Feed aggregator
Read With NASA: Books, More to Inspire Young Explorers
Stories open up new worlds and spark curiosity in readers of all ages – and NASA is using the power of storytelling to encourage the Artemis Generation to explore STEM (science, technology, engineering, and mathematics). Through the below list of reading resources – books, comics, and graphic novels written and illustrated by NASA experts, and video read-alongs by astronauts – students will find themselves exploring the Moon, piloting a cutting-edge aircraft, searching for life among the stars, and more.
Come along with NASA on a journey of discovery!
Story Time With NASA Astronauts (Grades Pre-K to 4)
Take your reading adventure out of this world! In this video playlist, astronauts read storybooks aloud from aboard the International Space Station and other locations around NASA.
Kids Club Picture Show (Grades Pre-K to 4)
View cool pictures from NASA missions and more! This curated collection of fascinating photos introduces young explorers to a variety of topics across NASA. Each photo includes a short description with the option to hear it read aloud.
Astro-Not-Yet Storybooks (Grades K-4)
These storybooks follow along as an ambitious classroom of students learn about the International Space Station, NASA’s Commercial Crew Program, and important STEM concepts such as microgravity and sound waves. The books are available in English and Spanish.
The Adventures of Kennedy and Duke Storybook (Grades K-4)
This book follows the experiences of Kennedy, a fictional young girl who discovers an amateur radio during a visit to her grandfather’s farm. While learning to use the radio, she communicates with Duke, an astronaut living and working aboard the International Space Station. Also available in Spanish.
You Are Going, illustrated by former NASA intern Shane Tolentino, shares a glimpse into future Artemis missions.You Are Going (Grades K-4 and 5-8)
Through “You Are Going,” readers get a glimpse into NASA’s Artemis campaign. Learn about NASA’s powerful megarocket, the SLS (Space Launch System), as well as the Orion spacecraft, the Gateway, and other important elements that will help make these pioneering flights possible. Also available in Spanish and French.
Hooray For SLS (Grades K-4)
NASA is working to send humans back to the Moon to live, learn, and explore through the Artemis campaign – and as members of the Artemis Generation, today’s students are invited to be part of the story. “Hooray for SLS!” is the first in a series of children’s books introducing young explorers ages 3 to 8 to the SLS rocket and other components of the Artemis missions.
The Adventures of Commander Moonikin Campos and Friends Comics (Grades K-4 and 5-8)
Although no astronauts flew around the Moon on the Artemis I mission, the mission included a crew of manikins – Commander Moonikin Campos and two identical manikin torsos – outfitted with sensors to capture data during the flight. This webcomic explains what the manikins experienced on the Artemis I mission around the Moon. Also available in Spanish.
During World War II the United States Army Air Corps created the first fighter squadron in its history made up of Black military pilots. They became known as the Tuskegee Airmen. Their success in war overseas, and challenges faced at home, helped light the path toward equal rights for all.Aeronautics Leveled Readers (Grades K-4, 5-8, and 9-12)
The history of American aviation comes to life through these stories written at elementary, middle school, and high school levels. Students will read about important figures in aviation such as Amelia Earhart and the Tuskegee Airmen, as well as mini biographies of NASA employees Danielle Koch, Maria Cabellero, and Red Jensen.
Ruby Flottum reads the first issue of NASA’s “First Woman” graphic novel, entitled “Dream to Reality,” on Monday, July 25, 2022 at AirVenture at Oshkosh.First Woman Graphic Novels (Grades 5-8, 9-12, and Higher Education)
This graphic novel series takes readers into the world of fictional astronaut Callie Rodriguez, the first woman to explore the Moon. Build on the story’s lessons with the accompanying hands-on activities and videos designed for use in K-12 informal education settings. Also available in Spanish.
Astrobiology Graphic Novels (Grades 5-12)
Produced within NASA’s Astrobiology Program, “Astrobiology” is a graphic novel series that explores the many facets of astrobiology: the study of the origin, evolution, and distribution of life in the universe. Some novels are also available in Japanese, Korean, or Spanish editions.
