All's not as it appears, this tale has many twists -
but if I wasn't here documenting the story
would that mean that the plot did not exist?

— Peter Hammill

Feed aggregator

Pretty in Pink

NASA Image of the Day - Wed, 05/14/2025 - 3:51pm
The perfectly picturesque spiral galaxy known as Messier 81, or M81, looks sharp in this composite from NASA's Spitzer and Hubble Space Telescopes and NASA's Galaxy Evolution Explorer.
Categories: Astronomy, NASA

Pretty in Pink

NASA - Breaking News - Wed, 05/14/2025 - 3:49pm
NASA/JPL-Caltech/ESA/Harvard-Smithsonian CfA

The spiral galaxy known as Messier 81 (M81) has a rosy tint in this June 1, 2007, composite image that incorporates data from NASA’s Spitzer and Hubble Space Telescopes, and NASA’s Galaxy Evolution Explorer. Discovered by the German astronomer Johann Elert Bode in 1774, M81 is one of the brightest galaxies in the night sky. It is located 11.6 million light-years from Earth in the constellation Ursa Major.

The galaxy’s spiral arms, which wind all the way down into its nucleus, are made up of young, bluish, hot stars formed in the past few million years. They also host a population of stars formed in an episode of star formation that started about 600 million years ago.

Learn more about M81 in Hubble’s Messier Catalog.

Image credit: NASA/JPL-Caltech/ESA/Harvard-Smithsonian CfA

Categories: NASA

Pretty in Pink

NASA News - Wed, 05/14/2025 - 3:49pm
NASA/JPL-Caltech/ESA/Harvard-Smithsonian CfA

The spiral galaxy known as Messier 81 (M81) has a rosy tint in this June 1, 2007, composite image that incorporates data from NASA’s Spitzer and Hubble Space Telescopes, and NASA’s Galaxy Evolution Explorer. Discovered by the German astronomer Johann Elert Bode in 1774, M81 is one of the brightest galaxies in the night sky. It is located 11.6 million light-years from Earth in the constellation Ursa Major.

The galaxy’s spiral arms, which wind all the way down into its nucleus, are made up of young, bluish, hot stars formed in the past few million years. They also host a population of stars formed in an episode of star formation that started about 600 million years ago.

Learn more about M81 in Hubble’s Messier Catalog.

Image credit: NASA/JPL-Caltech/ESA/Harvard-Smithsonian CfA

Categories: NASA

NASA to Participate in Next Private Astronaut Mission Teleconference

NASA - Breaking News - Wed, 05/14/2025 - 3:09pm
The Axiom Mission 4, or Ax-4, crew will launch aboard a SpaceX Dragon spacecraft to the International Space Station from NASA’s Kennedy Space Center in Florida. From left to right: ESA (European Space Agency) astronaut Sławosz Uznański-Wiśniewski of Poland, former NASA astronaut Peggy Whitson, ISRO (Indian Space Research Organization) astronaut Shubhanshu Shukla, and Tibor Kapu of Hungary.Credit: Axiom Space

NASA will join a media teleconference hosted by Axiom Space at 10:30 a.m. EDT, Tuesday, May 20, to discuss the launch of Axiom Mission 4 (Ax-4), the fourth private astronaut mission to the International Space Station.

Briefing participants include:

  • Dana Weigel, manager, International Space Station Program, NASA
  • Allen Flynt, chief of mission services, Axiom Space
  • Sarah Walker, director, Dragon mission management, SpaceX
  • Sergio Palumberi, mission manager, ESA (European Space Agency)
  • Aleksandra Bukała, project manager, head of strategy and international cooperation, POLSA (Polish Space Agency)
  • Orsolya Ferencz, ministerial commissioner of space research, HUNOR (Hungarian to Orbit)

To join the call, media must register with Axiom Space by 12 p.m., Monday, May 19, at:

https://bit.ly/437SAAh

The Ax-4 launch aboard a SpaceX Dragon spacecraft on the company’s Falcon 9 rocket is targeted no earlier than 9:11 a.m., Sunday, June 8, from NASA’s Kennedy Space Center in Florida.

During the mission aboard the space station, a four-person multi-national crew will complete about 60 research experiments developed for microgravity in collaboration with organizations across the globe.

Peggy Whitson, former NASA astronaut and director of human spaceflight at Axiom Space, will command the commercial mission, while ISRO astronaut Shubhanshu Shukla will serve as pilot. The two mission specialists are ESA project astronaut Sławosz Uznański-Wiśniewski of Poland and Tibor Kapu of Hungary.

The first private astronaut mission to the station, Axiom Mission 1, lifted off in April 2022 for a 17-day mission aboard the orbiting laboratory. The second private astronaut mission to the station, Axiom Mission 2, also was commanded by Whitson and launched in May 2023 for eight days in orbit. The most recent private astronaut mission, Axiom Mission 3, launched in January 2024; the crew spent 18 days docked to the space station.

The International Space Station is a springboard for developing a low Earth economy. NASA’s goal is to achieve a strong economy off the Earth where the agency can purchase services as one of many customers to meet its science and research objectives in microgravity. NASA’s commercial strategy for low Earth orbit provides the government with reliable and safe services at a lower cost, enabling the agency to focus on Artemis missions to the Moon in preparation for Mars while also continuing to use low Earth orbit as a training and proving ground for those deep space missions.

