for the International Space Station’s Exploration Potable Water Dispenser. Scientists are evaluating the device’s water sanitization and microbial growth reduction technology. The dispenser provides room temperature and hot water for crew consumption and food preparation. This technology could be adopted for future exploration missions.

Free-flying camera NASA

Astronaut Takuya Onishi of JAXA (Japan Aerospace Exploration Agency) monitors the JEM Internal Ball Camera 2 as it floats through the International Space Station. The free-flying, rechargeable camera provides a visual field outside the other cameras installed aboard the space station. JAXA is testing the robot’s ability to capture video and imagery of scientific experiments and other activities, which could free up crew time for research and other duties.

Two rings to pin them all NASA

NASA astronaut Nichole Ayers sets up the space station’s Ring Sheared Drop device, which uses surface tension to pin a drop of liquid between two rings. The device makes it possible to study liquid proteins without a solid container, eliminating interactions between the solutions and container walls that can affect results. The Ring Sheared Drop-IBP-2 experiment studies the behavior of protein fluids in microgravity and tests predictive computer models. Better models could help advance manufacturing processes in space and on Earth for next-generation medicines to treat cancers and other diseases.

Crystallization research NASA

NASA astronaut Anne McClain swaps out hardware in the International Space Station’s Advanced Space Experiment Processor-4, which enables physical science and crystallization research. A current investigation uses the processor to demonstrate technology that may be able to produce medications during deep space missions and improve pharmaceutical manufacturing on Earth.

Monitoring astronaut health NASA

NASA astronaut Anne McClain helps JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi collect a sample of his blood. Analysis of blood samples is one tool NASA uses to continuously monitor crew health, including cardiovascular and immune system functions, bone and muscle mass changes, nutritional and metabolic status, and mental well-being. Crew members aboard the International Space Station also participate in various ongoing studies to better understand how different body systems adapt to weightlessness.

Catching a corona NASA/KASI/INAF/CODEX

This animated, color-coded heat map shows temperature changes in the Sun’s outer atmosphere, or corona, over several days, with red indicating hotter regions and purple showing cooler ones. Scientists can observe these changes thanks to the International Space Station’s CODEX, which collected data during the Crew-10 mission. The instrument uses a coronagraph to block out sunlight and reveal details in the Sun’s corona. Data from this investigation could help scientists understand the energy source of the solar wind, a flow of charged particles from the Sun that constantly bombards Earth.

Expanding in-space crystallization NASA

Astronaut Takuya Onishi of JAXA (Japan Aerospace Exploration Agency) services the International Space Station’s Advanced Space Experiment Processor-4 in preparation for ADSEP-Industrial Crystallization Cassette. This investigation tests new hardware that scales up research and could enable in-space production of pharmaceuticals and other materials for commercial space applications.

Sowing seeds in space NASA

NASA astronaut Nichole Ayers prepares mixture tubes containing samples for Nanoracks Module-9 Swiss Chard. This student-designed experiment examines whether the size, shape, color, and nutritional content of Swiss chard seeds germinated in space differ from those grown on Earth. The International Space Station hosts ongoing plant research as a source of food and other benefits, including contributing to astronaut well-being, for future long-duration missions.

Protecting astronaut vision NASA

Spaceflight can cause changes to eye structure and vision, so crew members monitor eye health throughout their missions. Astronaut Takuya Onishi of JAXA (Japan Aerospace Exploration Agency), assisted by NASA astronaut Nichole Ayers, conducts an eye exam aboard the International Space Station using optical coherence tomography. This technology uses reflected light to produce 3D images of the retina, nerve fibers, and other eye structures and layers.

Share Details Last Updated Aug 05, 2025 Related Terms Explore More 7 min read NICER Status Updates Article 1 day ago 4 min read NASA’s Artemis Crew Trains in Moonbound Orion Ahead of Mission Article 2 days ago 1 min read NASA Invites Virtual Guests to SpaceX Crew-11 Mission Launch Article 2 weeks ago Keep Exploring Discover More Topics From NASA

Latest News from Space Station Research

Space Station Research and Technology

Humans In Space

International Space Station

Categories: NASA

NASA’s SpaceX Crew-10 Looks Back at Science Mission

NASA - Breaking News - Tue, 08/05/2025 - 3:44pm
7 Min Read NASA’s SpaceX Crew-10 Looks Back at Science Mission NASA’s SpaceX Crew-10 Looks Back at Science Mission

NASA’s SpaceX Crew-10 mission with agency astronauts Anne McClain and Nichole Ayers, JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi, and Roscosmos cosmonaut Kirill Peskov is preparing to return to Earth in early August after a long-duration mission aboard the International Space Station. During their stay, McClain, Ayers, and Onishi completed dozens of experiments and technology demonstrations, helping push the boundaries of scientific discovery aboard the orbiting laboratory.

