Feed aggregator
Steroids are everywhere on social media – but how dangerous are they?
Tech From NASA’s Hurricane-hunting TROPICS Flies on Commercial Satellites
NASA science and American industry have worked hand-in-hand for more than 60 years, transforming novel technologies created with NASA research into commercial products like cochlear implants, memory-foam mattresses, and more. Now, a NASA-funded device for probing the interior of storm systems has been made a key component of commercial weather satellites.
The novel atmospheric sounder was originally developed for NASA’s TROPICS (short for Time-Resolved Observations of Precipitation structure and storm Intensity with a Constellation of SmallSats), which launched in 2023. Boston-based weather technology company Tomorrow.io integrated the same instrument design into some of its satellites.
NASA’s TROPICS instrument. TROPICS pioneered a novel, compact atmospheric sound now flying aboard a fleet of commercial small satellites created by the weather technology company Tomorrow.io.Credit: Blue Canyon TechnologiesAtmospheric sounders allow researchers to gather data describing humidity, temperature, and wind speed — important factors for weather forecasting and atmospheric analysis. From low-Earth orbit, these devices help make air travel safer, shipping more efficient, and severe weather warnings more reliable.
Novel tools for Observing Storm SystemsIn the early 2000s, meteorologists and atmospheric chemists were eager to find a new science tool that could peer deep inside storm systems and do so multiple times a day. At the same time, CubeSat constellations (groupings of satellites each no larger than a shoebox) were emerging as promising, low-cost platforms for increasing the frequency with which individual sensors could pass over fast-changing storms, which improves the accuracy of weather models.
The challenge was to create an instrument small enough to fit aboard a satellite the size of a toaster, yet powerful enough to observe the innermost mechanisms of storm development. Preparing these technologies required years of careful development that was primarily supported by NASA’s Earth Science Division.
William Blackwell and his team at MIT Lincoln Laboratory in Cambridge, Massachusetts, accepted this challenge and set out to miniaturize vital components of atmospheric sounders. “These were instruments the size of a washing machine, flying on platforms the size of a school bus,” said Blackwell, the principal investigator for TROPICS. “How in the world could we shrink them down to the size of a coffee mug?”
With a 2010 award from NASA’s Earth Science Technology Office (ESTO), Blackwell’s team created an ultra-compact microwave receiver, a component that can sense the microwave radiation within the interior of storms.
The Lincoln Lab receiver weighed about a pound and took up less space than a hockey puck. This innovation paved the way for a complete atmospheric sounder instrument small enough to fly aboard a CubeSat. “The hardest part was figuring out how to make a compact back-end to this radiometer,” Blackwell said. “So without ESTO, this would not have happened. That initial grant was critical.”
In 2023, that atmospheric sounder was sent into space aboard four TROPICS CubeSats, which have been collecting torrents of data on the interior of severe storms around the world.
Transition to IndustryBy the time TROPICS launched, Tomorrow.io developers knew they wanted Blackwell’s microwave receiver technology aboard their own fleet of commercial weather satellites. “We looked at two or three different options, and TROPICS was the most capable instrument of those we looked at,” said Joe Munchak, a senior atmospheric data scientist at Tomorrow.io.
In 2022, the company worked with Blackwell to adapt his team’s design into a CubeSat platform about twice the size of the one used for TROPICS. A bigger platform, Blackwell explained, meant they could bolster the sensor’s capabilities.
“When we first started conceptualizing this, the 3-unit CubeSat was the only game in town. Now we’re using a 6-unit CubeSat, so we have room for onboard calibration,” which improves the accuracy and reliability of gathered data, Blackwell said.
Tomorrow.io’s first atmospheric sounders, Tomorrow-S1 and Tomorrow-S2, launched in 2024. By the end of 2025, the company plans to have a full constellation of atmospheric sounders in orbit. The company also has two radar instruments that were launched in 2023 and were influenced by NASA’s RainCube instrument — the first CubeSat equipped with an active precipitation radar.
More CubeSats leads to more accurate weather data because there are more opportunities each day — revisits — to collect data. “With a fleet size of 18, we can easily get our revisit rate down to under an hour, maybe even 40 to 45 minutes in most places. It has a huge impact on short-term forecasts,” Munchak said.
Having access to an atmospheric sounder that had already flown in space and had more than 10 years of testing was extremely useful as Tomorrow.io planned its fleet. “It would not have been possible to do this nearly as quickly or nearly as affordably had NASA not paved the way,” said Jennifer Splaingard, Tomorrow.io’s senior vice president for space and sensors.
