"Man will never reach the moon regardless of all future scientific advances."

— Dr. Lee De Forest

Feed aggregator

Eczema may sometimes be caused by eating too much salt

New Scientist Space - Space Headlines - Wed, 06/05/2024 - 12:00pm
People with eczema have higher levels of sodium in their urine than those without the skin condition, with every additional 1 gram linked to an 11 per cent increase in the risk of a diagnosis
Categories: Astronomy

Tiny brain sensor implanted without surgery dissolves after weeks

New Scientist Space - Cosmology - Wed, 06/05/2024 - 12:00pm
In animal tests, a cube of hydrogel the length of a rice grain was implanted in the brain with a needle to monitor temperature or pressure, and then dissolved away after a few weeks
Categories: Astronomy

Tiny brain sensor implanted without surgery dissolves after weeks

New Scientist Space - Space Headlines - Wed, 06/05/2024 - 12:00pm
In animal tests, a cube of hydrogel the length of a rice grain was implanted in the brain with a needle to monitor temperature or pressure, and then dissolved away after a few weeks
Categories: Astronomy

How to easily satisfy your salt cravings without damaging your health

New Scientist Space - Cosmology - Wed, 06/05/2024 - 12:00pm
Could potassium fortification be the answer we're looking for when it comes to battling our unhealthy addiction to salt?
Categories: Astronomy

How to easily satisfy your salt cravings without damaging your health

New Scientist Space - Space Headlines - Wed, 06/05/2024 - 12:00pm
Could potassium fortification be the answer we're looking for when it comes to battling our unhealthy addiction to salt?
Categories: Astronomy

LIFTOFF! NASA Astronauts Pilot First Starliner Crewed Test to Station

NASA - Breaking News - Wed, 06/05/2024 - 11:55am
A United Launch Alliance Atlas V rocket with Boeing’s Starliner spacecraft aboard launches from Space Launch Complex 41 at Cape Canaveral Space Force Station, Wednesday, June 5, 2024, in Florida. NASA’s Boeing Crew Flight Test is the first launch with astronauts of the Boeing spacecraft and United Launch Alliance Atlas V rocket to the International Space Station as part of the agency’s Commercial Crew Program.Credits: NASA/Joel Kowsky

Editor’s note: This release was updated June 5, 2024, to include instructions on how to attend the post-docking briefing on Thursday, June 6.

NASA astronauts Butch Wilmore and Suni Williams are safely in orbit on the first crewed flight test aboard Boeing’s Starliner spacecraft bound for the International Space Station.

As part of NASA’s Boeing Crew Flight Test, the astronauts lifted off at 10:52 a.m. EDT Wednesday on a ULA (United Launch Alliance) Atlas V rocket from Space Launch Complex-41 at Cape Canaveral Space Force Station in Florida on an end-to-end test of the Starliner system.

“Two bold NASA astronauts are well on their way on this historic first test flight of a brand-new spacecraft,” said NASA Administrator Bill Nelson. “Boeing’s Starliner marks a new chapter of American exploration. Human spaceflight is a daring task – but that’s why it’s worth doing. It’s an exciting time for NASA, our commercial partners, and the future of exploration. Go Starliner, Go Butch and Suni!”

As part of NASA’s Commercial Crew Program, the flight test will help validate the transportation system, launch pad, rocket, spacecraft, in-orbit operations capabilities, and return to Earth with astronauts aboard as the agency prepares to certify Starliner for rotational missions to the space station. Starliner previously flew two uncrewed orbital flights, including a test to and from the space station, along with a pad abort demonstration.

“With Starliner’s launch, separation from the rocket, and arrival on orbit, Boeing’s Crew Flight Test is right on track,” said Mark Nappi, vice president and program manager of Boeing’s Commercial Crew Program. “Everyone is focused on giving Suni and Butch a safe, comfortable, ride and performing a successful test mission from start to finish.”

During Starliner’s flight, Boeing will monitor a series of automatic spacecraft maneuvers from its mission control center in Houston. NASA teams will monitor space station operations throughout the flight from the Mission Control Center at the agency’s Johnson Space Center in Houston.

“Flying crew on Starliner represents over a decade of work by the Commercial Crew Program and our partners at Boeing and ULA,” said Steve Stich, manager, Commercial Crew Program, at NASA’s Johnson Space Center in Houston. “For many of us, this is a career-defining moment bringing on a new crew transportation capability for our agency and our nation. We are going to take it one step at a time, putting Starliner through its paces, and remaining vigilant until Butch and Suni safely touch down back on Earth at the conclusion of this test flight.”

