"Professor Goddard does not know the relation between action and reaction and the need to have something better than a vacuum against which to react. He seems to lack the basic knowledge ladled out daily in high schools."
--1921 New York Times editorial about Robert Goddard's revolutionary rocket work.

"Correction: It is now definitely established that a rocket can function in a vacuum. The 'Times' regrets the error."
NY Times, July 1969.

— New York Times

Feed aggregator

Addressing Key Challenges To Mapping Sub-cm Orbital Debris in LEO via Plasma Soliton Detection

NASA News - Tue, 05/27/2025 - 11:38am

3 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) Artist concept highlighting the novel approach proposed by the 2025 NIAC awarded selection of the Mapping Sub-cm Orbital Debris in LEO concept.NASA/Christine Hartzell

Christine Hartzell
University of Maryland, College Park

The proposed investigation will address key technological challenges associated with a previously funded NIAC Phase I award titled “On-Orbit, Collision-Free Mapping of Small Orbital Debris”. Sub-cm orbital debris in LEO is not detectable or trackable using conventional technologies and poses a major hazard to crewed and un-crewed spacecraft. Orbital debris is a concern to NASA, as well as commercial and DoD satellite providers. In recent years, beginning with our NIAC Phase I award, we have been developing the idea that the sub-cm orbital debris environment may be monitored by detecting the plasma signature of the debris, rather than optical or radar observations of the debris itself. Our prior work has shown that sub-cm orbital debris may produce plasma solitons, which are a type of wave in the ionosphere plasma that do not disperse as readily as traditional waves. Debris may produce solitons that are co-located with the debris (called pinned solitons) or that travel ahead of the debris (called precursor solitons). We have developed computational models to predict the characteristics of the plasma solitons generated by a given piece of debris. These solitons may be detectable by 12U smallsats outfitted with multi-needle Langmuir probes.

In this Phase II NIAC award, we will address two key technical challenges that significantly effect the value of soliton-based debris detection: 1. Develop an algorithm to constrain debris size and speed based on observed soliton characteristics. Our prior investigations have produced predictions of soliton characteristics as a function of debris characteristics. However, the inverse problem is not analytically solvable. We will develop machine learning algorithms to address this challenge. 2. Evaluate the feasibility and value of detecting soliton velocity. Multiple observations of the same soliton may allow us to constrain the distance that the soliton has traveled from the debris. When combined with the other characteristics of the soliton and knowledge of the local plasma environment, back propagation of the soliton in plasma simulations may allow us to extract the position and velocity vectors of the debris. If it is possible to determine debris size, position and velocity from soliton observations, this would provide a breakthrough in space situational awareness for debris that is currently undetectable using conventional technology. However, even if only debris size and speed can be inferred from soliton detections, this technology is still a revolutionary improvement on existing methods of characterizing the debris flux, which provide data only on a multi-year cadence. This proposed investigation will answer key technological questions about how much information can be extracted from observed soliton signals and trade mission architectures for complexity and returned data value. Additionally, we will develop a roadmap to continue to advance this technology.

2025 Selections

Facebook logo @NASATechnology @NASA_Technology

Share Details Last Updated May 27, 2025 EditorLoura Hall Related Terms Keep Exploring Discover More NIAC Topics

Space Technology Mission Directorate

NASA Innovative Advanced Concepts

NIAC Funded Studies

About NIAC

Categories: NASA

Breathing Beyond Earth: A Reliable Oxygen Production Architecture for Human Space Exploration

NASA - Breaking News - Tue, 05/27/2025 - 11:37am

3 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) Artist concept highlighting the novel approach proposed by the 2025 NIAC awarded selection of the Breathing Beyond Earth concept.NASA/Alvaro Romero-Calvo

Alvaro Romero-Calvo
Georgia Tech Research Corporation

The reliable and efficient operation of spacecraft life support systems is challenged in microgravity by the near absence of buoyancy. This impacts the electrolytic production of oxygen and hydrogen from water by forcing the adoption of complex multiphase flow management technologies. Still, water splitting plays an essential role in human spaceflight, closing the regenerative environmental control and life support loop and connecting the water and atmosphere management subsystems. Existing oxygen generation systems, although successful for short-term crewed missions, lack the reliability and efficiency required for long-duration spaceflight and, in particular, for Mars exploration.