Explore Further
There’s more to explore! Check out NASA’s STEM Search for additional resources for each grade level, including hands-on activities, games, educator guides, and more. Visit NASA’s Learning Resources for the latest news and resources from the agency’s Office of STEM Engagement.
Keep Exploring Discover More STEM Topics From NASAOutside the Classroom
For Educators
For Kids and Students
NASA EXPRESS Newsletter Sign-up
Supergiant star Betelgeuse may have a 'Betelbuddy'
Scientists have dated the moon's oldest, and largest, impact site
I Am Artemis: Casey Wolfe
While precision, perseverance, and engineering are necessary skills in building a Moon rocket, Casey Wolfe knows that one of the most important aspects for the job is teamwork.
“Engineering is vital, but to get this type of work done, you need to take care of the human element,” said Wolfe, the assistant branch chief of the advanced manufacturing branch in the Materials and Processes Laboratory at NASA’s Marshall Space Flight Center in Huntsville, Alabama.
Together with her team, Wolfe is developing and producing the next generation payload adapter for NASA’s SLS (Space Launch System) super-heavy lift rocket. The adapter is made with some of the world’s most advanced composite manufacturing techniques.
Wolfe’s work integrates the technical day-to-day operations and personnel management of the composites manufacturing team and additive manufacturing team, balancing production of SLS hardware with the creation of new engines using the latest manufacturing technologies.
“A lot of my day to day is in managing our two teams, making connections, building relationships, and making sure people feel supported,” Wolfe explains. “I conduct individual tag ups with each team member so we can be proactive about anticipating and addressing problems.”
Wolfe grew up in Huntsville, a place known as the “Rocket City,” but it wasn’t until she visited a job fair while studying at Auburn University for a polymer and fiber engineering degree that she began to consider a career at NASA Marshall. Wolfe applied for and was selected to be a NASA intern through the Pathways Program, working in the non-metallic materials branch of the Materials and Processes Laboratory.
Wolfe supported a coating system for electrostatic discharge on the first uncrewed test flight of the Orion spacecraft. Launching December 5, 2014, Orion traveled to an altitude of 3,600 miles, orbited Earth twice, and splashed down in the Pacific Ocean. It was during her internship that Wolfe realized how inspirational it felt to be treated like a vital part of a team:
“The SLS program gave everyone permission to sign the hardware, even me – even though I was just an intern,” says Wolfe. “It was impactful to me, knowing that something I had worked on had my name on it and went to space.”
Since being hired by NASA, Wolfe’s work has supported development of the Orion stage adapter diaphragms for Artemis II and Artemis III, and the payload adapters for Artemis IV and beyond. The first three Artemis flights use the SLS Block 1 rocket variant, which can send more than 27 metric tons (59,500 pounds) to the Moon in a single launch. Beginning with Artemis IV, the SLS Block 1B variant will use the new, more powerful exploration upper stage to enable more ambitious missions to deep space, with the cone-shaped payload adapter situated atop the rocket’s exploration upper stage. The new variant will be capable of launching more than 38 metric tons (84,000 pounds) to the Moon in a single launch.
“While the engineering development unit of the payload adapter is undergoing large-scale testing, our team is working on the production of the qualification article, which will also be tested,” Wolfe says. “Flight components should be starting fabrication in the next six months.”
When Wolfe isn’t working, she enjoys hiking, gardening, and hanging out with her dogs and large family. Recently, she signed another piece of SLS hardware headed to space: the Orion stage adapter for the second Artemis mission.
With as many responsibilities as Wolfe juggles, it’s easy to lose sight of her work’s impact. “I work in the lab around the hardware all the time, and in many ways, it can become very rote,” she says.
But Wolfe won’t forget what she saw one evening when she worked late: “Everybody was gone, and as I walked past the launch vehicle stage adapter, there were two security guards taking pictures of each other in front of it. It was one of those things that made me step back and reflect on what my team accomplishes every day: making history happen.”