A Cycle of InnovationThe relationship between NASA and industry is symbiotic. NASA and its grantees can drive innovation and test new tools, equipping American businesses with novel technologies they may otherwise be unable to develop on their own. In exchange, NASA gains access to low-cost data sets that can supplement information gathered through its larger science missions.
Tomorrow.io was among eight companies selected by NASA’s Commercial SmallSat Data Acquisition (CSDA) program in September 2024 to equip NASA with data that will help improve weather forecasting models. “It really is a success story of technology transfer. It’s that sweet spot, where the government partners with tech companies to really take an idea, a proven concept, and run with it,” Splaingard said.
By Gage Taylor
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Share Details Last Updated Sep 02, 2025 Related TermsTech From NASA’s Hurricane-hunting TROPICS Flies on Commercial Satellites
NASA science and American industry have worked hand-in-hand for more than 60 years, transforming novel technologies created with NASA research into commercial products like cochlear implants, memory-foam mattresses, and more. Now, a NASA-funded device for probing the interior of storm systems has been made a key component of commercial weather satellites.
The novel atmospheric sounder was originally developed for NASA’s TROPICS (short for Time-Resolved Observations of Precipitation structure and storm Intensity with a Constellation of SmallSats), which launched in 2023. Boston-based weather technology company Tomorrow.io integrated the same instrument design into some of its satellites.
NASA’s TROPICS instrument. TROPICS pioneered a novel, compact atmospheric sound now flying aboard a fleet of commercial small satellites created by the weather technology company Tomorrow.io.Credit: Blue Canyon TechnologiesAtmospheric sounders allow researchers to gather data describing humidity, temperature, and wind speed — important factors for weather forecasting and atmospheric analysis. From low-Earth orbit, these devices help make air travel safer, shipping more efficient, and severe weather warnings more reliable.
Novel tools for Observing Storm SystemsIn the early 2000s, meteorologists and atmospheric chemists were eager to find a new science tool that could peer deep inside storm systems and do so multiple times a day. At the same time, CubeSat constellations (groupings of satellites each no larger than a shoebox) were emerging as promising, low-cost platforms for increasing the frequency with which individual sensors could pass over fast-changing storms, which improves the accuracy of weather models.
The challenge was to create an instrument small enough to fit aboard a satellite the size of a toaster, yet powerful enough to observe the innermost mechanisms of storm development. Preparing these technologies required years of careful development that was primarily supported by NASA’s Earth Science Division.
William Blackwell and his team at MIT Lincoln Laboratory in Cambridge, Massachusetts, accepted this challenge and set out to miniaturize vital components of atmospheric sounders. “These were instruments the size of a washing machine, flying on platforms the size of a school bus,” said Blackwell, the principal investigator for TROPICS. “How in the world could we shrink them down to the size of a coffee mug?”
With a 2010 award from NASA’s Earth Science Technology Office (ESTO), Blackwell’s team created an ultra-compact microwave receiver, a component that can sense the microwave radiation within the interior of storms.
The Lincoln Lab receiver weighed about a pound and took up less space than a hockey puck. This innovation paved the way for a complete atmospheric sounder instrument small enough to fly aboard a CubeSat. “The hardest part was figuring out how to make a compact back-end to this radiometer,” Blackwell said. “So without ESTO, this would not have happened. That initial grant was critical.”
In 2023, that atmospheric sounder was sent into space aboard four TROPICS CubeSats, which have been collecting torrents of data on the interior of severe storms around the world.
Transition to IndustryBy the time TROPICS launched, Tomorrow.io developers knew they wanted Blackwell’s microwave receiver technology aboard their own fleet of commercial weather satellites. “We looked at two or three different options, and TROPICS was the most capable instrument of those we looked at,” said Joe Munchak, a senior atmospheric data scientist at Tomorrow.io.
In 2022, the company worked with Blackwell to adapt his team’s design into a CubeSat platform about twice the size of the one used for TROPICS. A bigger platform, Blackwell explained, meant they could bolster the sensor’s capabilities.
“When we first started conceptualizing this, the 3-unit CubeSat was the only game in town. Now we’re using a 6-unit CubeSat, so we have room for onboard calibration,” which improves the accuracy and reliability of gathered data, Blackwell said.