During our Phase I NIAC effort, we demonstrated the basic feasibility of a novel water-splitting architecture that leverages contactless magnetohydrodynamic (MHD) forces to produce and separate oxygen and hydrogen gas bubbles in microgravity. The system, known as the Magnetohydrodynamic Oxygen Generation Assembly (MOGA), avoids the use of forced water recirculation loops or moving parts such as pumps or centrifuges for phase separation. This fundamental paradigm shift results in multiple operational advantages with respect to the state-of-the-art: increased robustness to over- and under-voltages in the cell stack, minimal risk of electrolyte leaching, wider operational temperature and humidity levels, simpler transient operation, increased material durability, enhanced system stability during dormant periods, modest water purity requirements, reduced microbial growth, and better component-level swap-ability, all of which result in an exceptionally robust system. Overall, these architectural features lead to a 32.9% mass reduction and 20.4% astronaut maintenance time savings with respect to the Oxygen Generation Assembly at the ISS for a four-crew Mars transfer, making the system ideally suited for long-duration missions. In Phase II, we seek to answer some of the key remaining unknowns surrounding this architecture, particularly regarding (i) the long-term electrochemical and multiphase flow behavior of the system in microgravity and its impact on power consumption and liquid interface stability, (ii) the transient operational modes of the MHD drive during start-up, shutdown, and dormancy, and (iii) architectural improvements for manufacturability and ease of repair. Toward that end, we will leverage our combined expertise in microgravity research by partnering with the ZARM Institute in Bremen and the German Aerospace Center to fly, free of charge to NASA, a large-scale magnetohydrodynamic drive system and demonstrate critical processes and components. An external review board composed of industry experts will assess the evolution of the project and inform commercial infusion. This effort will result in a TRL-4 system that will also benefit additional technologies of interest to NASA and the general public, such as water-based SmallSat propulsion and in-situ resource utilization.

2025 Selections

Facebook logo @NASATechnology @NASA_Technology

Share Details Last Updated May 27, 2025 EditorLoura Hall Related Terms Keep Exploring Discover More NIAC Topics

Space Technology Mission Directorate

NASA Innovative Advanced Concepts

NIAC Funded Studies

About NIAC

Categories: NASA

Breathing Beyond Earth: A Reliable Oxygen Production Architecture for Human Space Exploration

NASA News - Tue, 05/27/2025 - 11:37am

3 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) Artist concept highlighting the novel approach proposed by the 2025 NIAC awarded selection of the Breathing Beyond Earth concept.NASA/Alvaro Romero-Calvo

Alvaro Romero-Calvo
Georgia Tech Research Corporation

The reliable and efficient operation of spacecraft life support systems is challenged in microgravity by the near absence of buoyancy. This impacts the electrolytic production of oxygen and hydrogen from water by forcing the adoption of complex multiphase flow management technologies. Still, water splitting plays an essential role in human spaceflight, closing the regenerative environmental control and life support loop and connecting the water and atmosphere management subsystems. Existing oxygen generation systems, although successful for short-term crewed missions, lack the reliability and efficiency required for long-duration spaceflight and, in particular, for Mars exploration.