Starliner will autonomously dock to the forward-facing port of the station’s Harmony module at approximately 12:15 p.m. Thursday, June 6, and remain at the orbital laboratory for about a week.

Wilmore and Williams will help verify the spacecraft is performing as intended by testing the environmental control system, the displays and control system, and by maneuvering the thrusters, among other tests during flight.

After a safe arrival at the space station, Wilmore and Williams will join the Expedition 71 crew of NASA astronauts Michael Barratt, Matt Dominick, Tracy C. Dyson, and Jeanette Epps, and Roscosmos cosmonauts Nikolai Chub, Alexander Grebenkin, and Oleg Kononenko.

NASA’s arrival and in-flight event coverage is as follows (all times Eastern and subject to change based on real-time operations):

Mission coverage will continue on NASA Television channels throughout Starliner’s flight and resume on NASA+ prior to docking.

Thursday, June 6
9:30 a.m. – Arrival coverage begins on NASA+, the NASA app, and YouTube, and continues on NASA Television and the agency’s website.

12:15 p.m. – Targeted docking

2 p.m. – Hatch opening

2:20 p.m. – Welcome remarks

3:30 p.m. – Post-docking news conference at NASA Johnson with the following participants:

  • NASA Associate Administrator Jim Free
  • Steve Stich, manager, NASA’s Commercial Crew Program
  • Jeff Arend, manager for systems engineering and integration, NASA’s International Space Station Office
  • Mark Nappi, vice president and program manager, Commercial Crew Program, Boeing

Coverage of the post-docking news conference will air live on NASA+, NASA Television, the NASA app, YouTube, and the agency’s website.

To attend the post-docking briefing, U.S. media must contact the NASA Johnson newsroom at: jsccommu@mail.nasa.gov or 281-483-5111 by 1 p.m. Thursday, June 6. To join by phone, media must contact the NASA Johnson newsroom by 3 p.m. Thursday, June 6.

5:50 p.m. – NASA Administrator Bill Nelson, Deputy Administrator Pam Melroy, Associate Administrator Jim Free, Associate Administrator for Space Operations Ken Bowersox, and Johnson Space Center Director Vanessa Wyche will speak with Wilmore and Williams about their launch aboard the Starliner spacecraft.

Coverage of the Earth to space call will air live on NASA+, NASA Television, the NASA app, YouTube, and the agency’s website.

Saturday, June 8

8:50 a.m. – NASA astronauts Wilmore and Williams will provide a tour of Starliner.

Coverage of the in-orbit event will stream live on NASA+, NASA Television, the NASA app, YouTube, and the agency’s website.

Monday, June 10

11 a.m. – Williams will speak to students from Sunita L. Williams Elementary School in Needham, Massachusetts, in an event aboard the space station.

Coverage of the Earth to space call will air live on NASA+, NASA Television, the NASA app, YouTube, and the agency’s website.

Tuesday, June 11

3:15 p.m. – Wilmore will speak to students from Tennessee Tech University in an event aboard the space station.

Coverage of the Earth to space call will air live on NASA+, NASA Television, the NASA app, YouTube, and the agency’s website.

Meet NASA’s Crew

Wilmore is the commander for the mission. A veteran of two spaceflights, Wilmore has 178 days in space under his belt. In 2009, he served as a pilot aboard space shuttle Atlantis for the STS-129 mission. Additionally, Wilmore served as a flight engineer for Expedition 41 until November 2014, when he assumed command of the space station after arrival of the Expedition 42 crew. He returned to Earth the following March. Prior to his selection by NASA in 2000, the father of two obtained both his bachelor’s degree and master’s degree in Electrical Engineering from Tennessee Technological University, Cookeville, before graduating with another master’s degree in Aviation Systems from the University of Tennessee, Knoxville. He is also a graduate of the United States Naval Test Pilot School, Patuxent River, Maryland, and has completed four operational deployments during his tenure as a fleet naval officer and aviator.

Williams is the spacecraft pilot for the flight test. Williams has spent 322 days in space across two missions: Expedition 14/15 in 2006 through 2007, and Expedition 32/33 in 2012. The Massachusetts native also conducted seven spacewalks, totaling 50 hours and 40 minutes. Before her career began with NASA in 1998, Williams graduated with her bachelor’s degree in Physical Science from the U.S. Naval Academy, Annapolis, Maryland, before obtaining her master’s degree in Engineering Management from the Florida Institute of Technology, Melbourne. In total, she has logged more than 3,000 flight hours in over 30 different aircraft.