Learn more about NASA’s commercial space strategy at:

https://www.nasa.gov/commercial-space

-end-

Claire O’Shea
Headquarters, Washington
202-358-1100
claire.a.o’shea@nasa.gov

Anna Schneider
Johnson Space Center, Houston
281-483-5111
anna.c.schneider@nasa.gov

Alexis DeJarnette
Axiom Space, Houston
alexis@axiomspace.com

Share Details Last Updated May 14, 2025 LocationNASA Headquarters Related Terms
Categories: NASA

NASA to Participate in Next Private Astronaut Mission Teleconference

NASA News - Wed, 05/14/2025 - 3:09pm
The Axiom Mission 4, or Ax-4, crew will launch aboard a SpaceX Dragon spacecraft to the International Space Station from NASA’s Kennedy Space Center in Florida. From left to right: ESA (European Space Agency) astronaut Sławosz Uznański-Wiśniewski of Poland, former NASA astronaut Peggy Whitson, ISRO (Indian Space Research Organization) astronaut Shubhanshu Shukla, and Tibor Kapu of Hungary.Credit: Axiom Space

NASA will join a media teleconference hosted by Axiom Space at 10:30 a.m. EDT, Tuesday, May 20, to discuss the launch of Axiom Mission 4 (Ax-4), the fourth private astronaut mission to the International Space Station.

Briefing participants include:

  • Dana Weigel, manager, International Space Station Program, NASA
  • Allen Flynt, chief of mission services, Axiom Space
  • Sarah Walker, director, Dragon mission management, SpaceX
  • Sergio Palumberi, mission manager, ESA (European Space Agency)
  • Aleksandra Bukała, project manager, head of strategy and international cooperation, POLSA (Polish Space Agency)
  • Orsolya Ferencz, ministerial commissioner of space research, HUNOR (Hungarian to Orbit)

To join the call, media must register with Axiom Space by 12 p.m., Monday, May 19, at:

https://bit.ly/437SAAh

The Ax-4 launch aboard a SpaceX Dragon spacecraft on the company’s Falcon 9 rocket is targeted no earlier than 9:11 a.m., Sunday, June 8, from NASA’s Kennedy Space Center in Florida.

During the mission aboard the space station, a four-person multi-national crew will complete about 60 research experiments developed for microgravity in collaboration with organizations across the globe.

Peggy Whitson, former NASA astronaut and director of human spaceflight at Axiom Space, will command the commercial mission, while ISRO astronaut Shubhanshu Shukla will serve as pilot. The two mission specialists are ESA project astronaut Sławosz Uznański-Wiśniewski of Poland and Tibor Kapu of Hungary.

The first private astronaut mission to the station, Axiom Mission 1, lifted off in April 2022 for a 17-day mission aboard the orbiting laboratory. The second private astronaut mission to the station, Axiom Mission 2, also was commanded by Whitson and launched in May 2023 for eight days in orbit. The most recent private astronaut mission, Axiom Mission 3, launched in January 2024; the crew spent 18 days docked to the space station.

The International Space Station is a springboard for developing a low Earth economy. NASA’s goal is to achieve a strong economy off the Earth where the agency can purchase services as one of many customers to meet its science and research objectives in microgravity. NASA’s commercial strategy for low Earth orbit provides the government with reliable and safe services at a lower cost, enabling the agency to focus on Artemis missions to the Moon in preparation for Mars while also continuing to use low Earth orbit as a training and proving ground for those deep space missions.

Learn more about NASA’s commercial space strategy at:

https://www.nasa.gov/commercial-space

-end-

Claire O’Shea
Headquarters, Washington
202-358-1100
claire.a.o’shea@nasa.gov

Anna Schneider
Johnson Space Center, Houston
281-483-5111
anna.c.schneider@nasa.gov

Alexis DeJarnette
Axiom Space, Houston
alexis@axiomspace.com

Share Details Last Updated May 14, 2025 LocationNASA Headquarters Related Terms
Categories: NASA

Norovirus vaccine pill protects against winter vomiting bug

New Scientist Space - Cosmology - Wed, 05/14/2025 - 3:00pm
An oral vaccine reduced infection risk in a trial where people were deliberately exposed to high doses of norovirus, and could also slow the spread of the pathogen
Categories: Astronomy

Norovirus vaccine pill protects against winter vomiting bug

New Scientist Space - Space Headlines - Wed, 05/14/2025 - 3:00pm
An oral vaccine reduced infection risk in a trial where people were deliberately exposed to high doses of norovirus, and could also slow the spread of the pathogen
Categories: Astronomy

Exquisite new-to-science frog species has golden legs and odd habits

New Scientist Space - Cosmology - Wed, 05/14/2025 - 3:00pm
A newly described poison dart frog, which is about the size of a thumbnail, has been found in the forests of the Juruá river basin in Brazil
Categories: Astronomy

Exquisite new-to-science frog species has golden legs and odd habits

New Scientist Space - Space Headlines - Wed, 05/14/2025 - 3:00pm
A newly described poison dart frog, which is about the size of a thumbnail, has been found in the forests of the Juruá river basin in Brazil
Categories: Astronomy

Are democratic countries like the UK just climate hypocrites?

New Scientist Space - Cosmology - Wed, 05/14/2025 - 3:00pm
New research suggests wealthy democracies offshore their pollution to other nations – but is that what’s really going on?
Categories: Astronomy

Are democratic countries like the UK just climate hypocrites?

