Space isn't remote at all. It's only an hour's drive away if your car could go upwards.

— Fred Hoyle

Feed aggregator

<p><a href="https://apod.nasa.gov/apod

APOD - Fri, 01/09/2026 - 12:00pm

Most galaxies have a single nucleus -- does this galaxy have four?


Categories: Astronomy, NASA

Full Moonlight

APOD - Fri, 01/09/2026 - 12:00pm

The Full Moon is the brightest lunar phase,


Categories: Astronomy, NASA

Ice Halos by Moonlight and Sunlight

APOD - Fri, 01/09/2026 - 12:00pm

Both Moon and Sun create beautiful


Categories: Astronomy, NASA

How the Most Common Types of Planets Are Created

Universe Today - Fri, 01/09/2026 - 11:33am

A new study finds that hot super-Earths begin as large puffy worlds with low densities. Over time their atmospheres are stripped away to leave more dense planets orbiting close to their stars.

Categories: Astronomy

Why does the United States want to buy Greenland?

New Scientist Space - Space Headlines - Fri, 01/09/2026 - 11:00am
The ice-covered island may be strategically important, but it's unclear that it could be a commercially viable source of minerals and oil in the near future
Categories: Astronomy

Why does the United States want to buy Greenland?

New Scientist Space - Cosmology - Fri, 01/09/2026 - 11:00am
The ice-covered island may be strategically important, but it's unclear that it could be a commercially viable source of minerals and oil in the near future
Categories: Astronomy

Quantum neural network may be able to cheat the uncertainty principle

New Scientist Space - Space Headlines - Fri, 01/09/2026 - 11:00am
Calculations show that injecting randomness into a quantum neural network could help it determine properties of quantum objects that are otherwise fundamentally hard to access
Categories: Astronomy

Quantum neural network may be able to cheat the uncertainty principle

New Scientist Space - Cosmology - Fri, 01/09/2026 - 11:00am
Calculations show that injecting randomness into a quantum neural network could help it determine properties of quantum objects that are otherwise fundamentally hard to access
Categories: Astronomy

Man whose gut made its own alcohol gets relief from faecal transplant

New Scientist Space - Cosmology - Fri, 01/09/2026 - 10:00am
A man with auto-brewery syndrome, a rare condition in which gut microbes produce intoxicating levels of alcohol, has been successfully treated with faeces from a super donor
Categories: Astronomy

Man whose gut made its own alcohol gets relief from faecal transplant

New Scientist Space - Space Headlines - Fri, 01/09/2026 - 10:00am
A man with auto-brewery syndrome, a rare condition in which gut microbes produce intoxicating levels of alcohol, has been successfully treated with faeces from a super donor
Categories: Astronomy

NASA’s Pandora Satellite, CubeSats to Explore Exoplanets, Beyond

NASA - Breaking News - Fri, 01/09/2026 - 9:40am

6 min read

NASA’s Pandora Satellite, CubeSats to Explore Exoplanets, Beyond

A new NASA spacecraft called Pandora is awaiting launch ahead of its journey to study the atmospheres of exoplanets, or worlds beyond our solar system, and their stars.

Along for the ride are two shoebox-sized satellites called BlackCAT (Black Hole Coded Aperture Telescope) and SPARCS (Star-Planet Activity Research CubeSat), as NASA innovates with ambitious science missions that take low-cost, creative approaches to answering questions like, “How does the universe work?” and “Are we alone?”

All three missions are set to launch Jan. 11 on a SpaceX Falcon 9 rocket from Space Launch Complex 4 East at Vandenberg Space Force Base in California. The launch window opens at 8:19 a.m. EST (5:19 a.m. PST). SpaceX will livestream the event.

Artist’s concept of NASA’s Pandora mission, which will help scientists untangle the signals from the atmospheres of exoplanets — worlds beyond our solar system — and their stars. NASA’s Goddard Space Flight Center/Conceptual Image Lab
Download high-resolution images from NASA’s Scientific Visualization Studio

“Pandora’s goal is to disentangle the atmospheric signals of planets and stars using visible and near-infrared light,” said Elisa Quintana, Pandora’s principal investigator at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “This information can help astronomers determine if detected elements and compounds are coming from the star or the planet — an important step as we search for signs of life in the cosmos.”

BlackCAT and SPARCS are small satellites that will study the transient, high-energy universe and the activity of low-mass stars, respectively.

Pandora will observe planets as they pass in front of their stars as seen from our perspective, events called transits.

As starlight passes through a planet’s atmosphere, it interacts with substances like water and oxygen that absorb characteristic wavelengths, adding their chemical fingerprints to the signal.