NASA is working to land the first woman, first person of color, and its first international partner astronaut on the Moon under Artemis. SLS is part of NASA’s backbone for deep space exploration, along with the Orion spacecraft, supporting ground systems, advanced spacesuits and rovers, the Gateway in orbit around the Moon, and commercial human landing systems. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single launch.
Jeff VanderMeer on How Scientific Uncertainty Inspires His Weird Fiction
In Absolution, the fourth novel in Jeff VanderMeer’s Southern Reach saga, scientists try to know the unknowable
Meloë Kacenelenbogen Eyes the Future of Air Quality, Climate Research
A mentor of research scientist Meloë Kacenelenbogen once shared a sentiment from French author André Gide: “You cannot discover new oceans unless you have the courage to lose sight of the shore.” Kacenelenbogen pushes beyond her comfort zone to explore the unknown.
Name: Meloë S. Kacenelenbogen
Formal Job Classification: Research scientist
Organization: Climate and Radiation Laboratory, Science Directorate (Code 613)
What do you do and what is most interesting about your role here at Goddard?
I study the impact of aerosols — suspended particles from, for example, wildfire smoke, desert dust, urban pollution, and volcanic eruptions — on air quality and the Earth’s climate. I use space, air, and ground-based observations, as well as models.
Why did you become a scientist? What is your educational background?
I never made a deliberate choice to become a scientist. I started with very little confidence as a child and then built up my confidence by achieving things I thought I could not do. I chose the hardest fields to work on along the way. Science looked hard and so did fluid mechanics, remote sensing, and atmospheric physics. I have failed many times, but I always learn something and move on. I do get scared and maybe even paralyzed for a day or two, but I never let fear or failure immobilize me for long.
I was born in Maryland, but my family moved to France when I was young, so I am fluent in French. I have a bachelor’s and master’s degree in mechanical engineering, and physical methods in remote sensing from the Université Pierre et Marie Curie (Paris VI, Jussieu). In 2008, I got a Ph.D. in atmospheric physics for applying satellite remote sensing to air quality at the Université des Sciences et Technologies de Lille (USTL), France.
What are some of your career highlights?
After my Ph.D., I worked for the Atmospheric Lidar Group at the University of Maryland, Baltimore County (UMBC), on spaceborne and ground-based lidars. In 2009, I got a NASA Post-doctoral Program (NPP) fellowship at the agency’s Ames Research Center in California’s Silicon Valley, where I worked for 13 years on space-based, aircraft-based, and ground-based atmospheric aerosol vertical distribution and aerosol typing.
In 2022, I came to work at the Climate and Radiation Lab at Goddard.
What is most interesting about aerosols?
Aerosols are very topical because they have a huge impact on the air we breathe and our Earth’s climate. The smaller the aerosol, the deeper it can get into our lungs. Among other sources, aerosols can come from cars, factories, or wildfires. We all know that wildfires are becoming bigger and more frequent. They are expected to happen even more frequently in the future due to climate change. Both when I was living in California and here in Maryland, I have experienced first-hand choking from the wildfire smoke. I will always remember how apocalyptic it felt back in the summer of 2020 in California when wildfire smoke was paired with COVID confinement, and the sky turned Mars-like orange.
Please tell us about your involvement with the Atmosphere Observing System (AOS)?
I am incredibly lucky to be able to contribute to the next generation of NASA’s satellites. I am working on AOS, which will observe aerosols, clouds, convention, and precipitation in the Earth’s atmosphere. I am part of the team that is helping design several instruments and algorithms.
My role is to connect this spaceborne observing system to all our other space, ground, and air-based measurements at the time of launch. We are making a mesh of observations to address the science questions, run the algorithms, and validate the spaceborne measurements. I am constantly pushed to expand my horizon and my own knowledge.
Why do you enjoy always challenging yourself intellectually?
I started that way. I had no confidence, so I felt that the only way I could build my confidence was to try doing things that scared me. I may sometimes be a little scared, but I am never bored.
What did you learn from your mentors?
