"I never think about the future. It comes soon enough."

— Albert Einstein

Feed aggregator

Roman Space Telescope will use a century-old idea from Einstein to probe the nature of mysterious dark matter

Space.com - Tue, 06/17/2025 - 10:00am
Get ready for a new Roman Empire: A NASA space telescope will detect a staggering wealth of intricate gravitational lenses that could help unlock the mysteries of dark matter.
Categories: Astronomy

A New Hybrid System Could Enable Spacecraft Attitude Control Systems to Perform Scientific Measurements

NASA - Breaking News - Tue, 06/17/2025 - 9:50am

A NASA-sponsored team is creating a new approach to measure magnetic fields by developing a new system that can both take scientific measurements and provide spacecraft attitude control functions. This new system is small, lightweight, and can be accommodated onboard the spacecraft, eliminating the need for the boom structure that is typically required to measure Earth’s magnetic field, thus allowing smaller, lower-cost spacecraft to take these measurements. In fact, this new system could not only enable small spacecraft to measure the magnetic field, it could replace the standard attitude control systems in future spacecraft that orbit Earth, allowing them to provide the important global measurements that enable us to understand how Earth’s magnetic field protects us from dangerous solar particles.

Photo of the aurora (taken in Alaska) showing small scale features that are often present. Credit: NASA/Sebastian Saarloos

Solar storms drive space weather that threatens our many assets in space and can also disrupt Earth’s upper atmosphere impacting our communications and power grids. Thankfully, the Earth’s magnetic field protects us and funnels much of that energy into the north and south poles creating aurorae. The aurorae are a beautiful display of the electromagnetic energy and currents that flow throughout the Earth’s space environment. They often have small-scale magnetic features that affect the total energy flowing through the system. Observing these small features requires multiple simultaneous observations over a broad range of spatial and temporal scales, which can be accomplished by constellations of small spacecraft.

To enable such constellations, NASA is developing an innovative hybrid magnetometer that makes both direct current (DC) and alternating current (AC) magnetic measurements and is embedded in the spacecraft’s attitude determination and control system (ADCS)—the system that enables the satellite to know and control where it is pointing. High-performance, low SWAP+C (low-size, weight and power + cost) instruments are required, as is the ability to manufacture and test large numbers of these instruments within a typical flight build schedule. Future commercial or scientific satellites could use these small, lightweight embedded hybrid magnetometers to take the types of measurements that will expand our understanding of space weather and how Earth’s magnetic field responds to solar storms

It is typically not possible to take research-quality DC and AC magnetic measurements using sensors within an ADCS since the ADCS is inside the spacecraft and near contaminating sources of magnetic noise such as magnetic torque rods—the electromagnets that generate a magnetic field and push against the Earth’s magnetic field to control the orientation of a spacecraft. Previous missions that have flown both DC and AC magnetometers placed them on long booms pointing in opposite directions from the satellite to keep the sensors as far from the spacecraft and each other as possible. In addition, the typical magnetometer used by an ADCS to measure the orientation of the spacecraft with respect to the geomagnetic field does not sample fast enough to measure the high-frequency signals needed to make magnetic field observations.

A NASA-sponsored team at the University of Michigan is developing a new hybrid magnetometer and attitude determination and control system (HyMag-ADCS) that is a low-SWAP single package that can be integrated into a spacecraft without booms. HyMag-ADCS consists of a three-axis search coil AC magnetometer and a three-axis Quad-Mag DC magnetometer. The Quad-Mag DC magnetometer uses machine learning to enable boomless DC magnetometery, and the hybrid search-coil AC magnetometer includes attitude determination torque rods to enable the single 1U volume (103 cm) system to perform ADCS functions as well as collect science measurements.

The magnetic torque rod and search coil sensor (left) and the Quad-Mag magnetometer prototype (right). Credit: Mark Moldwin

The HyMag-ADCS team is incorporating the following technologies into the system to ensure success.