But while only a small fraction of the star’s light grazes the planet, telescopes also collect the rest of the light emitted by the star’s facing side. Stellar surfaces can sport brighter and darker regions that grow, shrink, and change position over time, suppressing or magnifying signals from planetary atmospheres. Adding a further complication, some of these areas may contain the same chemicals that astronomers hope to find in the planet’s atmosphere, such as water vapor.

All these factors make it difficult to be certain that important detected molecules come from the planet alone.

Pandora will help address this problem by providing in-depth study of at least 20 exoplanets and their host stars during its initial year. The satellite will look at each planet and its star 10 times, with each observation lasting a total of 24 hours. Many of these worlds are among the over 6,000 discovered by missions like NASA’s TESS (Transiting Exoplanet Survey Satellite).

This view of the fully integrated Pandora spacecraft was taken May 19, 2025, following the mission’s successful environmental test campaign at Blue Canyon Technologies in Lafayette, Colorado. Visible are star trackers (center), multilayer insulation blankets (white), the end of the telescope (top), and the solar panel (right) in its launch configuration. NASA/BCT

Pandora will collect visible and near-infrared light using a novel, all-aluminum 17-inch-wide (45-centimeter) telescope jointly developed by Lawrence Livermore National Laboratory in California and Corning Incorporated in Keene, New Hampshire. Pandora’s near-infrared detector is a spare developed for NASA’s James Webb Space Telescope.

Each long observation period will capture a star’s light both before and during a transit and help determine how stellar surface features impact measurements.

“These intense studies of individual systems are difficult to schedule on high-demand missions, like Webb,” said engineer Jordan Karburn, Pandora’s deputy project manager at Livermore. “You also need the simultaneous multiwavelength measurements to pick out the star’s signal from the planet’s. The long stares with both detectors are critical for tracing the exact origins of elements and compounds scientists consider indicators of potential habitability.”

Pandora is the first satellite to launch in the agency’s Astrophysics Pioneers program, which seeks to do compelling astrophysics at a lower cost while training the next generation of leaders in space science.

After launching into low Earth orbit, Pandora will undergo a month of commissioning before embarking on its one-year prime mission. All the mission’s data will be publicly available.

“The Pandora mission is a bold new chapter in exoplanet exploration,” said Daniel Apai, an astronomy and planetary science professor at the University of Arizona in Tucson where the mission’s operations center resides. “It is the first space telescope built specifically to study, in detail, starlight filtered through exoplanet atmospheres. Pandora’s data will help scientists interpret observations from past and current missions like NASA’s Kepler and Webb space telescopes. And it will guide future projects in their search for habitable worlds.”

Watch to learn more about NASA’s Pandora mission, which will revolutionize the study of exoplanet atmospheres.
NASA’s Goddard Space Flight Center
Download high-resolution video and images from NASA’s Scientific Visualization Studio

The BlackCAT and SPARCS missions will take off alongside Pandora through NASA’s Astrophysics CubeSat program, the latter supported by the Agency’s CubeSat Launch Initiative.

CubeSats are a class of nanosatellites that come in sizes that are multiples of a standard cube measuring 3.9 inches (10 centimeters) across. Both BlackCAT and SPARCS are 11.8 by 7.8 by 3.9 inches (30 by 20 by 10 centimeters). CubeSats are designed to provide cost-effective access to space to test new technologies and educate early career scientists and engineers while delivering compelling science.

The BlackCAT mission will use a wide-field telescope and a novel type of X-ray detector to study powerful cosmic explosions like gamma-ray bursts, particularly those from the early universe, and other fleeting cosmic events. It will join NASA’s network of missions that watch for these changes. Abe Falcone at Pennsylvania State University in University Park, where the satellite was designed and built, leads the mission with contributions from Los Alamos National Laboratory in New Mexico. Kongsberg NanoAvionics US provided the spacecraft bus.

The SPARCS CubeSat will monitor flares and other activity from low-mass stars using ultraviolet light to determine how they affect the space environment around orbiting planets. Evgenya Shkolnik at Arizona State University in Tempe leads the mission with participation from NASA’s Jet Propulsion Laboratory in Southern California. In addition to providing science support, JPL developed the ultraviolet detectors and the associated electronics. Blue Canyon Technologies fabricated the spacecraft bus.

Pandora is led by NASA Goddard. Livermore provides the mission’s project management and engineering. Pandora’s telescope was manufactured by Corning and developed collaboratively with Livermore, which also developed the imaging detector assemblies, the mission’s control electronics, and all supporting thermal and mechanical subsystems. The near-infrared sensor was provided by NASA Goddard. Blue Canyon Technologies provided the bus and performed spacecraft assembly, integration, and environmental testing. NASA’s Ames Research Center in California’s Silicon Valley will perform the mission’s data processing. Pandora’s mission operations center is located at the University of Arizona, and a host of additional universities support the science team.