During our Phase I NIAC effort, we demonstrated the basic feasibility of a novel water-splitting architecture that leverages contactless magnetohydrodynamic (MHD) forces to produce and separate oxygen and hydrogen gas bubbles in microgravity. The system, known as the Magnetohydrodynamic Oxygen Generation Assembly (MOGA), avoids the use of forced water recirculation loops or moving parts such as pumps or centrifuges for phase separation. This fundamental paradigm shift results in multiple operational advantages with respect to the state-of-the-art: increased robustness to over- and under-voltages in the cell stack, minimal risk of electrolyte leaching, wider operational temperature and humidity levels, simpler transient operation, increased material durability, enhanced system stability during dormant periods, modest water purity requirements, reduced microbial growth, and better component-level swap-ability, all of which result in an exceptionally robust system. Overall, these architectural features lead to a 32.9% mass reduction and 20.4% astronaut maintenance time savings with respect to the Oxygen Generation Assembly at the ISS for a four-crew Mars transfer, making the system ideally suited for long-duration missions. In Phase II, we seek to answer some of the key remaining unknowns surrounding this architecture, particularly regarding (i) the long-term electrochemical and multiphase flow behavior of the system in microgravity and its impact on power consumption and liquid interface stability, (ii) the transient operational modes of the MHD drive during start-up, shutdown, and dormancy, and (iii) architectural improvements for manufacturability and ease of repair. Toward that end, we will leverage our combined expertise in microgravity research by partnering with the ZARM Institute in Bremen and the German Aerospace Center to fly, free of charge to NASA, a large-scale magnetohydrodynamic drive system and demonstrate critical processes and components. An external review board composed of industry experts will assess the evolution of the project and inform commercial infusion. This effort will result in a TRL-4 system that will also benefit additional technologies of interest to NASA and the general public, such as water-based SmallSat propulsion and in-situ resource utilization.

2025 Selections

Facebook logo @NASATechnology @NASA_Technology

Share Details Last Updated May 27, 2025 EditorLoura Hall Related Terms Keep Exploring Discover More NIAC Topics

Space Technology Mission Directorate

NASA Innovative Advanced Concepts

NIAC Funded Studies

About NIAC

Categories: NASA

TFINER – Thin Film Isotope Nuclear Engine Rocket

NASA - Breaking News - Tue, 05/27/2025 - 11:37am

2 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) Artist concept highlighting the novel approach proposed by the 2025 NIAC awarded selection of the TFINER concept.NASA/James Bickford

James Bickford
Charles Stark Draper Laboratory, Inc.

The Thin-Film Nuclear Engine Rocket (TFINER) is a novel space propulsion technology that enables aggressive space exploration for missions that are impossible with existing approaches. The concept uses thin layers of energetic radioisotopes to directly generate thrust. The emission direction of its natural decay products is biased by a substrate to accelerate the spacecraft. A single stage design is very simple and can generate velocity changes of ~100 km/s using a few kilograms of fuel and potentially more than 150 km/s for more advanced architectures.

The propulsion system enables a rendezvous with intriguing interstellar objects such as ‘Oumuamua that are on hyperbolic orbits through our solar system. A particular advantage is the ability to maneuver in deep space to find objects with uncertainty in their location. The same capabilities also enable a fast trip to the solar gravitational focus to image multiple potentially habitable exoplanets. Both types of missions require propulsion outside the solar system that is an order of magnitude beyond the performance of existing technology. The phase 2 effort will continue to mature TFINER and the mission design. The program will work towards small scale thruster experiments in the near term. In parallel, isotope production paths that can also be leveraged for other space exploration and medical applications will be pursued. Finally, advanced architectures such as an Oberth solar dive maneuver and hybrid approaches that leverage solar sails near the Sun, will be explored to enhance mission performance.

2025 Selections

Facebook logo @NASATechnology @NASA_Technology

Share Details Last Updated May 27, 2025 EditorLoura Hall Related Terms Keep Exploring Discover More NIAC Topics

Space Technology Mission Directorate

NASA Innovative Advanced Concepts

NIAC Funded Studies

About NIAC

Categories: NASA

TFINER – Thin Film Isotope Nuclear Engine Rocket

NASA News - Tue, 05/27/2025 - 11:37am

2 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) Artist concept highlighting the novel approach proposed by the 2025 NIAC awarded selection of the TFINER concept.NASA/James Bickford

James Bickford
Charles Stark Draper Laboratory, Inc.

