Feed aggregator
Lunar Strike is a hard sci-fi adventure game about preserving humanity's legacy on the moon (exclusive)
Our brain doesn't actually reorganise itself after an amputation
Our brain doesn't actually reorganise itself after an amputation
Could lacing food with fat-trapping microbeads help us lose weight?
Could lacing food with fat-trapping microbeads help us lose weight?
A partial solar eclipse is coming: 1 month until the moon takes a 'bite' out of the sun
HURRICANE ERIN - Live Tracker
Curiosity Blog, Sols 4636-4637: Up Against a Wall
- Curiosity Home
- Science
- News and Features
- Multimedia
- Mars Missions
- Mars Home
2 min read
Curiosity Blog, Sols 4636-4637: Up Against a Wall NASA’s Mars rover Curiosity acquired this image, showing itself parked at the wall of a fracture named “Río Frío.” Curiosity used its Left Navigation Camera on Aug. 19, 2025 — Sol 4634, or Martian day 4,634 of the Mars Science Laboratory mission — at 14:51:33 UTC. NASA/JPL-CaltechWritten by Michelle Minitti, MAHLI Deputy Principal Investigator, Framework
Earth planning date: Wednesday, Aug. 20, 2025
What does a good rover do when her back is up against a wall? Fight for science!
Curiosity indeed fought the good fight at “Río Frío,” the wall of one of the many ridges cutting through the boxwork terrain we have been systematically exploring. The observations along the wall today provide insight into the internal structure and chemistry of the ridges, hopefully giving us clues as to why they are standing proud relative to the surrounding terrain.
The structural story will be told by the large Mastcam mosaics we planned, covering the ridge from base to top, and from a MAHLI mosaic covering a horizon of the wall filled with resistant nodules and smooth, swooping surfaces cutting in all directions that are likely veins. The mosaic target, “Jardín de las Delicias,” will surely yield a surfeit of Martian delights. The chemical story will be told by APXS analysis of the nodule-filled target “Minimini” and SuperCam analysis of a vein at “El Tapado.” In contrast to the ridge itself, we planned a Mastcam mosaic of part of the hollow at the base of the ridge at target “Playa Zapatilla.”
Beyond the ridge, we planned Mastcam and ChemCam imaging of the “Paniri” and “Mishe Mokwa” buttes, respectively, and sky observations with Navcam and Mastcam. DAN, RAD, and REMS run periodically through the plan keeping their eye on the Martian environment. Our drive will take us to a smaller ridge perpendicular to Río Frío, where we will once again fight to learn the secrets these ridges have to tell about Mars’ past.
-
Want to read more posts from the Curiosity team?
-
Want to learn more about Curiosity’s science instruments?
Article
1 day ago
2 min read Curiosity Blog, Sols 4631-4633: Radiant Ridge Revolution
Article
1 day ago
2 min read Curiosity Blog, Sols 4629-4630: Feeling Hollow
Article
3 days ago
Keep Exploring Discover More Topics From NASA Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
Curiosity Blog, Sols 4636-4637: Up Against a Wall
- Curiosity Home
- Science
- News and Features
- Multimedia
- Mars Missions
- Mars Home
2 min read
Curiosity Blog, Sols 4636-4637: Up Against a Wall NASA’s Mars rover Curiosity acquired this image, showing itself parked at the wall of a fracture named “Río Frío.” Curiosity used its Left Navigation Camera on Aug. 19, 2025 — Sol 4634, or Martian day 4,634 of the Mars Science Laboratory mission — at 14:51:33 UTC. NASA/JPL-CaltechWritten by Michelle Minitti, MAHLI Deputy Principal Investigator, Framework
Earth planning date: Wednesday, Aug. 20, 2025
What does a good rover do when her back is up against a wall? Fight for science!
Curiosity indeed fought the good fight at “Río Frío,” the wall of one of the many ridges cutting through the boxwork terrain we have been systematically exploring. The observations along the wall today provide insight into the internal structure and chemistry of the ridges, hopefully giving us clues as to why they are standing proud relative to the surrounding terrain.