Here’s a look at some scientific milestones accomplished during the Crew-10 mission:

Orbital effects on plants NASA

The canisters floating in the cupola of the International Space Station contain wild-type and genetically-modified thale cress plants for the Rhodium Plant LIFE experiment. The investigation studies how radiation and gravity environments at different orbital altitudes affect plant growth by comparing Crew-10 data with plants flown aboard the Polaris Dawn mission, which flew deeper into space. Studies have shown microgravity affects growth rates, and a better understanding of the mechanisms behind this could improve plant growth techniques in space and on Earth.

Solar spacewalk NASA

NASA astronaut Anne McClain conducts a spacewalk to upgrade the International Space Station’s power generation systems, which include main solar arrays like the one visible behind her. McClain is installing hardware to support an IROSA (International Space Station Roll-Out Solar Array), a type of array that is more compact and produces more power than the station’s original ones. The IROSAs were first demonstrated aboard the orbiting laboratory in June 2017, and eight have been installed to augment the power available for scientific research and other activities.

Microalgae on the menu NASA

NASA astronaut Nichole Ayers uses the International Space Station’s Space Automated Bioproduct Laboratory to process samples for SOPHONSTER, a study of microgravity’s effects on the protein yield of microalgae. These organisms are highly nutritious, producing amino acids, fatty acids, B vitamins, iron, and fiber. The microalgae could provide sustainable meat and dairy alternatives during long-duration space missions. It also could be used to make biofuels and bioactive compounds in medicines in space and on Earth.

Looking down on lightning NASA

The International Space Station orbits more than 250 miles above Earth, giving astronauts a unique view of their home planet, where they can photograph familiar places and interesting phenomena. While passing over a stormy night, NASA astronaut Nichole Ayers captured this image of simultaneous lightning at the top of two thunderstorms. Scientists use instruments installed on the space station to study lightning and other weather conditions in Earth’s upper atmosphere. This research helps protect communication systems and aircraft while improving atmospheric models and weather predictions.

Testing the tips of DNA

To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video

NASA

In this time-lapse video, JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi and NASA astronaut Nichole Ayers harvest samples for the APEX-12 investigation, which examines how space radiation affects telomere activity in thale cress plants. Telomeres, which are repetitive DNA sequences that protect the ends of chromosomes, become shorter each time a cell divides and indicate cell aging. The APEX-12 investigation could clarify the role of telomeres in aging and diseases and help scientists equip plants and other organisms for the stress of long-duration spaceflight.

Microscopic motion NASA

A fluorescent microscope, known as ELVIS, captures the motion of microscopic algae and bacteria in 3D, a new capability aboard the International Space Station. The technology could be helpful in various applications in space and on Earth, such as monitoring water quality and detecting potentially infectious organisms. NASA astronaut Anne McClain prepares bacterial samples for viewing with the microscope.

How cells sense gravity NASA

Individual cells in our bodies can respond to the effects of gravity, but how they do this is largely unknown. The Cell Gravisensing investigation is an effort to observe the mechanism that enables cells to sense gravity and could lead to therapies to treat muscle and bone conditions, like muscle atrophy during long-duration spaceflight and osteoporosis on Earth. JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi processes research samples in the International Space Station’s Kibo laboratory module.

Water works NASA

NASA astronauts Nichole Ayers and Anne McClain work on installing hardware for the International Space Station’s Exploration Potable Water Dispenser. Scientists are evaluating the device’s water sanitization and microbial growth reduction technology. The dispenser provides room temperature and hot water for crew consumption and food preparation. This technology could be adopted for future exploration missions.

Free-flying camera NASA

Astronaut Takuya Onishi of JAXA (Japan Aerospace Exploration Agency) monitors the JEM Internal Ball Camera 2 as it floats through the International Space Station. The free-flying, rechargeable camera provides a visual field outside the other cameras installed aboard the space station. JAXA is testing the robot’s ability to capture video and imagery of scientific experiments and other activities, which could free up crew time for research and other duties.