New Scientist Space - Space Headlines - Wed, 05/14/2025 - 3:00pm
New research suggests wealthy democracies offshore their pollution to other nations – but is that what’s really going on?
Categories: Astronomy

'Alien: Earth' is almost ready to burst out, as FX reveals the release date, plot details, and shows off the cast

Space.com - Wed, 05/14/2025 - 3:00pm
Trouble is coming to Earth this summer with FX's Alien: Earth.
Categories: Astronomy

Methane is the Key to Understanding Titan

Universe Today - Wed, 05/14/2025 - 2:24pm

Saturn's moon Titan is the only other body in the Solar System with weather similar to Earth's. The large moon has a thick, nitrogen-rich atmosphere like Earth's, liquid on its surface, and a precipitation cycle. But instead of water, the surface liquid and the precipitation cycle are mainly based on methane.

Categories: Astronomy

NASA Observes First Visible-light Auroras at Mars

NASA - Breaking News - Wed, 05/14/2025 - 2:08pm

6 min read

NASA Observes First Visible-light Auroras at Mars

On March 15, 2024, near the peak of the current solar cycle, the Sun produced a solar flare and an accompanying coronal mass ejection (CME), a massive explosion of gas and magnetic energy that carries with it large amounts of solar energetic particles. This solar activity led to stunning auroras across the solar system, including at Mars, where NASA’s Perseverance Mars rover made history by detecting them for the first time from the surface of another planet.

The first visible-light image of green aurora on Mars (left), taken by the Mastcam-Z instrument on NASA’s Perseverance Mars rover. On the right is a comparison image of the night sky of Mars without aurora but featuring the Martian moon Deimos. The moonlit Martian night sky, lit up mostly by Mars’ nearer and larger moon Phobos (outside the frame) has a reddish-brown hue due to the dust in the atmosphere, so when green auroral light is added, the sky takes on a green-yellow tone, as seen in the left image. NASA/JPL-Caltech/ASU/MSSS/SSI

“This exciting discovery opens up new possibilities for auroral research and confirms that auroras could be visible to future astronauts on Mars’ surface.” said Elise Knutsen, a postdoctoral researcher at the University of Oslo in Norway and lead author of the Science Advances study, which reported the detection.

Picking the right aurora

On Earth, auroras form when solar particles interact with the global magnetic field, funneling them to the poles where they collide with atmospheric gases and emit light. The most common color, green, is caused by excited oxygen atoms emitting light at a wavelength of 557.7 nanometers. For years, scientists have theorized that green light auroras could also exist on Mars but suggested they would be much fainter and harder to capture than the green auroras we see on Earth.

Due to the Red Planet’s lack of a global magnetic field, Mars has different types of auroras than those we have on Earth. One of these is solar energetic particle (SEP) auroras, which NASA’s MAVEN (Mars Atmosphere and Volatile EvolutioN) mission discovered in 2014. These occur when super-energetic particles from the Sun hit the Martian atmosphere, causing a reaction that makes the atmosphere glow across the whole night sky.

While MAVEN had observed SEP auroras in ultraviolet light from orbit, this phenomenon had never been observed in visible light from the ground. Since SEPs typically occur during solar storms, which increase during solar maximum, Knutsen and her team set their sights on capturing visible images and spectra of SEP aurora from Mars’ surface at the peak of the Sun’s current solar cycle.

Coordinating the picture-perfect moment

Through modeling, Knutsen and her team determined the optimal angle for the Perseverance rover’s SuperCam spectrometer and Mastcam-Z camera to successfully observe the SEP aurora in visible light. With this observation strategy in place, it all came down to the timing and understanding of CMEs.

“The trick was to pick a good CME, one that would accelerate and inject many charged particles into Mars’ atmosphere,” said Knutsen.

That is where the teams at NASA’s Moon to Mars (M2M) Space Weather Analysis Office and the Community Coordinated Modeling Center (CCMC), both located at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, came in. The M2M team provides real-time analysis of solar eruptions to the CCMC for initiating simulations of CMEs to determine if they might impact current NASA missions. When the simulations suggest potential impacts, the team sends out an alert.

At the University of California, Berkeley, space physicist Christina Lee received an alert from the M2M office about the March 15, 2024, CME. Lee, a member of the MAVEN mission team who serves as the space weather lead, determined there was a notable solar storm heading toward the Red Planet,which could arrive in a few days. She immediately issued the Mars Space Weather Alert Notification to currently operating Mars missions.

“This allows the science teams of Perseverance and MAVEN to anticipate impacts of interplanetary CMEs and the associated SEPs,” said Lee.

“When we saw the strength of this one,” Knutsen said, “we estimated it could trigger aurora bright enough for our instruments to detect.”

A few days later, the CME impacted Mars, providing a lightshow for the rover to capture, showing the aurora to be nearly uniform across the sky at an emission wavelength of exactly 557.7 nm. To confirm the presence of SEPs during the aurora observation, the team looked to MAVEN’s SEP instrument, which was additionally corroborated by data from ESA’s (European Space Agency) Mars Express mission. Data from both missions confirmed that the rover team had managed to successfully catch a glimpse of the phenomenon in the very narrow time window available.

“This was a fantastic example of cross-mission coordination. We all worked together quickly to facilitate this observation and are thrilled to have finally gotten a sneak peek of what astronauts will be able to see there some day,” said Shannon Curry, MAVEN principal investigator and research scientist at the Laboratory for Atmospheric and Space Physics (LASP) at the University of Colorado Boulder (CU Boulder).