The Thin-Film Nuclear Engine Rocket (TFINER) is a novel space propulsion technology that enables aggressive space exploration for missions that are impossible with existing approaches. The concept uses thin layers of energetic radioisotopes to directly generate thrust. The emission direction of its natural decay products is biased by a substrate to accelerate the spacecraft. A single stage design is very simple and can generate velocity changes of ~100 km/s using a few kilograms of fuel and potentially more than 150 km/s for more advanced architectures.

The propulsion system enables a rendezvous with intriguing interstellar objects such as ‘Oumuamua that are on hyperbolic orbits through our solar system. A particular advantage is the ability to maneuver in deep space to find objects with uncertainty in their location. The same capabilities also enable a fast trip to the solar gravitational focus to image multiple potentially habitable exoplanets. Both types of missions require propulsion outside the solar system that is an order of magnitude beyond the performance of existing technology. The phase 2 effort will continue to mature TFINER and the mission design. The program will work towards small scale thruster experiments in the near term. In parallel, isotope production paths that can also be leveraged for other space exploration and medical applications will be pursued. Finally, advanced architectures such as an Oberth solar dive maneuver and hybrid approaches that leverage solar sails near the Sun, will be explored to enhance mission performance.

2025 Selections

Facebook logo @NASATechnology @NASA_Technology

Share Details Last Updated May 27, 2025 EditorLoura Hall Related Terms Keep Exploring Discover More NIAC Topics

Space Technology Mission Directorate

NASA Innovative Advanced Concepts

NIAC Funded Studies

About NIAC

Categories: NASA

Photophoretic Propulsion Enabling Mesosphere Exploration

NASA - Breaking News - Tue, 05/27/2025 - 11:37am

2 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) Artist concept highlighting the novel approach proposed by the 2025 NIAC awarded selection of Photophoretic Propulsion Enabling Mesosphere Exploration concept.NASA/Igor Bargatin

Igor Bargatin
University of Pennsylvania

We propose to use the photophoretic levitation and propulsion mechanism to create no-moving-parts flying vehicles that can be used to explore Earth’s upper atmosphere. The photophoretic force arises when a solid is heated relative to the ambient gas through illumination, inducing momentum exchange between the solid and the gas. The force creates lift in structures that absorb light on the bottom yet stay cool on the top, and we engineered our plate mechanical metamaterials to maximize this lift force and payload. The levitation and payload capabilities of our plates typically peak at ambient pressures in the 0.1-1000 Pa range, ideal for applications in Earth’s mesosphere and Mars’s low gravity and thin atmosphere. For example, in the Earth’s mesosphere (i.e., at altitudes from ~50 to ~80 km), the air is too thin for conventional airplanes or balloons but too thick for satellites, such that measurements can be performed for only a few minutes at a time during the short flight of a research rocket. However, the range of ambient pressures in the mesosphere (1-100 Pa) is nearly optimal for our plates’ payload capabilities. Phase 2 of the proposal focuses on the scalable fabrication of Knudsen pump structures that will enable missions with kg-scale payloads in the mesosphere as well as trajectory control with 1 m/s velocity control in existing stratospheric balloon vehicles.

2025 Selections

Facebook logo @NASATechnology @NASA_Technology

Share Details Last Updated May 27, 2025 EditorLoura Hall Related Terms Keep Exploring Discover More NIAC Topics

Space Technology Mission Directorate

NASA Innovative Advanced Concepts

NIAC Funded Studies

About NIAC

Categories: NASA

Photophoretic Propulsion Enabling Mesosphere Exploration

NASA News - Tue, 05/27/2025 - 11:37am

2 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) Artist concept highlighting the novel approach proposed by the 2025 NIAC awarded selection of Photophoretic Propulsion Enabling Mesosphere Exploration concept.NASA/Igor Bargatin