NASA’s Commercial Crew Program has delivered on its goal of safe, reliable, and cost-effective transportation to and from the International Space Station from the United States through a partnership with American private industry. This partnership is changing the arc of human spaceflight history by opening access to low Earth orbit and the space station to more people, science, and commercial opportunities. The space station remains the springboard to NASA’s next great leap in space exploration, including future missions to the Moon under Artemis and, eventually, Mars.

Learn more about NASA’s Commercial Crew program at:

https://www.nasa.gov/commercialcrew

-end-

Josh Finch / Jimi Russell / Claire O’Shea
Headquarters, Washington
202-358-1100
joshua.a.finch@nasa.gov / james.j.russell@nasa.gov / claire.a.o’shea@nasa.gov

Steven Siceloff / Danielle Sempsrott / Stephanie Plucinsky
Kennedy Space Center, Florida
321-867-2468
steven.p.siceloff@nasa.gov / danielle.c.sempsrott@nasa.gov / stephanie.n.plucinsky@nasa.gov

Leah Cheshier
Johnson Space Center, Houston
281-483-5111
leah.d.cheshier@nasa.gov

Share Details Last Updated Jun 05, 2024 LocationNASA Headquarters Related Terms
Categories: NASA

May 2024 is the twelfth month in a row to break heat records

New Scientist Space - Cosmology - Wed, 06/05/2024 - 11:30am
The global average temperature during May was highest for any May on record, reaching 1.52°C above the 1850 to 1900 average
Categories: Astronomy

May 2024 is the twelfth month in a row to break heat records

New Scientist Space - Space Headlines - Wed, 06/05/2024 - 11:30am
The global average temperature during May was highest for any May on record, reaching 1.52°C above the 1850 to 1900 average
Categories: Astronomy

Boeing's Starliner launches astronauts for 1st time in historic liftoff (photos, video)

Space.com - Wed, 06/05/2024 - 11:25am
Boeing's Starliner capsule thundered to orbit today (June 5) with two astronauts on board, kicking off a crucial test flight for the company and for NASA.
Categories: Astronomy

NASA exoplanet hunter finds 'weird' world surviving a star's relentless bombardment — it's named Phoenix

Space.com - Wed, 06/05/2024 - 11:01am
NASA's TESS exoplanet hunter has discovered a weird world called Phoenix that has managed to hold on to its atmosphere despite being relentlessly bombarded with radiation from its red giant star.
Categories: Astronomy

MDMA Therapy Is Rejected by FDA Panel

Scientific American.com - Wed, 06/05/2024 - 11:00am

Scientific advisers vote overwhelmingly that the risks of MDMA treatment for post-traumatic stress disorder outweigh the benefits

Categories: Astronomy

'Star Wars: The Acolyte' episodes 1 & 2: Who's really behind the Jedi murder mystery?

Space.com - Wed, 06/05/2024 - 10:40am
The first two episodes of "The Acolyte" are refreshing Star Wars and open up plenty of possibilities, but the visual presentation and pacing are irregular.
Categories: Astronomy

Carving Into Carbonates at Old Faithful Geyser

NASA - Breaking News - Wed, 06/05/2024 - 10:05am
Perseverance

2 min read

Carving Into Carbonates at Old Faithful Geyser Abrading Old Faithful Geyser: On Sol 1151 (May 16, 2024), Perseverance abraded a carbonate-bearing rock called Old Faithful Geyser in the Western Margin Unit. This activity was captures by the rover’s Left Hazard Avoidance Camera (HAZCAM). NASA/JPL-Caltech

This past week on Mars, Perseverance made a pit stop near Overlook Mountain to abrade a rock called Old Faithful Geyser. This target is situated within the Western side of the Margin Unit, an area around the upper edge of Jezero Crater that is astrobiologically-interesting due to its abundant carbonate. Carbonate-bearing rocks have been a major scientific focus throughout this campaign, which began with Perseverance entering the Eastern side of the Margin Unit on Sol 915 of the mission (1 sol = 1 day on Mars) in September of 2023, about 240 sols ago, then roving steadily Westward. So far, Perseverance has collected 3 cores from this Unit, including Pelican Point on Sol 923, Lefroy Bay on Sol 942, and Comet Geyser on Sol 1088. Proximity and remote science observations associated with each of these targets have all confirmed the presence of carbonate, but the grains and mineral assemblages in each rock are unique, which may indicate that carbonates in the Eastern and Western parts of the Margin have experienced different formation mechanisms and/or alteration histories. In particular, the team is interested in understanding whether the carbonate-bearing rocks in the West formed through sedimentary, igneous, or volcaniclastic processes.