The future of aurora on Mars

By coordinating the Perseverance observations with measurements from MAVEN’s SEP instrument, the teams could help each other determine that the observed 557.7 nm emission came from solar energetic particles. Since this is the same emission line as the green aurora on Earth, it is likely that future Martian astronauts would be able to see this type of aurora.

“Perseverance’s observations of the visible-light aurora confirm a new way to study these phenomena that’s complementary to what we can observe with our Mars orbiters,” said Katie Stack Morgan, acting project scientist for Perseverance at NASA’s Jet Propulsion Laboratory in Southern California. “A better understanding of auroras and the conditions around Mars that lead to their formation are especially important as we prepare to send human explorers there safely.”

On September 21, 2014, NASA’s MAVEN (Mars Atmosphere and Volatile EvolutioN) spacecraft entered orbit around Mars. The mission has produced a wealth of data about how Mars’ atmosphere responds to the Sun and solar wind NASA/JPL-Caltech More About Perseverance and MAVEN

The Mars 2020 Perseverance mission is part of NASA’s Mars Exploration Program portfolio and NASA’s Moon to Mars exploration approach, which includes Artemis missions to the Moon that will help prepare for human exploration of the Red Planet. NASA’s Jet Propulsion Laboratory, which is managed for the agency by Caltech, built and manages operations of the Perseverance rover.

The MAVEN mission, also part of NASA’s Mars Exploration Program portfolio, is led by LASP at CU Boulder. It’s managed by NASA’s Goddard Space Flight Center and was built and operated by Lockheed Martin Space, with navigation and network support from NASA’s JPL.

By Willow Reed
Laboratory for Atmospheric and Space Physics (LASP), University of Colorado Boulder

Media Contact: 

Karen Fox / Molly Wasser

Headquarters, Washington

202-358-1600

karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov  

Nancy N. Jones
NASA’s Goddard Space Flight Center, Greenbelt, Md.

DC Agle
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-9011
agle@jpl.nasa.gov

Share

Details

Last Updated

May 14, 2025

Related Terms
Categories: NASA

NASA Observes First Visible-light Auroras at Mars

NASA News - Wed, 05/14/2025 - 2:08pm

6 min read

NASA Observes First Visible-light Auroras at Mars

On March 15, 2024, near the peak of the current solar cycle, the Sun produced a solar flare and an accompanying coronal mass ejection (CME), a massive explosion of gas and magnetic energy that carries with it large amounts of solar energetic particles. This solar activity led to stunning auroras across the solar system, including at Mars, where NASA’s Perseverance Mars rover made history by detecting them for the first time from the surface of another planet.

The first visible-light image of green aurora on Mars (left), taken by the Mastcam-Z instrument on NASA’s Perseverance Mars rover. On the right is a comparison image of the night sky of Mars without aurora but featuring the Martian moon Deimos. The moonlit Martian night sky, lit up mostly by Mars’ nearer and larger moon Phobos (outside the frame) has a reddish-brown hue due to the dust in the atmosphere, so when green auroral light is added, the sky takes on a green-yellow tone, as seen in the left image. NASA/JPL-Caltech/ASU/MSSS/SSI

“This exciting discovery opens up new possibilities for auroral research and confirms that auroras could be visible to future astronauts on Mars’ surface.” said Elise Knutsen, a postdoctoral researcher at the University of Oslo in Norway and lead author of the Science Advances study, which reported the detection.

Picking the right aurora

On Earth, auroras form when solar particles interact with the global magnetic field, funneling them to the poles where they collide with atmospheric gases and emit light. The most common color, green, is caused by excited oxygen atoms emitting light at a wavelength of 557.7 nanometers. For years, scientists have theorized that green light auroras could also exist on Mars but suggested they would be much fainter and harder to capture than the green auroras we see on Earth.

Due to the Red Planet’s lack of a global magnetic field, Mars has different types of auroras than those we have on Earth. One of these is solar energetic particle (SEP) auroras, which NASA’s MAVEN (Mars Atmosphere and Volatile EvolutioN) mission discovered in 2014. These occur when super-energetic particles from the Sun hit the Martian atmosphere, causing a reaction that makes the atmosphere glow across the whole night sky.

While MAVEN had observed SEP auroras in ultraviolet light from orbit, this phenomenon had never been observed in visible light from the ground. Since SEPs typically occur during solar storms, which increase during solar maximum, Knutsen and her team set their sights on capturing visible images and spectra of SEP aurora from Mars’ surface at the peak of the Sun’s current solar cycle.

Coordinating the picture-perfect moment

Through modeling, Knutsen and her team determined the optimal angle for the Perseverance rover’s SuperCam spectrometer and Mastcam-Z camera to successfully observe the SEP aurora in visible light. With this observation strategy in place, it all came down to the timing and understanding of CMEs.

“The trick was to pick a good CME, one that would accelerate and inject many charged particles into Mars’ atmosphere,” said Knutsen.

That is where the teams at NASA’s Moon to Mars (M2M) Space Weather Analysis Office and the Community Coordinated Modeling Center (CCMC), both located at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, came in. The M2M team provides real-time analysis of solar eruptions to the CCMC for initiating simulations of CMEs to determine if they might impact current NASA missions. When the simulations suggest potential impacts, the team sends out an alert.

At the University of California, Berkeley, space physicist Christina Lee received an alert from the M2M office about the March 15, 2024, CME. Lee, a member of the MAVEN mission team who serves as the space weather lead, determined there was a notable solar storm heading toward the Red Planet,which could arrive in a few days. She immediately issued the Mars Space Weather Alert Notification to currently operating Mars missions.