By Jeanette Kazmierczak
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Media Contact:
Claire Andreoli
301-286-1940
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Facebook logo @NASAUniverse

@NASAUniverse

Instagram logo @NASAUniverse

Share

Details

Last Updated

Jan 09, 2026

Related Terms
Categories: NASA

NASA’s Pandora Satellite, CubeSats to Explore Exoplanets, Beyond

NASA News - Fri, 01/09/2026 - 9:40am

6 min read

NASA’s Pandora Satellite, CubeSats to Explore Exoplanets, Beyond

A new NASA spacecraft called Pandora is awaiting launch ahead of its journey to study the atmospheres of exoplanets, or worlds beyond our solar system, and their stars.

Along for the ride are two shoebox-sized satellites called BlackCAT (Black Hole Coded Aperture Telescope) and SPARCS (Star-Planet Activity Research CubeSat), as NASA innovates with ambitious science missions that take low-cost, creative approaches to answering questions like, “How does the universe work?” and “Are we alone?”

All three missions are set to launch Jan. 11 on a SpaceX Falcon 9 rocket from Space Launch Complex 4 East at Vandenberg Space Force Base in California. The launch window opens at 8:19 a.m. EST (5:19 a.m. PST). SpaceX will livestream the event.

Artist’s concept of NASA’s Pandora mission, which will help scientists untangle the signals from the atmospheres of exoplanets — worlds beyond our solar system — and their stars. NASA’s Goddard Space Flight Center/Conceptual Image Lab
Download high-resolution images from NASA’s Scientific Visualization Studio

“Pandora’s goal is to disentangle the atmospheric signals of planets and stars using visible and near-infrared light,” said Elisa Quintana, Pandora’s principal investigator at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “This information can help astronomers determine if detected elements and compounds are coming from the star or the planet — an important step as we search for signs of life in the cosmos.”

BlackCAT and SPARCS are small satellites that will study the transient, high-energy universe and the activity of low-mass stars, respectively.

Pandora will observe planets as they pass in front of their stars as seen from our perspective, events called transits.

As starlight passes through a planet’s atmosphere, it interacts with substances like water and oxygen that absorb characteristic wavelengths, adding their chemical fingerprints to the signal.

But while only a small fraction of the star’s light grazes the planet, telescopes also collect the rest of the light emitted by the star’s facing side. Stellar surfaces can sport brighter and darker regions that grow, shrink, and change position over time, suppressing or magnifying signals from planetary atmospheres. Adding a further complication, some of these areas may contain the same chemicals that astronomers hope to find in the planet’s atmosphere, such as water vapor.

All these factors make it difficult to be certain that important detected molecules come from the planet alone.

Pandora will help address this problem by providing in-depth study of at least 20 exoplanets and their host stars during its initial year. The satellite will look at each planet and its star 10 times, with each observation lasting a total of 24 hours. Many of these worlds are among the over 6,000 discovered by missions like NASA’s TESS (Transiting Exoplanet Survey Satellite).

This view of the fully integrated Pandora spacecraft was taken May 19, 2025, following the mission’s successful environmental test campaign at Blue Canyon Technologies in Lafayette, Colorado. Visible are star trackers (center), multilayer insulation blankets (white), the end of the telescope (top), and the solar panel (right) in its launch configuration. NASA/BCT

Pandora will collect visible and near-infrared light using a novel, all-aluminum 17-inch-wide (45-centimeter) telescope jointly developed by Lawrence Livermore National Laboratory in California and Corning Incorporated in Keene, New Hampshire. Pandora’s near-infrared detector is a spare developed for NASA’s James Webb Space Telescope.

Each long observation period will capture a star’s light both before and during a transit and help determine how stellar surface features impact measurements.

“These intense studies of individual systems are difficult to schedule on high-demand missions, like Webb,” said engineer Jordan Karburn, Pandora’s deputy project manager at Livermore. “You also need the simultaneous multiwavelength measurements to pick out the star’s signal from the planet’s. The long stares with both detectors are critical for tracing the exact origins of elements and compounds scientists consider indicators of potential habitability.”

Pandora is the first satellite to launch in the agency’s Astrophysics Pioneers program, which seeks to do compelling astrophysics at a lower cost while training the next generation of leaders in space science.

After launching into low Earth orbit, Pandora will undergo a month of commissioning before embarking on its one-year prime mission. All the mission’s data will be publicly available.

“The Pandora mission is a bold new chapter in exoplanet exploration,” said Daniel Apai, an astronomy and planetary science professor at the University of Arizona in Tucson where the mission’s operations center resides. “It is the first space telescope built specifically to study, in detail, starlight filtered through exoplanet atmospheres. Pandora’s data will help scientists interpret observations from past and current missions like NASA’s Kepler and Webb space telescopes. And it will guide future projects in their search for habitable worlds.”