A few years ago, a mentor shared a quote from André Gide with me that encapsulates what we are talking about: “You cannot discover new oceans unless you have the courage to lose sight of the shore.” In other words, it is OK, maybe preferable, to be out of my comfort zone to explore the unknown as scary as it may be.
Along the way, it has been extremely important for me to deliberately choose mentors. To me, a good mentor has earned the respect of all who have worked with them, is uplifting, reassuring, and gives me the invaluable guidance and support that I need. I deliberately try to surround myself with the right people. I have been very, very fortunate to find incredible people to encourage me.
As a mentor, what do you advise?
I tell them to deliberately choose their mentors. I also tell them that it is OK to be uncomfortable. Being uncomfortable is the nature of our field. To do great things, we often need to be uncomfortable.
Why do you enjoy working on a team?
I love working on teams, I love to feed off the positive energy of a team whether I lead it or am part of it. In my field, teamwork with a positive energy is incredibly satisfying. Everybody feeds off everybody’s energy, we go further, are stronger, and achieve more. This may not happen often, but when it does it makes it all worth it.
What are the happiest moments in your career?
I am always happiest when the team publishes a paper and all our efforts, are encapsulated in that one well-wrapped and satisfying peer-reviewed paper that is then accessible to everyone online. Every paper we publish feels, to me, the same as a Ph.D. in terms of the work, pain, energy, and then, finally, satisfaction involved.
What do you hope to achieve in your career?
I want to have been a major contributor to the mission by the time the AOS satellites launch.
What do you do for fun?
I do mixed martial arts. I love the ocean, diving, and sailing. I also love going to art galleries, especially to see impressionist paintings to reconnect with my Parisian past.
Meloë Kacenelenbogen once shared a sentiment from French author André Gide: “You cannot discover new oceans unless you have the courage to lose sight of the shore.”Photo courtesy of Meloë KacenelenbogenWho is your favorite author?
I love Zweig, Kafka, Dostoyevsky, Saint-Exupéry, and Kessel. The latter two wrote a lot about aviators in the early 1900s back in the days when it was new and very dangerous. Those pilots, like Mermoz, were my heroes growing up.
Who would you like to thank?
I would like to thank my family for being my rock.
What are your guiding principles?
To paraphrase Dostoevsky, everyone is responsible to all men for all men and for everything. I have a strong sense of purpose, pride, justice, and honor. This is how I try to live my life for better or for worse.
By Elizabeth M. Jarrell
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.
Explore More 6 min read Christine Knudson Uses Earthly Experience to Study Martian GeologyGeologist Christine Knudson works with the Curiosity rover to explore Mars — from about 250…
Article 1 week ago 9 min read Systems Engineer Noosha Haghani Prepped PACE for Space Article 2 weeks ago 6 min read Astrophysicist Gioia Rau Explores Cosmic ‘Time Machines’ Article 3 weeks ago Share Details Last Updated Oct 22, 2024 EditorMadison OlsonContactRob Garnerrob.garner@nasa.govLocationGoddard Space Flight Center Related TermsChina’s ‘Thousand Sails’ Joins Starlink as the Latest Mega-Satellite Constellation in Orbit
With ‘Thousand Sails,’ China joins the race to fill up Low Earth Orbit with mega-satellite constellations.
It’s getting crowded up there in Low Earth orbit (LEO). By now, flocks of Starlinks have become a familiar sight, and the bane of astrophotographers as the ‘vermin of the skies.’ Now, several new competitors have joined the fray, with more waiting in the wings.
Perhaps, you’ve seen one of these curious-looking ‘satellite trains,’ and wondered what they were. Certainly, the advent of satellite trains courtesy of Starlink have added to the annals of purported UFO videos shot via smartphone across YouTube. Now, more agencies worldwide are getting into the game in 2024, assuring that the next ‘star’ you wish on at dusk may, in fact, be an artificial satellite.