“This allows the science teams of Perseverance and MAVEN to anticipate impacts of interplanetary CMEs and the associated SEPs,” said Lee.

“When we saw the strength of this one,” Knutsen said, “we estimated it could trigger aurora bright enough for our instruments to detect.”

A few days later, the CME impacted Mars, providing a lightshow for the rover to capture, showing the aurora to be nearly uniform across the sky at an emission wavelength of exactly 557.7 nm. To confirm the presence of SEPs during the aurora observation, the team looked to MAVEN’s SEP instrument, which was additionally corroborated by data from ESA’s (European Space Agency) Mars Express mission. Data from both missions confirmed that the rover team had managed to successfully catch a glimpse of the phenomenon in the very narrow time window available.

“This was a fantastic example of cross-mission coordination. We all worked together quickly to facilitate this observation and are thrilled to have finally gotten a sneak peek of what astronauts will be able to see there some day,” said Shannon Curry, MAVEN principal investigator and research scientist at the Laboratory for Atmospheric and Space Physics (LASP) at the University of Colorado Boulder (CU Boulder).

The future of aurora on Mars

By coordinating the Perseverance observations with measurements from MAVEN’s SEP instrument, the teams could help each other determine that the observed 557.7 nm emission came from solar energetic particles. Since this is the same emission line as the green aurora on Earth, it is likely that future Martian astronauts would be able to see this type of aurora.

“Perseverance’s observations of the visible-light aurora confirm a new way to study these phenomena that’s complementary to what we can observe with our Mars orbiters,” said Katie Stack Morgan, acting project scientist for Perseverance at NASA’s Jet Propulsion Laboratory in Southern California. “A better understanding of auroras and the conditions around Mars that lead to their formation are especially important as we prepare to send human explorers there safely.”

On September 21, 2014, NASA’s MAVEN (Mars Atmosphere and Volatile EvolutioN) spacecraft entered orbit around Mars. The mission has produced a wealth of data about how Mars’ atmosphere responds to the Sun and solar wind NASA/JPL-Caltech More About Perseverance and MAVEN

The Mars 2020 Perseverance mission is part of NASA’s Mars Exploration Program portfolio and NASA’s Moon to Mars exploration approach, which includes Artemis missions to the Moon that will help prepare for human exploration of the Red Planet. NASA’s Jet Propulsion Laboratory, which is managed for the agency by Caltech, built and manages operations of the Perseverance rover.

The MAVEN mission, also part of NASA’s Mars Exploration Program portfolio, is led by LASP at CU Boulder. It’s managed by NASA’s Goddard Space Flight Center and was built and operated by Lockheed Martin Space, with navigation and network support from NASA’s JPL.

By Willow Reed
Laboratory for Atmospheric and Space Physics (LASP), University of Colorado Boulder

Media Contact: 

Karen Fox / Molly Wasser

Headquarters, Washington

202-358-1600

karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov  

Nancy N. Jones
NASA’s Goddard Space Flight Center, Greenbelt, Md.

DC Agle
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-9011
agle@jpl.nasa.gov

Share

Details

Last Updated

May 14, 2025

Related Terms
Categories: NASA

NASA’s Magellan Mission Reveals Possible Tectonic Activity on Venus

NASA - Breaking News - Wed, 05/14/2025 - 2:06pm

6 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) New research suggests vast surface features on Venus called coronae continue to be shaped by tectonic processes. Observations of these features from NASA’s Magellan mission include, clockwise from top left, Artemis Corona, Quetzalpetlatl Corona, Bahet Corona, and Fotla Corona.NASA/JPL-Caltech

Using archival data from the mission, launched in 1989, researchers have uncovered new evidence that tectonic activity may be deforming the planet’s surface.

Vast, quasi-circular features on Venus’ surface may reveal that the planet has ongoing tectonics, according to new research based on data gathered more than 30 years ago by NASA’s Magellan mission. On Earth, the planet’s surface is continually renewed by the constant shifting and recycling of massive sections of crust, called tectonic plates, that float atop a viscous interior. Venus doesn’t have tectonic plates, but its surface is still being deformed by molten material from below.

Seeking to better understand the underlying processes driving these deformations, the researchers studied a type of feature called a corona. Ranging in size from dozens to hundreds of miles across, a corona is most often thought to be the location where a plume of hot, buoyant material from the planet’s mantle rises, pushing against the lithosphere above. (The lithosphere includes the planet’s crust and the uppermost part of its mantle.) These structures are usually oval, with a concentric fracture system surrounding them. Hundreds of coronae are known to exist on Venus.

Published in the journal Science Advances, the new study details newly discovered signs of activity at or beneath the surface shaping many of Venus’ coronae, features that may also provide a unique window into Earth’s past. The researchers found the evidence of this tectonic activity within data from NASA’s Magellan mission, which orbited Venus in the 1990s and gathered the most detailed gravity and topography data on the planet currently available.

“Coronae are not found on Earth today; however, they may have existed when our planet was young and before plate tectonics had been established,” said the study’s lead author, Gael Cascioli, assistant research scientist at the University of Maryland, Baltimore County, and NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “By combining gravity and topography data, this research has provided a new and important insight into the possible subsurface processes currently shaping the surface of Venus.”