Igor Bargatin
University of Pennsylvania

We propose to use the photophoretic levitation and propulsion mechanism to create no-moving-parts flying vehicles that can be used to explore Earth’s upper atmosphere. The photophoretic force arises when a solid is heated relative to the ambient gas through illumination, inducing momentum exchange between the solid and the gas. The force creates lift in structures that absorb light on the bottom yet stay cool on the top, and we engineered our plate mechanical metamaterials to maximize this lift force and payload. The levitation and payload capabilities of our plates typically peak at ambient pressures in the 0.1-1000 Pa range, ideal for applications in Earth’s mesosphere and Mars’s low gravity and thin atmosphere. For example, in the Earth’s mesosphere (i.e., at altitudes from ~50 to ~80 km), the air is too thin for conventional airplanes or balloons but too thick for satellites, such that measurements can be performed for only a few minutes at a time during the short flight of a research rocket. However, the range of ambient pressures in the mesosphere (1-100 Pa) is nearly optimal for our plates’ payload capabilities. Phase 2 of the proposal focuses on the scalable fabrication of Knudsen pump structures that will enable missions with kg-scale payloads in the mesosphere as well as trajectory control with 1 m/s velocity control in existing stratospheric balloon vehicles.

2025 Selections

Facebook logo @NASATechnology @NASA_Technology

Share Details Last Updated May 27, 2025 EditorLoura Hall Related Terms Keep Exploring Discover More NIAC Topics

Space Technology Mission Directorate

NASA Innovative Advanced Concepts

NIAC Funded Studies

About NIAC

Categories: NASA

Mars Roundtrip Success Enabled by Integrated Cooling through Inductively Coupled LED Emission (MaRS ICICLE)

NASA - Breaking News - Tue, 05/27/2025 - 11:37am

3 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) Artist concept highlighting the novel approach proposed by the 2025 NIAC awarded selection of MaRS ICICLE concept.NASA/Aaswath Pattabhi Raman

Aaswath Pattabhi Raman
University of California, Los Angeles

Exploration of Mars has captivated the public in recent decades with high-profile robotic missions and the images they have acquired seeding our collective imagination. NASA is actively planning for human exploration of Mars and laid out some of the key capabilities that must be developed to execute successful, cost-effective programs that would put human beings on the surface of another planet and bring them home safely. Efficient, flexible and productive round-trip missions will be key to further human exploration of Mars. New round-trip mission concepts however need substantially improved long-duration storage of cryogenic propellants in various space environments; relevant propellants include liquid Hydrogen (LH2) for high specific impulse Nuclear Thermal Propulsion (NTP) which can be deployed in strategic locations in advance of a mission. If enabled, such LH2 storage tanks could be used to refill a crewed Mars Transfer Vehicle (MTV) to send and bring astronauts home quickly, safely, and cost-effectively. A well-designed cryogenic propellant storage tank can reflect the vast majority of photons incident on the spacecraft, but not all. In thermal environments like Low Earth Orbit (LEO), there is residual heating due to light directly from the Sun, sunlight reflected off Earth, and blackbody thermal radiation from Earth. Over time, this leads to some of the propellant molecules absorbing the requisite latent heat of vaporization, entering the gas phase, and ultimately being released into space to prevent an unsustainable build-up of pressure in the tank. This slow “boil-off” process leads to significant losses of the cryogenic liquid into space, potentially leaving it with insufficient mass and greatly limiting Mars missions. We propose a breakthrough mission concept: an ultra-efficient round-trip Mars mission with zero boil off of propellants. This will be enabled by low-cost, efficient cryogenic liquid storage capable of storing LH2 and LOx with ZBO even in the severe and fluctuating thermal environment of LEO. To enable this capability, the propellant tanks in our mission will employs thin, lightweight, all-solid-state panels attached to the tank’s deep-space-facing surfaces that utilize a long-understood but as-yet-unrealized cooling technology known as Electro-Luminescent Cooling (ELC) to reject heat from cold solid surfaces as non-equilibrium thermal radiation with significantly more power density than Planck’s Law permits for equilibrium thermal radiation. Such a propellant tank would drastically lower the cost and complexity of propulsion systems for crewed Mars missions and other deep space exploration by allowing spacecraft to refill propellant tanks after reaching orbit rather than launching on the much larger rocket required to lift the spacecraft in a single-use stage. To achieve ZBO, a storage spacecraft must keep the storage tank’s temperature below the boiling point of the cryogen (e.g., < 90 K for LOx and < 20 K for liquid H2). Achieving this in LEO-like thermal environments requires both excellent reflectivity toward sunlight and thermal radiation from the Earth, Mars and other nearby bodies as well as a power-efficient cooling mechanism to remove what little heat inevitably does leak in, a pair of conditions ideally suited to the ELC cooling systems that will makes our full return-trip mission to Mars a success.