Approaching An Artificial SkyStreaks and trails due to the increasing number of Starlinks in orbit have also become a standard feature in modern deep sky images. While techniques to remove these have been pioneered by astrophotographers, these will continue to impact deep sky astronomy. This impact extends to sky surveys soon set to come online such as the Vera Rubin Observatory, set to see first light early next year in 2025.
The first batch of Thousand Sails satellites in orbit, shortly after launch. Credit: Nick James.SpaceX has implemented mitigation plans in response, including use of sun visors on first generation satellites, diffuse ‘dielectric mirror’ material on newer Version 2 (V2) platforms, and angling solar arrays. These have seen some success. Certainly, spotters have noted that the new Version 2’s have a bluer tint, and seem to shine at magnitude +7 once they’re boosted into their respective orbital slots. This is near the +7 magnitude threshold called for by the National Science Foundation (NSF) and the International Astronomical Union (IAU).
Radio noise from these new communications satellite constellations is also an issue that astronomers now have to contend with. LOFAR (The Netherlands Institute for Astronomy’s Low Frequency Array) notes that “new observations with the LOFAR radio telescope…have shown that the second generation ‘V2-mini’ Starlink satellites emit up to 32 brighter unintended radio waves than satellites from the previous generation.”
Enter China’s ‘Thousand Sails’ InitiativeChina also recently joined the competition in LEO, with the launch of a Long March-6 rocket from Taiyuan Satellite Launch Center with 18 satellites for Shanghai Spacecom Satellite Technology (SSST). This is part of the company’s ‘Thousand Sails’ initiative.
The first batch of Thousand Sails satellites head to orbit. Credit: CNSA.Dubbed China’s answer to Starlink, This will see an initial 1,296 satellites for the constellation placed in orbit by 2027. The company also has plans to expand the network to 12,000 satellites into the 2030s. This first batch went into a polar (sun-synchronous) orbit, and the resulting satellite train was spotted in orbit shortly after launch.
The Long March 6A booster fuel dump from the first Thousand Sails deployment, shortly after launch. Credit: Dan Bush/Missouri Skies.And there’s more in store. China also launched a Long March 6 rocket on September 5th, with 10 new satellites for Geely Group Automotive. These are part of the company’s effort to build a communication network for autonomous vehicles.
An artist’s impression of Geely Group satellites in orbit. Credit: Geely Group.As a follow-on this month, China also launched a Long March-6 rocket on October 15th with another batch of 18 satellites headed into a polar orbit. This group is also part of the Thousand Sails constellation. Satellite spotters have already tracked these in orbit, with an estimated brightness of up the +4th magnitude when near the zenith on a visible pass. Keep in mind, China isn’t beholden to any obligations to mitigate the impact that satellite constellations might have on the night sky…nor do any formal international standards exist.
More Mega Satellite Constellations to ComeNot to be outdone, SpaceX is putting up more than just Starlink. Last month, SpaceX launched a Falcon 9 rocket on September 12th, with the first five Bluebird satellites. These are ASTMobile’s follow-on to the BlueWalker-3 test satellite, still in orbit. With a phased-array antenna 10-meters across when deployed, BlueWalker-3 reaches magnitude 0. The company plans to put 110 of these potentially brilliant Bluebirds in orbit over the next few years.
A Bluewalker antenna unfolded on Earth. Credit: ASTMobile.OneWeb is also still putting satellites in orbit. The ongoing Russia-Ukraine War has forced the company to forego Soyuz launches. Instead, OneWeb now relies on competitor SpaceX to get into orbit.
The OneWeb satellite constellation currently hosts 660 satellites in orbit, right around the initial target number set by the company Eutelsat-OneWeb for nominal operation. The company began offering services through residential providers last year, including Hughesnet, Viasat and ironically, Starlink.
Starlink’s current status is 7,125 satellites in orbit, with 23 more planned tonight with the launch of Starlink Group 6-61 from the Cape. 12,000 satellites in orbit are planned for in the coming years, and the constellation could extend to a total of 34,400 satellites in future years.