The structural story will be told by the large Mastcam mosaics we planned, covering the ridge from base to top, and from a MAHLI mosaic covering a horizon of the wall filled with resistant nodules and smooth, swooping surfaces cutting in all directions that are likely veins. The mosaic target, “Jardín de las Delicias,” will surely yield a surfeit of Martian delights. The chemical story will be told by APXS analysis of the nodule-filled target “Minimini” and SuperCam analysis of a vein at “El Tapado.” In contrast to the ridge itself, we planned a Mastcam mosaic of part of the hollow at the base of the ridge at target “Playa Zapatilla.”
Beyond the ridge, we planned Mastcam and ChemCam imaging of the “Paniri” and “Mishe Mokwa” buttes, respectively, and sky observations with Navcam and Mastcam. DAN, RAD, and REMS run periodically through the plan keeping their eye on the Martian environment. Our drive will take us to a smaller ridge perpendicular to Río Frío, where we will once again fight to learn the secrets these ridges have to tell about Mars’ past.
-
Want to read more posts from the Curiosity team?
-
Want to learn more about Curiosity’s science instruments?
Article
1 day ago
2 min read Curiosity Blog, Sols 4631-4633: Radiant Ridge Revolution
Article
1 day ago
2 min read Curiosity Blog, Sols 4629-4630: Feeling Hollow
Article
3 days ago
Keep Exploring Discover More Topics From NASA Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
Second U.S. Malaria Case Not Tied to Travel Raises Fears of Local Transmission
One-off cases of malaria in the U.S. may become more common as warming temperatures lead to booming mosquito populations
Artemis 2 astronauts suit up for nighttime moon launch dress rehearsal (photos, video)
Test your true terrestrial trivia with our Earth quiz!
US Space Force's secretive X-37B space plane will test quantum alternative to GPS navigation
Forget Galactus, 'Strange New Worlds'' ancient scavenger ship is the real 'destroyer of worlds' (exclusive)
How Gecko Feet Could Save Space Travel
Space is getting dangerously crowded. More than 50,000 pieces of debris larger than 10 centimetres are currently hurtling around Earth at breakneck speeds, turning Earth orbits into veritable minefields. Dead satellites, rocket fragments, and collision debris pose such a serious threat that the International Space Station regularly performs emergency manoeuvres to dodge potential impacts. Now, an international team of researchers thinks they've found an elegant solution to this growing crisis and it's inspired by a humble house gecko's amazing ability to walk on walls.
New Theory Points to the Universe's Greatest Fireworks Show
What if the universe began with a fireworks show? A new theory suggests that supermassive black holes, the mysterious giants found at the heart of galaxies, were born from the universe's very first stars in a spectacular flash of light that ionised all of space before vanishing forever. This dramatic "Pop III.1" model could finally explain how these giant stellar remnants grew so impossibly large so quickly after the Big Bang, while potentially solving several major puzzles plaguing modern astronomy, from the Hubble Tension to the nature of Cosmic Dawn itself.
X-ray and Radio go ‘Hand in Hand’ in New Image
In 2009, NASA’s Chandra X-ray Observatory released a captivating image: a pulsar and its surrounding nebula that is shaped like a hand.
Since then, astronomers have used Chandra and other telescopes to continue to observe this object. Now, new radio data from the Australia Telescope Compact Array (ATCA), has been combined with Chandra’s X-ray data to provide a fresh view of this exploded star and its environment, to help understand its peculiar properties and shape.
At the center of this new image lies the pulsar B1509-58, a rapidly spinning neutron star that is only about 12 miles in diameter. This tiny object is responsible for producing an intricate nebula (called MSH 15-52) that spans over 150 light-years, or about 900 trillion miles. The nebula, which is produced by energetic particles, resembles a human hand with a palm and extended fingers pointing to the upper right in X-rays.