2025 Selections

Facebook logo @NASATechnology @NASA_Technology

Share Details Last Updated May 27, 2025 EditorLoura Hall Related Terms Keep Exploring Discover More NIAC Topics

Space Technology Mission Directorate

NASA Innovative Advanced Concepts

NIAC Funded Studies

About NIAC

Categories: NASA

Mars Roundtrip Success Enabled by Integrated Cooling through Inductively Coupled LED Emission (MaRS ICICLE)

NASA News - Tue, 05/27/2025 - 11:37am

3 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) Artist concept highlighting the novel approach proposed by the 2025 NIAC awarded selection of MaRS ICICLE concept.NASA/Aaswath Pattabhi Raman

Aaswath Pattabhi Raman
University of California, Los Angeles

Exploration of Mars has captivated the public in recent decades with high-profile robotic missions and the images they have acquired seeding our collective imagination. NASA is actively planning for human exploration of Mars and laid out some of the key capabilities that must be developed to execute successful, cost-effective programs that would put human beings on the surface of another planet and bring them home safely. Efficient, flexible and productive round-trip missions will be key to further human exploration of Mars. New round-trip mission concepts however need substantially improved long-duration storage of cryogenic propellants in various space environments; relevant propellants include liquid Hydrogen (LH2) for high specific impulse Nuclear Thermal Propulsion (NTP) which can be deployed in strategic locations in advance of a mission. If enabled, such LH2 storage tanks could be used to refill a crewed Mars Transfer Vehicle (MTV) to send and bring astronauts home quickly, safely, and cost-effectively. A well-designed cryogenic propellant storage tank can reflect the vast majority of photons incident on the spacecraft, but not all. In thermal environments like Low Earth Orbit (LEO), there is residual heating due to light directly from the Sun, sunlight reflected off Earth, and blackbody thermal radiation from Earth. Over time, this leads to some of the propellant molecules absorbing the requisite latent heat of vaporization, entering the gas phase, and ultimately being released into space to prevent an unsustainable build-up of pressure in the tank. This slow “boil-off” process leads to significant losses of the cryogenic liquid into space, potentially leaving it with insufficient mass and greatly limiting Mars missions. We propose a breakthrough mission concept: an ultra-efficient round-trip Mars mission with zero boil off of propellants. This will be enabled by low-cost, efficient cryogenic liquid storage capable of storing LH2 and LOx with ZBO even in the severe and fluctuating thermal environment of LEO. To enable this capability, the propellant tanks in our mission will employs thin, lightweight, all-solid-state panels attached to the tank’s deep-space-facing surfaces that utilize a long-understood but as-yet-unrealized cooling technology known as Electro-Luminescent Cooling (ELC) to reject heat from cold solid surfaces as non-equilibrium thermal radiation with significantly more power density than Planck’s Law permits for equilibrium thermal radiation. Such a propellant tank would drastically lower the cost and complexity of propulsion systems for crewed Mars missions and other deep space exploration by allowing spacecraft to refill propellant tanks after reaching orbit rather than launching on the much larger rocket required to lift the spacecraft in a single-use stage. To achieve ZBO, a storage spacecraft must keep the storage tank’s temperature below the boiling point of the cryogen (e.g., < 90 K for LOx and < 20 K for liquid H2). Achieving this in LEO-like thermal environments requires both excellent reflectivity toward sunlight and thermal radiation from the Earth, Mars and other nearby bodies as well as a power-efficient cooling mechanism to remove what little heat inevitably does leak in, a pair of conditions ideally suited to the ELC cooling systems that will makes our full return-trip mission to Mars a success.