This artist’s concept of the large Quetzalpetlatl Corona located in Venus’ southern hemisphere depicts active volcanism and a subduction zone, where the foreground crust plunges into the planet’s interior. A new study suggests coronae are the locations of several types of tectonic activity.NASA/JPL-Caltech/Peter Rubin

As members of NASA’s forthcoming VERITAS (Venus Emissivity, Radio science, InSAR, Topography, and Spectroscopy) mission, Cascioli and his team are particularly interested in the high-resolution gravity data the spacecraft will provide. Study coauthor Erwan Mazarico, also at Goddard, will co-lead the VERITAS gravity experiment when the mission launches no earlier than 2031.

Mystery Coronae

Managed by NASA’s Jet Propulsion Laboratory in Southern California, Magellan used its radar system to see through Venus’ thick atmosphere and map the topography of its mountains and plains. Of the geological features the spacecraft mapped, coronae were perhaps the most enigmatic: It wasn’t clear how they formed. In the years since, scientists have found many coronae in locations where the planet’s lithosphere is thin and heat flow is high.

“Coronae are abundant on Venus. They are very large features, and people have proposed different theories over the years as to how they formed,” said coauthor Anna Gülcher, Earth and planetary scientist at the University of Bern in Switzerland. “The most exciting thing for our study is that we can now say there are most likely various and ongoing active processes driving their formation. We believe these same processes may have occurred early in Earth’s history.”

The researchers developed sophisticated 3D geodynamic models that demonstrate various formation scenarios for plume-induced coronae and compared them with the combined gravity and topography data from Magellan. The gravity data proved crucial in helping the researchers detect less dense, hot, and buoyant plumes under the surface — information that couldn’t be discerned from topography data alone. Of the 75 coronae studied, 52 appear to have buoyant mantle material beneath them that is likely driving tectonic processes.

One key process is subduction: On Earth, it happens when the edge of one tectonic plate is driven beneath the adjacent plate. Friction between the plates can generate earthquakes, and as the old rocky material dives into the hot mantle, the rock melts and is recycled back to the surface via volcanic vents.

These illustrations depict various types of tectonic activity thought to persist beneath Venus’ coronae. Lithospheric dripping and subduction are shown at top; below are and two scenarios where hot plume material rises and pushes against the lithosphere, potentially driving volcanism above it.Anna Gülcher, CC BY-NC

On Venus, a different kind of subduction is thought to occur around the perimeter of some coronae. In this scenario, as a buoyant plume of hot rock in the mantle pushes upward into the lithosphere, surface material rises and spreads outward, colliding with surrounding surface material and pushing that material downward into the mantle.

Another tectonic process known as lithospheric dripping could also be present, where dense accumulations of comparatively cool material sink from the lithosphere into the hot mantle. The researchers also identify several places where a third process may be taking place: A plume of molten rock beneath a thicker part of the lithosphere potentially drives volcanism above it.

Deciphering Venus

This work marks the latest instance of scientists returning to Magellan data to find that Venus exhibits geologic processes that are more Earth-like than originally thought. Recently, researchers were able to spot erupting volcanoes, including vast lava flows that vented from Maat Mons, Sif Mons, and Eistla Regio in radar images from the orbiter.

While those images provided direct evidence of volcanic action, the authors of the new study will need sharper resolution to draw a complete picture about the tectonic processes driving corona formation. “The VERITAS gravity maps of Venus will boost the resolution by at least a factor of two to four, depending on location — a level of detail that could revolutionize our understanding of Venus’ geology and implications for early Earth,” said study coauthor Suzanne Smrekar, a planetary scientist at JPL and principal investigator for VERITAS.

Managed by JPL, VERITAS will use a synthetic aperture radar to create 3D global maps and a near-infrared spectrometer to figure out what the surface of Venus is made of.  Using its radio tracking system, the spacecraft will also measure the planet’s gravitational field to determine the structure of Venus’ interior. All of these instruments will help pinpoint areas of activity on the surface.

For more information about NASA’s VERITAS mission, visit:

https://science.nasa.gov/mission/veritas/

News Media Contacts

Ian J. O’Neill
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-2649
ian.j.oneill@jpl.nasa.gov

Karen Fox / Molly Wasser
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.govmolly.l.wasser@nasa.gov

2025-068

Share Details Last Updated May 14, 2025 Related Terms Explore More 6 min read NASA Studies Reveal Hidden Secrets About Interiors of Moon, Vesta Article 8 hours ago 5 min read NASA’s Europa Clipper Captures Mars in Infrared Article 2 days ago 3 min read NASA Study Reveals Venus Crust Surprise

New details about the crust on Venus include some surprises about the geology of Earth’s…

Article 5 days ago
Keep Exploring Discover Related Topics

Missions

Humans in Space

Climate Change

Solar System

Categories: NASA

NASA’s Magellan Mission Reveals Possible Tectonic Activity on Venus

NASA News - Wed, 05/14/2025 - 2:06pm

6 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) New research suggests vast surface features on Venus called coronae continue to be shaped by tectonic processes. Observations of these features from NASA’s Magellan mission include, clockwise from top left, Artemis Corona, Quetzalpetlatl Corona, Bahet Corona, and Fotla Corona.NASA/JPL-Caltech

Using archival data from the mission, launched in 1989, researchers have uncovered new evidence that tectonic activity may be deforming the planet’s surface.

Vast, quasi-circular features on Venus’ surface may reveal that the planet has ongoing tectonics, according to new research based on data gathered more than 30 years ago by NASA’s Magellan mission. On Earth, the planet’s surface is continually renewed by the constant shifting and recycling of massive sections of crust, called tectonic plates, that float atop a viscous interior. Venus doesn’t have tectonic plates, but its surface is still being deformed by molten material from below.