Labeled Version of the ImageX-ray: NASA/CXC/Univ. of Hong Kong/S. Zhang et al.; Radio: ATNF/CSIRO/ATCA; H-alpha: UK STFC/Royal Observatory Edinburgh; Image Processing: NASA/CXC/SAO/N. WolkThe collapse of a massive star created the pulsar when much of the star crashed inward once it burned through its sustainable nuclear fuel. An ensuing explosion sent the star’s outer layers outward into space as a supernova.
The pulsar spins around almost seven times every second and has a strong magnetic field, about 15 trillion times stronger than the Earth’s. The rapid rotation and strong magnetic field make B1509-58 one of the most powerful electromagnetic generators in the Galaxy, enabling it to drive an energetic wind of electrons and other particles away from the pulsar, creating the nebula.
In this new composite image, the ATCA radio data (represented in red) has been combined with X-rays from Chandra (shown in blue, orange and yellow), along with an optical image of hydrogen gas (gold). The areas of overlap between the X-ray and radio data in MSH 15-52 show as purple. The optical image shows stars in the field of view along with parts of the supernova’s debris, the supernova remnant RCW 89. A labeled version of the figure shows the main features of the image.
Radio data from ATCA now reveals complex filaments that are aligned with the directions of the nebula’s magnetic field, shown by the short, straight, white lines in a supplementary image. These filaments could result from the collision of the pulsar’s particle wind with the supernova’s debris.
Complex Filaments Aligned with the Directions of the Nebula’s Magnetic FieldX-ray: NASA/CXC/Univ. of Hong Kong/S. Zhang et al.; Radio: ATNF/CSIRO/ATCA; H-alpha: UK STFC/Royal Observatory Edinburgh; Image Processing: NASA/CXC/SAO/N. WolkBy comparing the radio and X-ray data, researchers identified key differences between the sources of the two types of light. In particular, some prominent X-ray features, including the jet towards the bottom of the image and the inner parts of the three “fingers” towards the top, are not detected in radio waves. This suggests that highly energetic particles are leaking out from a shock wave — similar to a supersonic plane’s sonic boom — near the pulsar and moving along magnetic field lines to create the fingers.
The radio data also shows that RCW 89’s structure is different from typical young supernova remnants. Much of the radio emission is patchy and closely matches clumps of X-ray and optical emission. It also extends well beyond the X-ray emission. All of these characteristics support the idea that RCW 89 is colliding with a dense cloud of nearby hydrogen gas.
However, the researchers do not fully understand all that the data is showing them. One area that is perplexing is the sharp boundary of X-ray emission in the upper right of the image that seems to be the blast wave from the supernova — see the labeled feature. Supernova blast waves are usually bright in radio waves for young supernova remnants like RCW 89, so it is surprising to researchers that there is no radio signal at the X-ray boundary.
MSH 15–52 and RCW 89 show many unique features not found in other young sources. There are, however, still many open questions regarding the formation and evolution of these structures. Further work is needed to provide better understanding of the complex interplay between the pulsar wind and the supernova debris.
A paper describing this work, led by Shumeng Zhang of the University of Hong Kong, with co-authors Stephen C.Y. Ng of the University of Hong Kong and Niccolo’ Bucciantini of the Italian National Institute for Astrophysics, has been published in The Astrophysical Journal and is available at https://iopscience.iop.org/article/10.3847/1538-4357/adf333.
NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
Read more from NASA’s Chandra X-ray ObservatoryLearn more about the Chandra X-ray Observatory and its mission here:
Visual DescriptionThis release features a composite image of a nebula and pulsar that strongly resembles a cosmic hand reaching for a neon red cloud.
The neon red cloud sits near the top of the image, just to our right of center. Breaks in the cloud reveal interwoven strands of gold resembling spiderwebs, or a latticework substructure. This cloud is the remains of the supernova that formed the pulsar at the heart of the image. The pulsar, a rapidly spinning neutron star only 12 miles in diameter, is far too small to be seen in this image, which represents a region of space over 150 light-years across.