To investigate the origin of Western Margin Unit carbonates, the team decided to stop off at Old Faithful Geyser to conduct an opportunistic abrasion on Sol 1151, then measure the rock with the Planetary Instrument for X-ray Lithochemistry (PIXL), a proximity science instrument carried on the rover’s arm. PIXL maps elemental distributions across fine scales (each PIXL map is a few square millimeters), and the Wide Angle Topographic Sensor for Operations and eNgineering (WATSON) camera takes complementary images of rocks from a similar close-up scale to record rock textures, grain boundaries, and color distributions. PIXL and WATSON will assess differences or similarities in composition in the Old Faithful Geyser abrasion, as compared to other targets across the Margin Unit, in hopes of better understanding how carbonates from East to West formed and transformed through time. In addition to helping the team unravel the history of Jezero Crater’s carbonates that record changes along the Margin, the observations at Old Faithful Geyser would provide additional context for the three collected Margin Unit core samples if they are brought back to Earth by Mars Sample Return (MSR) in the future!

Written by Denise Buckner, Student Collaborator at University of Florida

Share

Details

Last Updated

Jun 05, 2024

Related Terms Explore More

3 min read Sols 4205-4206: Curiosity Would Like One of Each, Please!

Article


1 hour ago

2 min read Sols 4202-4204: Sticking Around

Article


1 hour ago

2 min read Sols 4199-4201: Driving Through a Puzzle

Article


1 week ago

Keep Exploring Discover More Topics From NASA

Mars

Mars is no place for the faint-hearted. It’s dry, rocky, and bitter cold. The fourth planet from the Sun, Mars…


All Mars Resources


Rover Basics


Mars Exploration Science Goals

Categories: NASA

Terrifying new 'Alien: Romulus' trailer unleashes the facehuggers (video)

Space.com - Wed, 06/05/2024 - 10:00am
Roughly two months before its theatrical release, "Alien: Romulus" is giving us a better look at its plot, characters, and scares.
Categories: Astronomy

Sols 4205-4206: Curiosity Would Like One of Each, Please!

NASA - Breaking News - Wed, 06/05/2024 - 9:58am
Curiosity Navigation

3 min read

Sols 4205-4206: Curiosity Would Like One of Each, Please! This image was taken by Right Navigation Camera onboard NASA’s Mars rover Curiosity on Sol 4202 (2024-06-01 19:34:11 UTC). NASA/JPL-Caltech

Earth planning date: Monday, June 3, 2024

You know that feeling at the ice cream shop when you’re presented with so many tantalizing options and you have to narrow it down to just a few to taste test, and then you have to strategize how to fit all the best flavors in your bowl?  That’s what the past few planning shifts have felt like on Mars.  There are just too many cool rocks to choose from!

Curiosity is currently investigating “Whitebark Pass” (which sounds like it should be an ice cream flavor, right?) with a variety of rock textures and colors in our workspace. We spent the weekend at this location, investigating some of the light-toned, pitted clasts and the gray crumbly material that lines the slab.  Then there’s the slab itself, and some bright white clasts that we crushed with the rover wheel which caught our eye. The Navcam image above shows the rover arm going in for a close inspection of the slab.

Today’s 2-sol plan includes another helping of contact science and a lot of targeted remote sensing.  Essentially the team asked to try a scoop of the tan stuff, some gray stuff on the side, and add in the crumbly white bits while you’re at it.  This translated to the team planning DRT, MAHLI, and APXS on “Gem Lakes” to investigate the top of this slab, MAHLI and APXS hovering over “Convict Lake” to assess a white rock that was crushed by the rover wheel, and a MAHLI dogs eye mosaic on “Starr Minaret” to get a detailed view of the textures in the gray material. Then we sprinkled in a number of ChemCam and Mastcam activities in the targeted remote sensing blocks.  The team planned ChemCam LIBS on some different textures at “Cold Springs” and “Fishgut Lake” (umm, maybe I’ll skip that flavor…) and a ChemCam passive observation on “Quarry Peak” to assess a nearby light-toned slab.  The team also planned a long distance ChemCam RMI to investigate the distribution of light-toned clasts at “Camp Four.”  Multiple Mastcam mosaics are planned to document the ChemCam targets, monitor areas for change detection, characterize the diversity of textures, and assess stratigraphic relationships. And for good measure we also planned environmental monitoring activities including a Navcam line of sight observation, Mastcam tau, Navcam deck monitoring and dust devil survey, in addition to standard DAN and REMS observations.