Quad-Mag Hardware: The Quad-Mag DC magnetometer consists of four magneto-inductive magnetometers and a space-qualified micro-controller mounted on a single CubeSat form factor (10 x 10 cm) printed circuit board. These two types of devices are commercially available. Combining multiple sensors on a single board increases the instrument’s sensitivity by a factor of two compared to using a single sensor. In addition, the distributed sensors enable noise identification on small satellites, providing the science-grade magnetometer sensing that is key for both magnetic field measurements and attitude determination. The same type of magnetometer is part of the NASA Artemis Lunar Gateway Heliophysics Environmental and Radiation Measurement Experiment Suite (HERMES) Noisy Environment Magnetometer in a Small Integrated System (NEMISIS) magnetometer scheduled for launch in early 2027.

Dual-use Electromagnetic Rods: The HyMag-ADCS team is using search coil electronics and torque rod electronics that were developed for other efforts in a new way. Use of these two electronics systems enables the electromagnetic rods in the HyMag-ADCS system to be used in two different ways—as torque rods for attitude determination and as search coils to make scientific measurements. The search coil electronics were designed for ground-based measurements to observe ultra-low frequency signals up to a few kHz that are generated by magnetic beacons for indoor localization. The torque rod electronics were designed for use on CubeSats and have flown on several University of Michigan CubeSats (e.g., CubeSat-investigating Atmospheric Density Response to Extreme driving [CADRE]). The HyMag-ADCS concept is to use the torque rod electronics as needed for attitude control and use the search coil electronics the rest of the time to make scientific AC magnetic field measurements.

Machine Learning Algorithms for Spacecraft Noise Identification: Applying machine learning to these distributed sensors will autonomously remove noise generated by the spacecraft. The team is developing a powerful Unsupervised Blind Source Separation (UBSS) algorithm and a new method called Wavelet Adaptive Interference Cancellation for Underdetermined Platforms (WAIC-UP) to perform this task, and this method has already been demonstrated in simulation and the lab.

The HyMag-ADCS system is early in its development stage, and a complete engineering design unit is under development. The project is being completed primarily with undergraduate and graduate students, providing hands-on experiential training for upcoming scientists and engineers.

Early career electrical engineer Julio Vata and PhD student Jhanene Heying-Melendrez with art student resident Ana Trujillo Garcia in the magnetometer lab testing prototypes. Credit: Mark Moldwin

For additional details, see the entry for this project on NASA TechPort .

Project Lead: Prof. Mark Moldwin, University of Michigan

Sponsoring Organization: NASA Heliophysics Division’s Heliophysics Technology and Instrument Development for Science (H-TIDeS) program.

Share

Details

Last Updated

Jun 17, 2025

Related Terms Explore More

2 min read Hubble Studies a Spiral’s Supernova Scene

Article


4 days ago

5 min read NASA Launching Rockets Into Radio-Disrupting Clouds

Article


5 days ago

2 min read Hubble Captures Starry Spectacle

Article


2 weeks ago

Categories: NASA

A New Hybrid System Could Enable Spacecraft Attitude Control Systems to Perform Scientific Measurements

NASA News - Tue, 06/17/2025 - 9:50am

A NASA-sponsored team is creating a new approach to measure magnetic fields by developing a new system that can both take scientific measurements and provide spacecraft attitude control functions. This new system is small, lightweight, and can be accommodated onboard the spacecraft, eliminating the need for the boom structure that is typically required to measure Earth’s magnetic field, thus allowing smaller, lower-cost spacecraft to take these measurements. In fact, this new system could not only enable small spacecraft to measure the magnetic field, it could replace the standard attitude control systems in future spacecraft that orbit Earth, allowing them to provide the important global measurements that enable us to understand how Earth’s magnetic field protects us from dangerous solar particles.

Photo of the aurora (taken in Alaska) showing small scale features that are often present. Credit: NASA/Sebastian Saarloos

Solar storms drive space weather that threatens our many assets in space and can also disrupt Earth’s upper atmosphere impacting our communications and power grids. Thankfully, the Earth’s magnetic field protects us and funnels much of that energy into the north and south poles creating aurorae. The aurorae are a beautiful display of the electromagnetic energy and currents that flow throughout the Earth’s space environment. They often have small-scale magnetic features that affect the total energy flowing through the system. Observing these small features requires multiple simultaneous observations over a broad range of spatial and temporal scales, which can be accomplished by constellations of small spacecraft.