Two rings to pin them all NASA

NASA astronaut Nichole Ayers sets up the space station’s Ring Sheared Drop device, which uses surface tension to pin a drop of liquid between two rings. The device makes it possible to study liquid proteins without a solid container, eliminating interactions between the solutions and container walls that can affect results. The Ring Sheared Drop-IBP-2 experiment studies the behavior of protein fluids in microgravity and tests predictive computer models. Better models could help advance manufacturing processes in space and on Earth for next-generation medicines to treat cancers and other diseases.

Crystallization research NASA

NASA astronaut Anne McClain swaps out hardware in the International Space Station’s Advanced Space Experiment Processor-4, which enables physical science and crystallization research. A current investigation uses the processor to demonstrate technology that may be able to produce medications during deep space missions and improve pharmaceutical manufacturing on Earth.

Monitoring astronaut health NASA

NASA astronaut Anne McClain helps JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi collect a sample of his blood. Analysis of blood samples is one tool NASA uses to continuously monitor crew health, including cardiovascular and immune system functions, bone and muscle mass changes, nutritional and metabolic status, and mental well-being. Crew members aboard the International Space Station also participate in various ongoing studies to better understand how different body systems adapt to weightlessness.

Catching a corona NASA/KASI/INAF/CODEX

This animated, color-coded heat map shows temperature changes in the Sun’s outer atmosphere, or corona, over several days, with red indicating hotter regions and purple showing cooler ones. Scientists can observe these changes thanks to the International Space Station’s CODEX, which collected data during the Crew-10 mission. The instrument uses a coronagraph to block out sunlight and reveal details in the Sun’s corona. Data from this investigation could help scientists understand the energy source of the solar wind, a flow of charged particles from the Sun that constantly bombards Earth.

Expanding in-space crystallization NASA

Astronaut Takuya Onishi of JAXA (Japan Aerospace Exploration Agency) services the International Space Station’s Advanced Space Experiment Processor-4 in preparation for ADSEP-Industrial Crystallization Cassette. This investigation tests new hardware that scales up research and could enable in-space production of pharmaceuticals and other materials for commercial space applications.

Sowing seeds in space NASA

NASA astronaut Nichole Ayers prepares mixture tubes containing samples for Nanoracks Module-9 Swiss Chard. This student-designed experiment examines whether the size, shape, color, and nutritional content of Swiss chard seeds germinated in space differ from those grown on Earth. The International Space Station hosts ongoing plant research as a source of food and other benefits, including contributing to astronaut well-being, for future long-duration missions.

Protecting astronaut vision NASA

Spaceflight can cause changes to eye structure and vision, so crew members monitor eye health throughout their missions. Astronaut Takuya Onishi of JAXA (Japan Aerospace Exploration Agency), assisted by NASA astronaut Nichole Ayers, conducts an eye exam aboard the International Space Station using optical coherence tomography. This technology uses reflected light to produce 3D images of the retina, nerve fibers, and other eye structures and layers.

Share Details Last Updated Aug 05, 2025 Related Terms Explore More 7 min read NICER Status Updates Article 1 day ago 4 min read NASA’s Artemis Crew Trains in Moonbound Orion Ahead of Mission Article 2 days ago 1 min read NASA Invites Virtual Guests to SpaceX Crew-11 Mission Launch Article 2 weeks ago Keep Exploring Discover More Topics From NASA

Latest News from Space Station Research

Space Station Research and Technology

Humans In Space

International Space Station

Categories: NASA

What are the best ways to improve your cognitive reserve?

New Scientist Space - Cosmology - Tue, 08/05/2025 - 3:31pm
There are three types of cognitive reserve that can protect against decline as we age. Columnist Helen Thomson explores the lifestyle choices that can help you build a more resilient brain – and finds that midlife is a critical time to implement them
Categories: Astronomy

What are the best ways to improve your cognitive reserve?