2025 Selections

Facebook logo @NASATechnology @NASA_Technology

Share Details Last Updated May 27, 2025 EditorLoura Hall Related Terms Keep Exploring Discover More NIAC Topics

Space Technology Mission Directorate

NASA Innovative Advanced Concepts

NIAC Funded Studies

About NIAC

Categories: NASA

Gravity Poppers: Hopping Probes for the Interior Mapping of Small Solar System Bodies

NASA - Breaking News - Tue, 05/27/2025 - 11:36am

2 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) Artist concept highlighting the novel approach proposed by the 2025 NIAC awarded selection of Gravity Poppers: Hopping Probes for the Interior Mapping of Small Solar System Bodies concept.NASA/Benjamin Hockman

Benjamin Hockman
NASA Jet Propulsion Laboratory

The goal of this effort is to develop a robust and affordable mission architecture that enables the gravimetric density reconstruction of small body interiors to unprecedented precision. Our architecture relies on the novel concept of “Gravity Poppers,” which are small, minimalistic probes that are deployed to the surface of a small body and periodically “pop” so as to perpetuate a random hopping motion around the body. By tracking a large swarm of poppers from orbit, a mother spacecraft can precisely estimate their trajectories and continuously refine a high-resolution map of the body’s gravity field, and thus, its internal mass distribution. Hopping probes are also equipped with minimalistic in-situ sensors to measure the surface temperature (when landed) and strength (when bouncing) in order to complement the gravity field and build a more accurate picture of the interior. The Phase I study focused on feasibility assessment of three core technologies that enable such a mission: (1) the mechanical design of hopping probes to be small, simple, robust, and “visible” to a distant spacecraft, (2) the tracking strategy for detecting and estimating the trajectories of a large number of ballistic probes, and (3) the algorithmic framework by which such measurements can be used to iteratively refine a gravity model of the body. The key finding was that the concept is feasible, and demonstrated to have the potential to resolve extremely accurate gravity models, allowing scientists to localize density anomalies such as “weighing” large boulders on the surface. This Phase II Proposal aims to further develop these three core technologies through continued mission trade studies and sensitivity analysis, case studies for simulated missions, and hardware prototypes demonstrating both hopping behavior and tracking performance.

2025 Selections

Facebook logo @NASATechnology @NASA_Technology

Share Details Last Updated May 27, 2025 EditorLoura Hall Related Terms Keep Exploring Discover More NIAC Topics

Space Technology Mission Directorate

NASA Innovative Advanced Concepts

NIAC Funded Studies

About NIAC

Categories: NASA

Gravity Poppers: Hopping Probes for the Interior Mapping of Small Solar System Bodies

NASA News - Tue, 05/27/2025 - 11:36am

2 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) Artist concept highlighting the novel approach proposed by the 2025 NIAC awarded selection of Gravity Poppers: Hopping Probes for the Interior Mapping of Small Solar System Bodies concept.NASA/Benjamin Hockman