To enable such constellations, NASA is developing an innovative hybrid magnetometer that makes both direct current (DC) and alternating current (AC) magnetic measurements and is embedded in the spacecraft’s attitude determination and control system (ADCS)—the system that enables the satellite to know and control where it is pointing. High-performance, low SWAP+C (low-size, weight and power + cost) instruments are required, as is the ability to manufacture and test large numbers of these instruments within a typical flight build schedule. Future commercial or scientific satellites could use these small, lightweight embedded hybrid magnetometers to take the types of measurements that will expand our understanding of space weather and how Earth’s magnetic field responds to solar storms

It is typically not possible to take research-quality DC and AC magnetic measurements using sensors within an ADCS since the ADCS is inside the spacecraft and near contaminating sources of magnetic noise such as magnetic torque rods—the electromagnets that generate a magnetic field and push against the Earth’s magnetic field to control the orientation of a spacecraft. Previous missions that have flown both DC and AC magnetometers placed them on long booms pointing in opposite directions from the satellite to keep the sensors as far from the spacecraft and each other as possible. In addition, the typical magnetometer used by an ADCS to measure the orientation of the spacecraft with respect to the geomagnetic field does not sample fast enough to measure the high-frequency signals needed to make magnetic field observations.

A NASA-sponsored team at the University of Michigan is developing a new hybrid magnetometer and attitude determination and control system (HyMag-ADCS) that is a low-SWAP single package that can be integrated into a spacecraft without booms. HyMag-ADCS consists of a three-axis search coil AC magnetometer and a three-axis Quad-Mag DC magnetometer. The Quad-Mag DC magnetometer uses machine learning to enable boomless DC magnetometery, and the hybrid search-coil AC magnetometer includes attitude determination torque rods to enable the single 1U volume (103 cm) system to perform ADCS functions as well as collect science measurements.

The magnetic torque rod and search coil sensor (left) and the Quad-Mag magnetometer prototype (right). Credit: Mark Moldwin

The HyMag-ADCS team is incorporating the following technologies into the system to ensure success.

Quad-Mag Hardware: The Quad-Mag DC magnetometer consists of four magneto-inductive magnetometers and a space-qualified micro-controller mounted on a single CubeSat form factor (10 x 10 cm) printed circuit board. These two types of devices are commercially available. Combining multiple sensors on a single board increases the instrument’s sensitivity by a factor of two compared to using a single sensor. In addition, the distributed sensors enable noise identification on small satellites, providing the science-grade magnetometer sensing that is key for both magnetic field measurements and attitude determination. The same type of magnetometer is part of the NASA Artemis Lunar Gateway Heliophysics Environmental and Radiation Measurement Experiment Suite (HERMES) Noisy Environment Magnetometer in a Small Integrated System (NEMISIS) magnetometer scheduled for launch in early 2027.

Dual-use Electromagnetic Rods: The HyMag-ADCS team is using search coil electronics and torque rod electronics that were developed for other efforts in a new way. Use of these two electronics systems enables the electromagnetic rods in the HyMag-ADCS system to be used in two different ways—as torque rods for attitude determination and as search coils to make scientific measurements. The search coil electronics were designed for ground-based measurements to observe ultra-low frequency signals up to a few kHz that are generated by magnetic beacons for indoor localization. The torque rod electronics were designed for use on CubeSats and have flown on several University of Michigan CubeSats (e.g., CubeSat-investigating Atmospheric Density Response to Extreme driving [CADRE]). The HyMag-ADCS concept is to use the torque rod electronics as needed for attitude control and use the search coil electronics the rest of the time to make scientific AC magnetic field measurements.