New Scientist Space - Space Headlines - Tue, 08/05/2025 - 3:31pm
There are three types of cognitive reserve that can protect against decline as we age. Columnist Helen Thomson explores the lifestyle choices that can help you build a more resilient brain – and finds that midlife is a critical time to implement them
Categories: Astronomy

NASA Science Activation Teams Unite to Support Neurodiverse Learners with Public Libraries

NASA News - Tue, 08/05/2025 - 3:26pm
Explore This Section
  1. Science
  2. Science Activation
  3. NASA Science Activation Teams…
 

3 min read

NASA Science Activation Teams Unite to Support Neurodiverse Learners with Public Libraries

On July 16, 2025, more than 400 public library staff from across the United States joined a powerful webinar, Serving Neurodiverse Library Patrons and Colleagues, hosted by two NASA Science Activation program teams: NASA@ My Library and NASA’s Neurodiversity Network (N3). The event brought together researchers, library professionals, and individuals with lived experience of neurodiversity to share insights and best practices for creating more inclusive and supportive environments in libraries.

Designed to equip library staff with tools and awareness, this interactive webinar explored how libraries can better serve neurodiverse patrons, such as those with autism, attention deficit hyperactivity disorder (ADHD), dyslexia, and other cognitive variations, while also supporting neurodiverse colleagues. Breakout rooms allowed participants to dive deeper into specific topics, including accessible program facilitation, supporting neurodiverse colleagues, and an “Ask Me Anything” space that encouraged open dialogue and learning.

Library staff everywhere are invited to watch the recorded webinar on YouTube and learn more about serving neurodiverse patrons and colleagues.

The collaboration between NASA@ My Library (led by the Space Science Institute), and NASA’s Neurodiversity Network (N3) (led by Sonoma State University), reflects a shared commitment to broadening participation in STEM (Science, Technology, Engineering, and Mathematics). NASA@ My Library works with public libraries nationwide to engage diverse communities in NASA science and discoveries. N3 focuses on empowering neurodiverse learners – particularly those in high school – with opportunities to engage with NASA science and explore potential STEM career pathways.

Participants left inspired, and the demand for more is clear: attendees and speakers alike expressed interest in continuing the conversation, requesting additional training, and expressing interest in organizing a future conference centered on neurodiversity and inclusion in libraries.

Youth Services Librarian and webinar panelist Molly Creveling shared, “This was such a great opportunity, and I’m extremely proud to have been able to contribute to it, I wish I was able to attend everyone’s break out room!” And participant Jason Wood expressed in the chat, “Really, really appreciate this webinar. This is one of those days I am extra proud to be a librarian. Thank you all.” Another enthusiast participant said, “This was the best webinar I’ve attended in years…more of this!”

Watch the recorded webinar.

As NASA continues to reach for the stars, it’s equally committed to ensuring that the journey is accessible to all – especially those whose unique ways of thinking and learning bring fresh perspectives to science, exploration, and discovery.

NASA@ My Library and N3, supported by NASA under cooperative agreement award numbers NNX16AE30A and  80NSSC21M0004, are part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn

Presenters included staff from NASA’s Neurodiversity Network, NASA@ My Library, Education Development Center, and the Lunar and Planetary Institute. Share Details Last Updated Aug 05, 2025 EditorNASA Science Editorial Team Related Terms Explore More 4 min read STEM Educators Are Bringing Hands-On NASA Science into Virginia Classrooms Article 1 day ago 4 min read NUBE: New Card Game Helps Learners Identify Cloud Types Through Play Article 4 days ago 3 min read NASA eClips STEM Student Ambassadors Light Up CNU’s 2025 STEM Community Day Article 2 weeks ago Keep Exploring Discover More Topics From NASA James Webb Space Telescope

Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…

Perseverance Rover

This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…

Parker Solar Probe

On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…

Juno

NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

Categories: NASA

NASA Science Activation Teams Unite to Support Neurodiverse Learners with Public Libraries

NASA - Breaking News - Tue, 08/05/2025 - 3:26pm
Explore This Section
  1. Science
  2. Science Activation
  3. NASA Science Activation Teams…
 

3 min read

NASA Science Activation Teams Unite to Support Neurodiverse Learners with Public Libraries

On July 16, 2025, more than 400 public library staff from across the United States joined a powerful webinar, Serving Neurodiverse Library Patrons and Colleagues, hosted by two NASA Science Activation program teams: NASA@ My Library and NASA’s Neurodiversity Network (N3). The event brought together researchers, library professionals, and individuals with lived experience of neurodiversity to share insights and best practices for creating more inclusive and supportive environments in libraries.