Not to be outdone, the Unites States’ Department of Defense is putting its own dedicated satellite constellation in space. Dubbed Starshield, the network already has 73 satellites in orbit, and a total of more than a 100 are planned. As expected, the DoD is already shaping up to be Starlink’s (and SpaceX’s) biggest customer.
Hunting Satellite TrainsOther bright reflectors are making themselves seen in the night sky as well. ACS-3 (the Advanced Composite Solar Sail System) was launched this past April on a Rocket Lab Electron rocket. The mission successfully unfurled this summer on August 29th. ACS-3 is the latest in a batch of satellites to attempt to test solar sail technologies in orbit. Mission planners could use this tech on future missions for maneuvering, propulsion or reentry disposal. Previous missions, including NanoSail-D2 and Planetary Society’s Light Sail have struggled with this tech, demonstrating just how difficult it’s turning out to be.
ACS-3 is definitely tumbling: we’ve seen it flare up to 0 magnitude (as bright as Vega) on a good pass. This seems to be very angle dependent.
You can track these missions and more on Heavens-Above. The leaders for the first two batches of respective Thousand Sail groups are 2024-140A and 2024-145A. Plus, Heavens-Above tracks Starlink batches (which are once again going up at a furious rate) on a dedicated page. We saw the most recently launched Starlink Group Batch 8-19 this past weekend… and that was from under the bright lights of downtown Bristol, Tennessee.
The Promise and Peril of Mega-Sat ConstellationsTo be sure, we’re a huge consumer of roaming WiFi. If we can continue our career and online exploits from a remote basecamp, then that’s a good thing… but there also needs to be oversight when it comes to what we’re collectively doing to our night sky as a resource.
Are we headed towards a future where artificial stars in the night sky outnumber real ones? Perhaps, the best thing that amateur satellite trackers can do now, is to chronicle what’s happening, as the Anthropocene era leaves its mark on a brave new night sky.
The post China’s ‘Thousand Sails’ Joins Starlink as the Latest Mega-Satellite Constellation in Orbit appeared first on Universe Today.
How does the Cosmic Web connect Taylor Swift and the last line of your 'celestial address?'
ESA Impact Council Edition: Your update on space achievements
ESA Impact Council Edition: Your update on space achievements
An interactive publication covering captivating stories and stunning images since the last Council meeting.
Meta AI tackles maths problems that stumped humans for over a century
Meta AI tackles maths problems that stumped humans for over a century
As Hurricane Floodwaters Recede, a Public Health Threat Rises
A potable water shortage and a toxic stew of sewage and other pollutants that Hurricane Helene’s flooding left behind have prompted a race to avert a public health crisis in North Carolina
Fresh insights into how we doze off may help tackle sleep conditions
Fresh insights into how we doze off may help tackle sleep conditions
Sols 4338-4340: Decisions, Decisions
- Curiosity Home
- Science
- News and Features
- Multimedia
- Mars Missions
- The Solar System
3 min read
Sols 4338-4340: Decisions, Decisions This image was taken by Mast Camera (Mastcam) aboard NASA’s Mars rover Curiosity on sol 4338 — Martian day 4,338 of the Mars Science Laboratory mission — Oct. 19, 2024, at 08:29:23 UTC. NASA/JPL-Caltech/MSSSEarth planning date: Friday, Oct. 18, 2024
On sol 4338, we have a science block planned as well as some arm activities. Our science activities include a ChemCam observation of “Donkey Lake.” This is a bedrock target with exposed laminations. In geology, lamination is a sequence of small-scale, embedded fine layers of sedimentary rock. Next, we will do an RMI mosaic as well as Mastcam imaging on “Fascination Turret” to document the boulder configuration for study of both debris flow and rock deposition processes. We’ll also do a Navcam dust devil survey to study the Martian atmosphere, before moving into our arm backbones. We’ll perform a DRT and APXS on several bedrock targets with exposed layering. An exciting sol for geology!