Machine Learning Algorithms for Spacecraft Noise Identification: Applying machine learning to these distributed sensors will autonomously remove noise generated by the spacecraft. The team is developing a powerful Unsupervised Blind Source Separation (UBSS) algorithm and a new method called Wavelet Adaptive Interference Cancellation for Underdetermined Platforms (WAIC-UP) to perform this task, and this method has already been demonstrated in simulation and the lab.

The HyMag-ADCS system is early in its development stage, and a complete engineering design unit is under development. The project is being completed primarily with undergraduate and graduate students, providing hands-on experiential training for upcoming scientists and engineers.

Early career electrical engineer Julio Vata and PhD student Jhanene Heying-Melendrez with art student resident Ana Trujillo Garcia in the magnetometer lab testing prototypes. Credit: Mark Moldwin

For additional details, see the entry for this project on NASA TechPort .

Project Lead: Prof. Mark Moldwin, University of Michigan

Sponsoring Organization: NASA Heliophysics Division’s Heliophysics Technology and Instrument Development for Science (H-TIDeS) program.

Share

Details

Last Updated

Jun 17, 2025

Related Terms Explore More

2 min read Hubble Studies a Spiral’s Supernova Scene

Article


4 days ago

5 min read NASA Launching Rockets Into Radio-Disrupting Clouds

Article


5 days ago

2 min read Hubble Captures Starry Spectacle

Article


2 weeks ago

Categories: NASA

Google AI Grant to iNaturalist Prompts Community Outcry

Scientific American.com - Tue, 06/17/2025 - 9:30am

The nonprofit iNaturalist announced that it received a $1.5-million grant from Google’s philanthropic arm to develop generative AI tools for species identification. The news didn’t go over well

Categories: Astronomy

A Researcher’s Guide to: Microgravity Materials Research

NASA - Breaking News - Tue, 06/17/2025 - 9:10am
The book cover for the 2025 edition of the Microgravity Materials Research Researcher’s Guide

June 2025 Edition

Most materials are formed from a partially or totally fluid sample, and the transport of heat and mass from the fluid into the solid during solidification inherently influences the formation of the material and its resultant properties. The ISS provides a long-duration microgravity environment for conducting experiments that enables researchers to examine the effects of heat and mass transport on materials processes in the near-absence of gravity-driven forces. The microgravity environment greatly reduces buoyancy-driven convection, hydrostatic pressure, and sedimentation. It can also be advantageous for designing experiments with reduced container interactions. The reduction in these gravity-related sources of heat and mass transport may be taken advantage of to determine how material processes and microstructure formation are affected by gravity-driven and gravity independent sources of heat and mass transfer. 

Materials science experiments on the ISS have yielded broad and significant scientific advancements, including contributing to the development of improved mathematical models for predicting material properties during processing on Earth and enabling a better understanding of microstructure formation during solidification towards controlling the material properties of various alloys. 

This researcher’s guide provides information on the acceleration environment of the space station and describes facilities available for materials research. Examples of previous microgravity materials research and descriptions of planned research are also provided.

PDF readers: PDF [4.3 MB]

Keep Exploring Discover More Topics

Station Researcher’s Guide Series

Opportunities and Information for Researchers

Space Station Research Results

Latest News from Space Station Research

Categories: NASA

A Researcher’s Guide to: Microgravity Materials Research

NASA News - Tue, 06/17/2025 - 9:10am
The book cover for the 2025 edition of the Microgravity Materials Research Researcher’s Guide

June 2025 Edition

Most materials are formed from a partially or totally fluid sample, and the transport of heat and mass from the fluid into the solid during solidification inherently influences the formation of the material and its resultant properties. The ISS provides a long-duration microgravity environment for conducting experiments that enables researchers to examine the effects of heat and mass transport on materials processes in the near-absence of gravity-driven forces. The microgravity environment greatly reduces buoyancy-driven convection, hydrostatic pressure, and sedimentation. It can also be advantageous for designing experiments with reduced container interactions. The reduction in these gravity-related sources of heat and mass transport may be taken advantage of to determine how material processes and microstructure formation are affected by gravity-driven and gravity independent sources of heat and mass transfer. 