Watch to learn more about NASA’s Pandora mission, which will revolutionize the study of exoplanet atmospheres.
NASA’s Goddard Space Flight Center
Download high-resolution video and images from NASA’s Scientific Visualization Studio

The BlackCAT and SPARCS missions will take off alongside Pandora through NASA’s Astrophysics CubeSat program, the latter supported by the Agency’s CubeSat Launch Initiative.

CubeSats are a class of nanosatellites that come in sizes that are multiples of a standard cube measuring 3.9 inches (10 centimeters) across. Both BlackCAT and SPARCS are 11.8 by 7.8 by 3.9 inches (30 by 20 by 10 centimeters). CubeSats are designed to provide cost-effective access to space to test new technologies and educate early career scientists and engineers while delivering compelling science.

The BlackCAT mission will use a wide-field telescope and a novel type of X-ray detector to study powerful cosmic explosions like gamma-ray bursts, particularly those from the early universe, and other fleeting cosmic events. It will join NASA’s network of missions that watch for these changes. Abe Falcone at Pennsylvania State University in University Park, where the satellite was designed and built, leads the mission with contributions from Los Alamos National Laboratory in New Mexico. Kongsberg NanoAvionics US provided the spacecraft bus.

The SPARCS CubeSat will monitor flares and other activity from low-mass stars using ultraviolet light to determine how they affect the space environment around orbiting planets. Evgenya Shkolnik at Arizona State University in Tempe leads the mission with participation from NASA’s Jet Propulsion Laboratory in Southern California. In addition to providing science support, JPL developed the ultraviolet detectors and the associated electronics. Blue Canyon Technologies fabricated the spacecraft bus.

Pandora is led by NASA Goddard. Livermore provides the mission’s project management and engineering. Pandora’s telescope was manufactured by Corning and developed collaboratively with Livermore, which also developed the imaging detector assemblies, the mission’s control electronics, and all supporting thermal and mechanical subsystems. The near-infrared sensor was provided by NASA Goddard. Blue Canyon Technologies provided the bus and performed spacecraft assembly, integration, and environmental testing. NASA’s Ames Research Center in California’s Silicon Valley will perform the mission’s data processing. Pandora’s mission operations center is located at the University of Arizona, and a host of additional universities support the science team.

By Jeanette Kazmierczak
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Media Contact:
Claire Andreoli
301-286-1940
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Facebook logo @NASAUniverse

@NASAUniverse

Instagram logo @NASAUniverse

Share

Details

Last Updated

Jan 09, 2026

Related Terms
Categories: NASA

Week in images: 05-09 January 2026

ESO Top News - Fri, 01/09/2026 - 9:15am

Week in images: 05-09 January 2026

Discover our week through the lens

Categories: Astronomy

'Knitted' satellite launching to monitor Earth's surface with radar

New Scientist Space - Cosmology - Fri, 01/09/2026 - 8:00am
A standard industrial knitting machine has been modified to produce fabrics from tungsten wire coated in gold, which are used to form the dish on the CarbSAR satellite
Categories: Astronomy

'Knitted' satellite launching to monitor Earth's surface with radar

New Scientist Space - Space Headlines - Fri, 01/09/2026 - 8:00am
A standard industrial knitting machine has been modified to produce fabrics from tungsten wire coated in gold, which are used to form the dish on the CarbSAR satellite
Categories: Astronomy

These Bizarre, Centuries-Old Greenland Sharks May Have a Hidden Longevity Superpower

Scientific American.com - Fri, 01/09/2026 - 6:45am

The very, very long-lived Greenland sharks were long thought to be practically blind. But a new study finds that they not only can see but also maintain their vision into old age

Categories: Astronomy

The Best Skywatching and Stargazing Events of 2026

Scientific American.com - Fri, 01/09/2026 - 6:45am

Total eclipses, lunar occultations, planetary conjunctions and meteor showers await stargazers this year

Categories: Astronomy

The Weight-Loss Drug Revolution—From Shots to Pills and the Science behind It All

Scientific American.com - Fri, 01/09/2026 - 6:00am

Behind the hype of GLP-1 medications lies complex science, serious side effects and a pharmaceutical arms race.

Categories: Astronomy

This Week's Sky at a Glance, January 9 – 18

Sky & Telescope Magazine - Fri, 01/09/2026 - 4:42am

Jupiter is at opposition. Evenings are moonless, and the winter Milky Way arches high over the world. Betelgeuse stands over Sirius.

The post This Week's Sky at a Glance, January 9 – 18 appeared first on Sky & Telescope.

Categories: Astronomy