Designed to equip library staff with tools and awareness, this interactive webinar explored how libraries can better serve neurodiverse patrons, such as those with autism, attention deficit hyperactivity disorder (ADHD), dyslexia, and other cognitive variations, while also supporting neurodiverse colleagues. Breakout rooms allowed participants to dive deeper into specific topics, including accessible program facilitation, supporting neurodiverse colleagues, and an “Ask Me Anything” space that encouraged open dialogue and learning.

Library staff everywhere are invited to watch the recorded webinar on YouTube and learn more about serving neurodiverse patrons and colleagues.

The collaboration between NASA@ My Library (led by the Space Science Institute), and NASA’s Neurodiversity Network (N3) (led by Sonoma State University), reflects a shared commitment to broadening participation in STEM (Science, Technology, Engineering, and Mathematics). NASA@ My Library works with public libraries nationwide to engage diverse communities in NASA science and discoveries. N3 focuses on empowering neurodiverse learners – particularly those in high school – with opportunities to engage with NASA science and explore potential STEM career pathways.

Participants left inspired, and the demand for more is clear: attendees and speakers alike expressed interest in continuing the conversation, requesting additional training, and expressing interest in organizing a future conference centered on neurodiversity and inclusion in libraries.

Youth Services Librarian and webinar panelist Molly Creveling shared, “This was such a great opportunity, and I’m extremely proud to have been able to contribute to it, I wish I was able to attend everyone’s break out room!” And participant Jason Wood expressed in the chat, “Really, really appreciate this webinar. This is one of those days I am extra proud to be a librarian. Thank you all.” Another enthusiast participant said, “This was the best webinar I’ve attended in years…more of this!”

Watch the recorded webinar.

As NASA continues to reach for the stars, it’s equally committed to ensuring that the journey is accessible to all – especially those whose unique ways of thinking and learning bring fresh perspectives to science, exploration, and discovery.

NASA@ My Library and N3, supported by NASA under cooperative agreement award numbers NNX16AE30A and  80NSSC21M0004, are part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn

Presenters included staff from NASA’s Neurodiversity Network, NASA@ My Library, Education Development Center, and the Lunar and Planetary Institute. Share Details Last Updated Aug 05, 2025 EditorNASA Science Editorial Team Related Terms Explore More 4 min read STEM Educators Are Bringing Hands-On NASA Science into Virginia Classrooms Article 1 day ago 4 min read NUBE: New Card Game Helps Learners Identify Cloud Types Through Play Article 4 days ago 3 min read NASA eClips STEM Student Ambassadors Light Up CNU’s 2025 STEM Community Day Article 2 weeks ago Keep Exploring Discover More Topics From NASA James Webb Space Telescope

Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…

Perseverance Rover

This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…

Parker Solar Probe

On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…

Juno

NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

Categories: NASA

NASA declares troubled Lunar Trailblazer moon orbiter dead

Space.com - Tue, 08/05/2025 - 3:00pm
NASA has stopped trying to revive its Lunar Trailblazer moon orbiter, which went dark a day after its Feb. 26 launch.
Categories: Astronomy

Bird Flu Could Be Spreading through the Air on Dairy Farms, Preliminary Study Shows

Scientific American.com - Tue, 08/05/2025 - 2:45pm

Infectious bird flu virus was found in milk, on equipment, within wastewater and aerosolized in the air on California dairy farms

Categories: Astronomy

Vibrio pectenicida Identified as Cause of Sea Star Wasting Disease Affecting Billions

Scientific American.com - Tue, 08/05/2025 - 2:40pm

A devastating bacterium has decimated populations of sunflower sea stars, predators that play a crucial role in their environment

Categories: Astronomy

These centuries-old equations predict flowing fluid – until they don’t

New Scientist Space - Cosmology - Tue, 08/05/2025 - 2:00pm
We use the Navier-Stokes equations every day, for applications from building rockets to designing drugs. But sometimes they break – and we don’t know why
Categories: Astronomy

These centuries-old equations predict flowing fluid – until they don’t

New Scientist Space - Space Headlines - Tue, 08/05/2025 - 2:00pm
We use the Navier-Stokes equations every day, for applications from building rockets to designing drugs. But sometimes they break – and we don’t know why
Categories: Astronomy