Materials science experiments on the ISS have yielded broad and significant scientific advancements, including contributing to the development of improved mathematical models for predicting material properties during processing on Earth and enabling a better understanding of microstructure formation during solidification towards controlling the material properties of various alloys. 

This researcher’s guide provides information on the acceleration environment of the space station and describes facilities available for materials research. Examples of previous microgravity materials research and descriptions of planned research are also provided.

PDF readers: PDF [4.3 MB]

Keep Exploring Discover More Topics

Station Researcher’s Guide Series

Opportunities and Information for Researchers

Space Station Research Results

Latest News from Space Station Research

Categories: NASA

Greenland’s Ice Sheet Collapse Could Be Closer Than We Think

Scientific American.com - Tue, 06/17/2025 - 9:00am

The collapse of the world’s second-largest ice sheet would drown cities worldwide. Is that ice more vulnerable than we know?

Categories: Astronomy

Contributors to Scientific American’s July/August 2025 Issue

Scientific American.com - Tue, 06/17/2025 - 9:00am

Writers, artists, photographers and researchers share the stories behind the stories

Categories: Astronomy

A Beginner’s Guide to Ethical and Sustainable Fashion

Scientific American.com - Tue, 06/17/2025 - 9:00am

Outsmart greenwashing with tips for more sustainable clothing

Categories: Astronomy

Science Crossword: Throwing Shades

Scientific American.com - Tue, 06/17/2025 - 9:00am

Play this crossword inspired by the July/August 2025 issue of Scientific American

Categories: Astronomy

Why the Climate Warming Goal of 1.5 Degrees C Isn’t a Lost Cause—Even If We Overshoot It

Scientific American.com - Tue, 06/17/2025 - 9:00am

Earth will likely warm by more than 1.5 degrees Celsius, but we can’t give up on trying to get temperatures back down

Categories: Astronomy

Is It Possible to Treat Psychopathy Before It Starts?

Scientific American.com - Tue, 06/17/2025 - 9:00am

New strategies help to reduce callous and unemotional traits in children, guiding them toward productive lives

Categories: Astronomy

Seeking Sustainable Fashion and Cracking a Greenland Mystery

Scientific American.com - Tue, 06/17/2025 - 9:00am

Inside this double issue of SciAm, you’ll find black holes that burp up their stellar meals, metal detectorists that hit pay dirt, hope for psychopathy, the truth about testosterone and a consumer guide to sustainable clothes shopping

Categories: Astronomy

Hotter Nights after Scorching Days Threaten Heart Health and Mental Well-Being

Scientific American.com - Tue, 06/17/2025 - 9:00am

When nights stay hot, more people die, many from cardiovascular problems. But there are simple methods you can use to stay cooler and healthier

Categories: Astronomy

Why Some Black Holes Keep ‘Burping’ Light after Eating a Star

Scientific American.com - Tue, 06/17/2025 - 9:00am

After black holes devour stars, sometimes the feast comes back up

Categories: Astronomy

Math Puzzle: Fill the Polygon

Scientific American.com - Tue, 06/17/2025 - 9:00am

Puzzle out the sequence of numbers that fill these polygons

Categories: Astronomy

Denmark Let Amateurs Dig for Treasure—And It Paid Off

Scientific American.com - Tue, 06/17/2025 - 9:00am

The Danish government deputized private detectorists to unearth artifacts buried in farm fields. Their finds are revealing the country’s past in extraordinary detail

Categories: Astronomy

Poem: ‘Prayer to Fireflies’

Scientific American.com - Tue, 06/17/2025 - 9:00am

Science in meter and verse

Categories: Astronomy

The Fast Fashion Backlash Is Fueling a Sustainability Revolution

Scientific American.com - Tue, 06/17/2025 - 9:00am

Trade impulse clothing purchases for botanical dyes, upcycled apparel, creative mending, flexible sizing, and more

Categories: Astronomy

July/August 2025: Science History from 50, 100 and 150 Years Ago

Scientific American.com - Tue, 06/17/2025 - 9:00am

Toxic cigars; dueling with a swordfish

Categories: Astronomy