You’d think we’d be stuffed by now, but the team is already strategizing what else we can get in the next plan before driving away.  A sure sign of a delicious workspace.

Written by Lauren Edgar, Planetary Geologist at USGS Astrogeology Science Center

Share

Details

Last Updated

Jun 05, 2024

Related Terms Explore More

2 min read Carving Into Carbonates at Old Faithful Geyser

Article


59 mins ago

2 min read Sols 4202-4204: Sticking Around

Article


1 hour ago

2 min read Sols 4199-4201: Driving Through a Puzzle

Article


1 week ago

Keep Exploring Discover More Topics From NASA

Mars

Mars is no place for the faint-hearted. It’s dry, rocky, and bitter cold. The fourth planet from the Sun, Mars…


All Mars Resources


Rover Basics


Mars Exploration Science Goals

Categories: NASA

Sols 4202-4204: Sticking Around

NASA - Breaking News - Wed, 06/05/2024 - 9:51am
Curiosity Navigation

2 min read

Sols 4202-4204: Sticking Around This image was taken by Left Navigation Camera onboard NASA’s Mars rover Curiosity on Sol 4200 (2024-05-30 13:21:00 UTC). NASA/JPL-Caltech

Earth planning date: Friday, May 31, 2024

Our most recent drive delivered us, as planned, right alongside ‘Whitebark Pass.’ This last drive was only about 9 metres, but Curiosity has been doing a lot of travelling lately and this weekend we’re giving the rover a well-deserved break from driving – but not a break from science! There’s a lot to see at our current location, so we made the decision to stick around a while to take it all in.

The lighter-toned rocks like those of Whitebark pass, which you can see above, are scattered all throughout our workspace and are getting the majority of our attention. The advantage of a nice long weekend plan with no driving is that we have plenty of time to get in contact science, with MAHLI and APXS getting up close with two targets called ‘Gray Peak’ and ‘Snow Lakes.’ ChemCam is joining in with three LIBS targets, ‘Beck Lakes,’ ‘Ten Lakes,’ and ‘Pohono Bridge.’ Mastcam is also taking two large mosaics of Whitebark Pass, looking more at the general topography and texture of the feature as a whole. There’s more than light-toned rocks in this area though – Mastcam will also be taking a look at some nearby bedrock along the channel wall. 

Rocks aren’t the only features of interest here. The drive also put us right next to a rippled sand patch, which we’re taking a look at with both Mastcam and Navcam. Aside from that, the Environmental theme group is taking advantage of staying put this weekend with some of our regular activities, including a number of tau and line of sight observations to look at dust in the atmosphere, a dust devil survey to scan for dust lifting, and several cloud movies. We also have our bi-weekly ChemCam passive sky observation, which gives us an idea of the abundances of oxygen and water vapour in the atmosphere.

Written by Alex Innanen, Atmospheric Scientist at York University

Share

Details

Last Updated

Jun 05, 2024

Related Terms Explore More

3 min read Sols 4205-4206: Curiosity Would Like One of Each, Please!

Article


7 mins ago

2 min read Sols 4199-4201: Driving Through a Puzzle

Article


7 days ago

2 min read Sols 4195-4198: Feels Like Summer

Article


1 week ago

Keep Exploring Discover More Topics From NASA

Mars

Mars is no place for the faint-hearted. It’s dry, rocky, and bitter cold. The fourth planet from the Sun, Mars…


All Mars Resources


Rover Basics


Mars Exploration Science Goals

Categories: NASA

Save $400 on Unistellar smart binoculars: Early bird deal

Space.com - Wed, 06/05/2024 - 9:00am
Unistellar's brand new smart binocular, Envision, is now $400 off when you order it on pre-sale in this early bird Kickstarter deal.
Categories: Astronomy

Midnight sun: What it is and how to see it

Space.com - Wed, 06/05/2024 - 9:00am
Experience the wonders of the midnight sun, a natural phenomenon where the sun never sets. Learn where you can witness this endless daylight and the science behind the strange phenomenon.
Categories: Astronomy

Comet 13P/Olbers Juices Up June Skies

Sky & Telescope Magazine - Wed, 06/05/2024 - 9:00am

June brings heat and bugs but also a moderately bright, early-evening comet that returns every 69 years.

The post Comet 13P/Olbers Juices Up June Skies appeared first on Sky & Telescope.