Seeking to better understand the underlying processes driving these deformations, the researchers studied a type of feature called a corona. Ranging in size from dozens to hundreds of miles across, a corona is most often thought to be the location where a plume of hot, buoyant material from the planet’s mantle rises, pushing against the lithosphere above. (The lithosphere includes the planet’s crust and the uppermost part of its mantle.) These structures are usually oval, with a concentric fracture system surrounding them. Hundreds of coronae are known to exist on Venus.

Published in the journal Science Advances, the new study details newly discovered signs of activity at or beneath the surface shaping many of Venus’ coronae, features that may also provide a unique window into Earth’s past. The researchers found the evidence of this tectonic activity within data from NASA’s Magellan mission, which orbited Venus in the 1990s and gathered the most detailed gravity and topography data on the planet currently available.

“Coronae are not found on Earth today; however, they may have existed when our planet was young and before plate tectonics had been established,” said the study’s lead author, Gael Cascioli, assistant research scientist at the University of Maryland, Baltimore County, and NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “By combining gravity and topography data, this research has provided a new and important insight into the possible subsurface processes currently shaping the surface of Venus.”

This artist’s concept of the large Quetzalpetlatl Corona located in Venus’ southern hemisphere depicts active volcanism and a subduction zone, where the foreground crust plunges into the planet’s interior. A new study suggests coronae are the locations of several types of tectonic activity.NASA/JPL-Caltech/Peter Rubin

As members of NASA’s forthcoming VERITAS (Venus Emissivity, Radio science, InSAR, Topography, and Spectroscopy) mission, Cascioli and his team are particularly interested in the high-resolution gravity data the spacecraft will provide. Study coauthor Erwan Mazarico, also at Goddard, will co-lead the VERITAS gravity experiment when the mission launches no earlier than 2031.

Mystery Coronae

Managed by NASA’s Jet Propulsion Laboratory in Southern California, Magellan used its radar system to see through Venus’ thick atmosphere and map the topography of its mountains and plains. Of the geological features the spacecraft mapped, coronae were perhaps the most enigmatic: It wasn’t clear how they formed. In the years since, scientists have found many coronae in locations where the planet’s lithosphere is thin and heat flow is high.

“Coronae are abundant on Venus. They are very large features, and people have proposed different theories over the years as to how they formed,” said coauthor Anna Gülcher, Earth and planetary scientist at the University of Bern in Switzerland. “The most exciting thing for our study is that we can now say there are most likely various and ongoing active processes driving their formation. We believe these same processes may have occurred early in Earth’s history.”

The researchers developed sophisticated 3D geodynamic models that demonstrate various formation scenarios for plume-induced coronae and compared them with the combined gravity and topography data from Magellan. The gravity data proved crucial in helping the researchers detect less dense, hot, and buoyant plumes under the surface — information that couldn’t be discerned from topography data alone. Of the 75 coronae studied, 52 appear to have buoyant mantle material beneath them that is likely driving tectonic processes.

One key process is subduction: On Earth, it happens when the edge of one tectonic plate is driven beneath the adjacent plate. Friction between the plates can generate earthquakes, and as the old rocky material dives into the hot mantle, the rock melts and is recycled back to the surface via volcanic vents.

These illustrations depict various types of tectonic activity thought to persist beneath Venus’ coronae. Lithospheric dripping and subduction are shown at top; below are and two scenarios where hot plume material rises and pushes against the lithosphere, potentially driving volcanism above it.Anna Gülcher, CC BY-NC

On Venus, a different kind of subduction is thought to occur around the perimeter of some coronae. In this scenario, as a buoyant plume of hot rock in the mantle pushes upward into the lithosphere, surface material rises and spreads outward, colliding with surrounding surface material and pushing that material downward into the mantle.

Another tectonic process known as lithospheric dripping could also be present, where dense accumulations of comparatively cool material sink from the lithosphere into the hot mantle. The researchers also identify several places where a third process may be taking place: A plume of molten rock beneath a thicker part of the lithosphere potentially drives volcanism above it.

Deciphering Venus

This work marks the latest instance of scientists returning to Magellan data to find that Venus exhibits geologic processes that are more Earth-like than originally thought. Recently, researchers were able to spot erupting volcanoes, including vast lava flows that vented from Maat Mons, Sif Mons, and Eistla Regio in radar images from the orbiter.

While those images provided direct evidence of volcanic action, the authors of the new study will need sharper resolution to draw a complete picture about the tectonic processes driving corona formation. “The VERITAS gravity maps of Venus will boost the resolution by at least a factor of two to four, depending on location — a level of detail that could revolutionize our understanding of Venus’ geology and implications for early Earth,” said study coauthor Suzanne Smrekar, a planetary scientist at JPL and principal investigator for VERITAS.

Managed by JPL, VERITAS will use a synthetic aperture radar to create 3D global maps and a near-infrared spectrometer to figure out what the surface of Venus is made of.  Using its radio tracking system, the spacecraft will also measure the planet’s gravitational field to determine the structure of Venus’ interior. All of these instruments will help pinpoint areas of activity on the surface.