Benjamin Hockman
NASA Jet Propulsion Laboratory

The goal of this effort is to develop a robust and affordable mission architecture that enables the gravimetric density reconstruction of small body interiors to unprecedented precision. Our architecture relies on the novel concept of “Gravity Poppers,” which are small, minimalistic probes that are deployed to the surface of a small body and periodically “pop” so as to perpetuate a random hopping motion around the body. By tracking a large swarm of poppers from orbit, a mother spacecraft can precisely estimate their trajectories and continuously refine a high-resolution map of the body’s gravity field, and thus, its internal mass distribution. Hopping probes are also equipped with minimalistic in-situ sensors to measure the surface temperature (when landed) and strength (when bouncing) in order to complement the gravity field and build a more accurate picture of the interior. The Phase I study focused on feasibility assessment of three core technologies that enable such a mission: (1) the mechanical design of hopping probes to be small, simple, robust, and “visible” to a distant spacecraft, (2) the tracking strategy for detecting and estimating the trajectories of a large number of ballistic probes, and (3) the algorithmic framework by which such measurements can be used to iteratively refine a gravity model of the body. The key finding was that the concept is feasible, and demonstrated to have the potential to resolve extremely accurate gravity models, allowing scientists to localize density anomalies such as “weighing” large boulders on the surface. This Phase II Proposal aims to further develop these three core technologies through continued mission trade studies and sensitivity analysis, case studies for simulated missions, and hardware prototypes demonstrating both hopping behavior and tracking performance.

2025 Selections

Facebook logo @NASATechnology @NASA_Technology

Share Details Last Updated May 27, 2025 EditorLoura Hall Related Terms Keep Exploring Discover More NIAC Topics

Space Technology Mission Directorate

NASA Innovative Advanced Concepts

NIAC Funded Studies

About NIAC

Categories: NASA

Was Planet Nine exiled from the solar system as a baby?

New Scientist Space - Space Headlines - Tue, 05/27/2025 - 11:00am
The chance of a planet forming in the outer reaches of the solar system – a hypothetical Planet Nine – could be as high as 40 per cent, but it would have been a rough start
Categories: Astronomy

Was Planet Nine exiled from the solar system as a baby?

New Scientist Space - Cosmology - Tue, 05/27/2025 - 11:00am
The chance of a planet forming in the outer reaches of the solar system – a hypothetical Planet Nine – could be as high as 40 per cent, but it would have been a rough start
Categories: Astronomy

Your imagination doesn’t get worse as you age – but it does change

New Scientist Space - Space Headlines - Tue, 05/27/2025 - 11:00am
It’s natural to associate wild flights of fantasy with children and a more mundane internal world with adult life. The latest research, though, shows that isn't the whole picture
Categories: Astronomy

Your imagination doesn’t get worse as you age – but it does change

New Scientist Space - Cosmology - Tue, 05/27/2025 - 11:00am
It’s natural to associate wild flights of fantasy with children and a more mundane internal world with adult life. The latest research, though, shows that isn't the whole picture
Categories: Astronomy

How to watch SpaceX's Starship Flight 9 launch and Elon Musk's Mars update today

Space.com - Tue, 05/27/2025 - 10:12am
SpaceX will launch the 9th test flight of its Super Heavy Starship rocket hours after CEO Elon Musk delivers an update on his company's plans to make humans an multiplanetary species.
Categories: Astronomy

The sun is killing off SpaceX's Starlink satellites

New Scientist Space - Cosmology - Tue, 05/27/2025 - 10:00am
There have never been so many satellites orbiting Earth as there are today, thanks in part to the launch of mega constellations like SpaceX's Starlink internet service - and now we are learning just how the sun's activity can affect them
Categories: Astronomy

The sun is killing off SpaceX's Starlink satellites

New Scientist Space - Space Headlines - Tue, 05/27/2025 - 10:00am
There have never been so many satellites orbiting Earth as there are today, thanks in part to the launch of mega constellations like SpaceX's Starlink internet service - and now we are learning just how the sun's activity can affect them
Categories: Astronomy

Best wide-angle camera lenses 2025: Discover the ideal wide-angle for your camera

Space.com - Tue, 05/27/2025 - 10:00am
These are the best wide-angle lenses covering the most popular camera systems used by astrophotographers.
Categories: Astronomy

NASA satellites show Antarctica has gained ice despite rising global temperatures. How is that possible?

Space.com - Tue, 05/27/2025 - 9:00am
An abrupt change in Antarctica has caused the continent to gain ice. But this increase, documented in NASA satellite data, is a temporary anomaly rather than an indication that global warming has reversed, scientists say.
Categories: Astronomy