Categories: Astronomy

NASA Launches Second Small Climate Satellite to Study Earth’s Poles

NASA - Breaking News - Wed, 06/05/2024 - 8:26am
Rocket Lab’s Electron rocket lifted off from Launch Complex 1 in Māhia, New Zealand at 11:15 p.m. NZST, June 5, 2024, carrying a small satellite for NASA’s PREFIRE (Polar Radiant Energy in the Far-InfraRed Experiment) mission. RocketLab

The second of NASA’s PREFIRE (Polar Radiant Energy in the Far-InfraRed Experiment) two satellites is communicating with ground controllers after launching at 3:15 p.m. NZST, Wednesday (11:15 p.m. EDT, June 4). Data from these two shoebox-size cube satellites, or CubeSats, will better predict how Earth’s ice, seas, and weather will change in a warming world — providing information to help humanity thrive on our changing planet.  

The CubeSat launched on top Rocket Lab’s Electron rocket from the company’s Launch Complex 1 in Māhia, New Zealand, and follows the May 25 launch of the first PREFIRE CubeSat. After a 30-day checkout period, when engineers and scientists confirm both CubeSats are operating normally, the mission is expected to operate for 10 months.

“By helping to clarify the role that Earth’s polar regions play in regulating our planet’s energy budget, the PREFIRE mission will ultimately help improve climate and ice models,” said Amanda Whitehurst, PREFIRE program executive, at NASA Headquarters in Washington. “Improved models will benefit humanity by giving us a better idea of how our climate and weather patterns will change in the coming years.”

Capitalizing on NASA’s unique vantage point in space, PREFIRE will help understand the balance between incoming heat energy from the Sun and the outgoing heat given off at Earth’s poles. The Arctic and Antarctica act something like the radiator in a car’s engine shedding much of the heat initially absorbed at the tropics back into space. The majority of that heat is emitted as far-infrared radiation. The water vapor content of the atmosphere, along with the presence, structure, and composition of clouds, influences the amount of radiation that escapes into space from the poles.

The PREFIRE mission will give researchers information on where and when far-infrared energy radiates from the Arctic and Antarctic environments into space. The mission also will use its two CubeSats in asynchronous, near-polar orbits to study how relatively short-lived phenomena like cloud formation, moisture changes, and ice sheet melt affect far-infrared emissions over time. The two satellites pass over the same part of Earth at different times of day, giving researchers information on changing conditions.

“Climate change is reshaping our environment and atmosphere in ways that we need to prepare for,” said Brian Drouin, PREFIRE’s deputy principal investigator at NASA’s Jet Propulsion Laboratory in Southern California. “This mission will give us new measurements of the far-infrared wavelengths being emitted from Earth’s poles, which we can use to improve climate and weather models and help people around the world deal with the consequences of climate change.”

Each CubeSat carries an instrument called a thermal infrared spectrometer, which uses specially shaped mirrors and sensors to measure infrared wavelengths. Miniaturizing the instruments to fit on CubeSats required downsizing some parts while scaling up other components.

“Equipped with advanced infrared sensors that are more sensitive than any similar instrument, the PREFIRE CubeSats will help us better understand Earth’s polar regions and improve our climate models,” said Laurie Leshin, director at NASA JPL. “Their observations will lead to more accurate predictions about sea level rise, weather patterns, and changes in snow and ice cover, which will help us navigate the challenges of a warming world.”

NASA’s Launch Services Program, based out of the agency’s Kennedy Space Center in Florida, in partnership with NASA’s Earth System Science Pathfinder Program, is providing the launch service as part of the agency’s Venture-class Acquisition of Dedicated and Rideshare (VADR) launch services contract.

The PREFIRE mission was jointly developed by NASA and the University of Wisconsin-Madison. NASA JPL manages the mission for the agency’s Science Mission Directorate and provided the spectrometers. Blue Canyon Technologies built the CubeSats and the University of Wisconsin-Madison will process the data the instruments collect. The launch services provider is Rocket Lab USA Inc. of Long Beach, California.

To learn more about PREFIRE, visit:

https://science.nasa.gov/mission/prefire/

-end-

Karen Fox / Elizabeth Vlock

Headquarters, Washington

202-358-1600

karen.c.fox@nasa.gov / elizabeth.a.vlock@nasa.gov

Jane J. Lee / Andrew Wang

Jet Propulsion Laboratory, Pasadena, Calif.

818-354-0307 / 626-379-6874

jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov

Categories: NASA