Sol 4339 presented some interesting decisions for our planning team to make. We started out with a science block. This included a ChemCam LIBS analysis on a soil target with interesting color differences. We also performed an RMI mosaic and Mastcam imaging of “Whitebark Pass” to study possible surface erosion. After this science block, we planned to do a long traverse, which is where planning got a bit tricky.
The drive was a bit complicated to plan. The terrain had lots of rocks which ultimately prevented us from planning a guarded drive (i.e., a drive using auto navigation), which would have extended the drive length. There are occlusion considerations — we always want to end the drive in a good orientation for a communications link. When evaluating our end of drive, there are potential configurations where the line of sight for communications would be blocked, either due to terrain or due to objects on the rover deck. Here, because of the many and large size of rocks in our terrain, we were not confident that auto-navigation would not fault and position us in a bad orientation for our next communications window. With this risk, we decided to take a shorter drive with a sure unoccluded end-of-drive orientation. As planned, our drive will reach about 27 meters (almost 89 feet), whereas a guarded drive if the terrain was better might have yielded around 50 meters (about 164 feet). After the drive, we’ll take some imaging and do a Mastcam survey to observe soils along the traverse path.
On sol 4340, we planned for two science blocks. The first included a ChemCam AEGIS activity — this will allow the rover to examine its surroundings and pick out some interesting targets for analysis. We will also perform a Navcam dust devil movie to capture any interesting dust activities in the atmosphere. Next, we’ll move into our second science block, which is focused on environmental science. We’ll first take Mastcam tau observations, which will allow us to study and measure the optical depth of the atmosphere, which is often used as a proxy to understand the dust in the atmosphere. We’ll also do some early morning remote science, including Navcam cloud movies at zenith and at suprahorizon.
Written by Remington Free, Operations Systems Engineer at NASA’s Jet Propulsion Laboratory
Share Details Last Updated Oct 22, 2024 Related Terms Explore More 2 min read Sols 4336-4337: Where the Streets Have No NameArticle
4 days ago
2 min read Just Keep Roving
Throughout the past week, Perseverance has continued marching up the Jezero crater rim. This steep…
Article
5 days ago
3 min read Sols 4334-4335: Planning with Popsicles — A Clipper Celebration!
Article
6 days ago
Keep Exploring Discover More Topics From NASA Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
Life on Earth Needed “Unmelted Asteroids”
The word “volatile” is commonly used in the space exploration community, but it has a different meaning than when used otherwise. In space exploration, volatiles are defined as the six most common elements in living organisms, plus water. Earth had enough volatiles for life to start here, but it might not have been that way. Researchers from the University of Cambridge and Imperial College London now think they have a reason why Earth received as many volatiles as it did – and thereby allowed it to develop life in the first place.
One characteristic of volatiles that makes them both difficult to deal with but easy to transport is that they vaporize at relatively low temperatures. Granted, a relatively low temperature could be 950°C for zinc, the volatile the researchers chose to look at.
They chose zinc because it has a unique composition when captured in meteorites, allowing researchers to identify its source based on that composition. Previously, some of the same researchers had found that the zinc found on Earth had come from different parts of our solar system. About half had originated out past Jupiter, while half came from closer to home.
Dr. Marc Hirschmann discusses the importance of volatiles in planetesimalsCredit – Carnegie Earth & Planets Laboratory
Most originating sources were objects called “planetesimals” – essentially proto-planets that had not yet had time to form. Planetesimals were common in the early solar system but became less so as they began to form into what we think of today as the major planets. However, many of the ones that existed early in the solar system were subjected to something that younger ones weren’t – harsh radiation.
Radiation was everywhere in the early solar system, and many planetesimals that formed during this period were subjected to it. Notably, the heat from these radiation sources caused the planetesimals’ volatiles to vaporize and be lost to space. So, the researchers at Cambridge and ICL thought they might be able to differentiate the age of the source of some of those volatiles – particularly zinc.
It turns out that they could. They measured the zinc concentration in many meteorites whose originating planetesimal was known. They then modeled where the Earth received its zinc from. Since zinc is one of the vital volatiles thought to be essential to the development of life, this model could help understand how life might (or might not) develop on other worlds.