Tomorrow.io’s first atmospheric sounders, Tomorrow-S1 and Tomorrow-S2, launched in 2024. By the end of 2025, the company plans to have a full constellation of atmospheric sounders in orbit. The company also has two radar instruments that were launched in 2023 and were influenced by NASA’s RainCube instrument — the first CubeSat equipped with an active precipitation radar.
More CubeSats leads to more accurate weather data because there are more opportunities each day — revisits — to collect data. “With a fleet size of 18, we can easily get our revisit rate down to under an hour, maybe even 40 to 45 minutes in most places. It has a huge impact on short-term forecasts,” Munchak said.
Having access to an atmospheric sounder that had already flown in space and had more than 10 years of testing was extremely useful as Tomorrow.io planned its fleet. “It would not have been possible to do this nearly as quickly or nearly as affordably had NASA not paved the way,” said Jennifer Splaingard, Tomorrow.io’s senior vice president for space and sensors.
A Cycle of InnovationThe relationship between NASA and industry is symbiotic. NASA and its grantees can drive innovation and test new tools, equipping American businesses with novel technologies they may otherwise be unable to develop on their own. In exchange, NASA gains access to low-cost data sets that can supplement information gathered through its larger science missions.
Tomorrow.io was among eight companies selected by NASA’s Commercial SmallSat Data Acquisition (CSDA) program in September 2024 to equip NASA with data that will help improve weather forecasting models. “It really is a success story of technology transfer. It’s that sweet spot, where the government partners with tech companies to really take an idea, a proven concept, and run with it,” Splaingard said.
By Gage Taylor
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Share Details Last Updated Sep 02, 2025 Related TermsIs Consciousness the Hallmark of Life?
As AI grows more fluent in mimicking human empathy, language and memory, we’re left asking: If a machine can fake awareness so well, what exactly is the real thing?
New Knot Theory Discovery Overturns Long-Held Mathematical Assumption
Mathematicians have unraveled a key conjecture about knot theory
New MetOp Second Generation weather satellite returns first data
Less than three weeks since the first MetOp Second Generation weather satellite, MetOp-SG-A1, was launched, this remarkable new satellite has already started transmitting data from two of its cutting-edge instruments, offering a tantalising glimpse of what’s to come.
The Great Filter Part 4: We’ve Got a Chance
Wait wait wait. There are other, less stressful options. I don’t want to end on such a downer note. There is hope for us yet!
Revolutionary Model Reveals How Real Universe Structure Affects Cosmic Evolution
For nearly a century, cosmologists have relied on a simplified model of the universe that treats matter as uniform particles that don't interact with each other. While this approach helped scientists understand the Big Bang and the expansion of space, it ignores a fundamental reality, that our universe is anything but uniform. Stars cluster into galaxies, matter collapses into black holes, and vast empty voids stretch across space, all constantly interacting through gravity and other forces.
White Dwarf Stars Could Create Surprisingly Common Long Lived Habitable Zones
When most stars like the Sun die, they don't go out with a bang, they fade away as white dwarf stars, Earth-sized remnants that slowly cool over billions of years. For decades, it was thought these stellar corpses were poor candidates for hosting life because they cool predictably, giving any orbiting planets only brief windows in the "habitable zone" where liquid water could exist. But new research suggests this assumption may be fundamentally wrong.
September Podcast: Hello, Saturn!
September’s night sky features the iconic Summer Triangle, almost directly overhead at nightfall, and a newcomer to the evening sky: the planet Saturn, which will rise in the east not long after sunset. Get tips for viewing these and lots more stargazing info by downloading this month’s Sky Tour podcast!
The post September Podcast: Hello, Saturn! appeared first on Sky & Telescope.
Just 1 minute of vigorous exercise a day could add years to your life
Just 1 minute of vigorous exercise a day could add years to your life
Are farmed oysters, mussels and clams the ultimate green foods?
Are farmed oysters, mussels and clams the ultimate green foods?
The crucial role of chaos in our brain’s most extraordinary functions
The crucial role of chaos in our brain’s most extraordinary functions
Jupiter-bound Probe Flies By Venus
The European spacecraft en route to Jupiter, named JUICE, completed its only flyby of the planet Venus
The post Jupiter-bound Probe Flies By Venus appeared first on Sky & Telescope.
Chimps, Humans and Macaques All Have a Drive to ‘People Watch’
Our social voyeurism may have deep evolutionary roots