For more information about NASA’s VERITAS mission, visit:

https://science.nasa.gov/mission/veritas/

News Media Contacts

Ian J. O’Neill
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-2649
ian.j.oneill@jpl.nasa.gov

Karen Fox / Molly Wasser
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.govmolly.l.wasser@nasa.gov

2025-068

Share Details Last Updated May 14, 2025 Related Terms Explore More 6 min read NASA Studies Reveal Hidden Secrets About Interiors of Moon, Vesta Article 5 hours ago 5 min read NASA’s Europa Clipper Captures Mars in Infrared Article 2 days ago 3 min read NASA Study Reveals Venus Crust Surprise

New details about the crust on Venus include some surprises about the geology of Earth’s…

Article 5 days ago
Keep Exploring Discover Related Topics

Missions

Humans in Space

Climate Change

Solar System

Categories: NASA

Hubble Pinpoints Young Stars in Spiral Galaxy

NASA - Breaking News - Wed, 05/14/2025 - 2:05pm
Explore Hubble

2 min read

Hubble Pinpoints Young Stars in Spiral Galaxy This NASA/ESA Hubble Space Telescope image features the spiral galaxy NGC 1317. ESA/Hubble & NASA, J. Lee and the PHANGS-HST Team

In this image, the NASA/ESA Hubble Space Telescope peers into the spiral galaxy NGC 1317 in the constellation Fornax, located more than 50 million light-years from Earth. Visible in this galaxy image is a bright blue ring that hosts hot, young stars. NGC 1317 is one of a pair, but its rowdy larger neighbor, NGC 1316, lies outside Hubble’s field of view. Despite the absence of its neighboring galaxy, this image finds NGC 1317 accompanied by two objects from very different parts of the universe. The bright point ringed with a crisscross pattern is a star from our own galaxy surrounded by diffraction spikes, whereas the redder elongated smudge is a distant galaxy lying far beyond NGC 1317.

The data presented in this image are from a vast observing campaign of hundreds of observations from Hubble’s Wide Field Camera 3 and Advanced Camera for Surveys. Combined with data from the ALMA array in the Atacama Desert, these observations help astronomers chart the connections between vast clouds of cold gas and the fiercely hot, young stars that form within them. ALMA’s unparalleled sensitivity at long wavelengths identified vast reservoirs of cold gas throughout the local universe, and Hubble’s sharp vision pinpointed clusters of young stars, as well as measuring their ages and masses.

Often the most exciting astronomical discoveries require this kind of telescope teamwork, with cutting-edge facilities working together to provide astronomers with information across the electromagnetic spectrum. The same applies to Hubble’s observations that laid the groundwork for the NASA/ESA/CSA James Webb Space Telescope’s scientific observations.

Facebook logo @NASAHubble

@NASAHubble

Instagram logo @NASAHubble

Media Contact:

Claire Andreoli (claire.andreoli@nasa.gov)
NASA’s Goddard Space Flight CenterGreenbelt, MD

Share

Details

Last Updated

May 14, 2025

Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center

Related Terms Keep Exploring Discover More Topics From Hubble

Hubble Space Telescope

Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


Hubble’s Galaxies


Hubble Science Highlights


Science Behind the Discoveries

Categories: NASA

Hubble Pinpoints Young Stars in Spiral Galaxy

NASA News - Wed, 05/14/2025 - 2:05pm
Explore Hubble

2 min read

Hubble Pinpoints Young Stars in Spiral Galaxy This NASA/ESA Hubble Space Telescope image features the spiral galaxy NGC 1317. ESA/Hubble & NASA, J. Lee and the PHANGS-HST Team

In this image, the NASA/ESA Hubble Space Telescope peers into the spiral galaxy NGC 1317 in the constellation Fornax, located more than 50 million light-years from Earth. Visible in this galaxy image is a bright blue ring that hosts hot, young stars. NGC 1317 is one of a pair, but its rowdy larger neighbor, NGC 1316, lies outside Hubble’s field of view. Despite the absence of its neighboring galaxy, this image finds NGC 1317 accompanied by two objects from very different parts of the universe. The bright point ringed with a crisscross pattern is a star from our own galaxy surrounded by diffraction spikes, whereas the redder elongated smudge is a distant galaxy lying far beyond NGC 1317.

The data presented in this image are from a vast observing campaign of hundreds of observations from Hubble’s Wide Field Camera 3 and Advanced Camera for Surveys. Combined with data from the ALMA array in the Atacama Desert, these observations help astronomers chart the connections between vast clouds of cold gas and the fiercely hot, young stars that form within them. ALMA’s unparalleled sensitivity at long wavelengths identified vast reservoirs of cold gas throughout the local universe, and Hubble’s sharp vision pinpointed clusters of young stars, as well as measuring their ages and masses.

Often the most exciting astronomical discoveries require this kind of telescope teamwork, with cutting-edge facilities working together to provide astronomers with information across the electromagnetic spectrum. The same applies to Hubble’s observations that laid the groundwork for the NASA/ESA/CSA James Webb Space Telescope’s scientific observations.

Facebook logo @NASAHubble

@NASAHubble

Instagram logo @NASAHubble

Media Contact:

Claire Andreoli (claire.andreoli@nasa.gov)
NASA’s Goddard Space Flight CenterGreenbelt, MD

Share

Details

Last Updated

May 14, 2025

Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center

Related Terms Keep Exploring Discover More Topics From Hubble

Hubble Space Telescope

Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


Hubble’s Galaxies


Hubble Science Highlights


Science Behind the Discoveries

Categories: NASA

Remarkable photos highlight the haunting resilience of nature

New Scientist Space - Space Headlines - Wed, 05/14/2025 - 2:00pm
Acclaimed photographers Paul Nicklen and Cristina Mittermeier showcase a changing planet as part of the Photo London photography fair
Categories: Astronomy