Fraser discusses our best estimate as to how Earth got the materials needed to make life.They found that the vast majority (about 90%) of the Earth’s zinc was contributed by planetesimals that weren’t subjected to the high radiation levels of the early solar system. In essence, they were the ones whose volatiles weren’t vaporized, allowing them to contribute more of these valuable, life-giving materials despite only contributing 30% of the Earth’s overall mass.
Additional work is needed to study whether similar heating effects affected the amount of other volatiles delivered to the early Earth. And even more work is required to model how that volatile delivery model might work for other planets, such as Mars, or even exoplanets further afield.
But for now, this is another piece of the puzzle that answers an important question about the early solar system. And, maybe more importantly, it shows how many things have to go right for life to develop in the first place.
Learn More:
University of Cambridge – How did the building blocks of life arrive on Earth?
Martins et al. – Primitive asteroids as a major source of terrestrial volatiles
UT – The Building Blocks of Earth Could Have Come From Farther out in the Solar System
UT – Citizen Scientists Find Fifteen “Active Asteroids”
Lead Image:
An iron meteorite from the core of a melted planetesimal (left) and a chondrite meteorite, derived from a ‘primitive’, unmelted planetesimal (right).
Credit: Rayssa Martins/Ross Findlay
The post Life on Earth Needed “Unmelted Asteroids” appeared first on Universe Today.
NASA Reveals Prototype Telescope for Gravitational Wave Observatory
2 min read
NASA Reveals Prototype Telescope for Gravitational Wave ObservatoryNASA has revealed the first look at a full-scale prototype for six telescopes that will enable, in the next decade, the space-based detection of gravitational waves — ripples in space-time caused by merging black holes and other cosmic sources.
On May 20, the full-scale Engineering Development Unit Telescope for the LISA (Laser Interferometer Space Antenna) mission, still in its shipping frame, was moved within a clean room at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. NASA/Dennis HenryThe LISA (Laser Interferometer Space Antenna) mission is led by ESA (European Space Agency) in partnership with NASA to detect gravitational waves by using lasers to measure precise distances — down to picometers, or trillionths of a meter — between a trio of spacecraft distributed in a vast configuration larger than the Sun. Each side of the triangular array will measure nearly 1.6 million miles, or 2.5 million kilometers.
“Twin telescopes aboard each spacecraft will both transmit and receive infrared laser beams to track their companions, and NASA is supplying all six of them to the LISA mission,” said Ryan DeRosa, a researcher at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “The prototype, called the Engineering Development Unit Telescope, will guide us as we work toward building the flight hardware.”
The prototype LISA telescope undergoes post-delivery inspection in a darkened NASA Goddard clean room on May 20. The entire telescope is made from an amber-colored glass-ceramic that resists changes in shape over a wide temperature range, and the mirror’s surface is coated in gold. NASA/Dennis HenryThe Engineering Development Unit Telescope, which was manufactured and assembled by L3Harris Technologies in Rochester, New York, arrived at Goddard in May. The primary mirror is coated in gold to better reflect the infrared lasers and to reduce heat loss from a surface exposed to cold space since the telescope will operate best when close to room temperature.
The prototype is made entirely from an amber-colored glass-ceramic called Zerodur, manufactured by Schott in Mainz, Germany. The material is widely used for telescope mirrors and other applications requiring high precision because its shape changes very little over a wide range of temperatures.
The LISA mission is slated to launch in the mid-2030s.
Download additional images from NASA’s Scientific Visualization Studio
By Francis Reddy
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Media Contact:
Claire Andreoli
301-286-1940
claire.andreoli@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Missions
Humans in Space
Climate Change
Solar System
Comet Tsuchinshan-ATLAS is a Halloween visitor from the spooky Oort Cloud − the invisible bubble that's home to countless space objects
Anosmia, the Inability to Smell, Changes How People Breathe
A small study of people with congenital anosmia found changes in breathing that suggest the condition may affect more than just the ability to smell