The bottom half of the image is dominated by a massive blue hand reaching up toward the pulsar and supernova cloud. This is an intricate nebula called MSH 15-52, an energetic wind of electrons and other particles driven away from the pulsar. The resemblance to a hand is undeniable. Inside the nebula, streaks and swirls of blue range from pale to navy, evoking a medical X-ray, or the yearning hand of a giant, cosmic ghost.
The hand and nebula are set against the blackness of space, surrounded by scores of gleaming golden specks. At our lower left, a golden hydrogen gas cloud extends beyond the edges of the image. In this composite, gold represents optical data; red represents ATCA radio data; and blue, orange, and yellow represent X-ray data from Chandra. Where the blue hand of the nebula overlaps with the radio data in red, the fingers appear hazy and purple.
News Media ContactMegan Watzke
Chandra X-ray Center
Cambridge, Mass.
617-496-7998
mwatzke@cfa.harvard.edu
Corinne Beckinger
Marshall Space Flight Center, Huntsville, Alabama
256-544-0034
corinne.m.beckinger@nasa.gov
While the Artemis II crew will be the first humans to test NASA’s Orion spacecraft…
Article 10 hours ago 5 min read NASA, Army National Guard Partner on Flight Training for Moon Landing Article 3 days ago 4 min read NASA Challenge Winners Cook Up New Industry Developments Article 4 days agoX-ray and Radio go ‘Hand in Hand’ in New Image
In 2009, NASA’s Chandra X-ray Observatory released a captivating image: a pulsar and its surrounding nebula that is shaped like a hand.
Since then, astronomers have used Chandra and other telescopes to continue to observe this object. Now, new radio data from the Australia Telescope Compact Array (ATCA), has been combined with Chandra’s X-ray data to provide a fresh view of this exploded star and its environment, to help understand its peculiar properties and shape.
At the center of this new image lies the pulsar B1509-58, a rapidly spinning neutron star that is only about 12 miles in diameter. This tiny object is responsible for producing an intricate nebula (called MSH 15-52) that spans over 150 light-years, or about 900 trillion miles. The nebula, which is produced by energetic particles, resembles a human hand with a palm and extended fingers pointing to the upper right in X-rays.
Labeled Version of the ImageX-ray: NASA/CXC/Univ. of Hong Kong/S. Zhang et al.; Radio: ATNF/CSIRO/ATCA; H-alpha: UK STFC/Royal Observatory Edinburgh; Image Processing: NASA/CXC/SAO/N. WolkThe collapse of a massive star created the pulsar when much of the star crashed inward once it burned through its sustainable nuclear fuel. An ensuing explosion sent the star’s outer layers outward into space as a supernova.
The pulsar spins around almost seven times every second and has a strong magnetic field, about 15 trillion times stronger than the Earth’s. The rapid rotation and strong magnetic field make B1509-58 one of the most powerful electromagnetic generators in the Galaxy, enabling it to drive an energetic wind of electrons and other particles away from the pulsar, creating the nebula.
In this new composite image, the ATCA radio data (represented in red) has been combined with X-rays from Chandra (shown in blue, orange and yellow), along with an optical image of hydrogen gas (gold). The areas of overlap between the X-ray and radio data in MSH 15-52 show as purple. The optical image shows stars in the field of view along with parts of the supernova’s debris, the supernova remnant RCW 89. A labeled version of the figure shows the main features of the image.
Radio data from ATCA now reveals complex filaments that are aligned with the directions of the nebula’s magnetic field, shown by the short, straight, white lines in a supplementary image. These filaments could result from the collision of the pulsar’s particle wind with the supernova’s debris.
Complex Filaments Aligned with the Directions of the Nebula’s Magnetic FieldX-ray: NASA/CXC/Univ. of Hong Kong/S. Zhang et al.; Radio: ATNF/CSIRO/ATCA; H-alpha: UK STFC/Royal Observatory Edinburgh; Image Processing: NASA/CXC/SAO/N. WolkBy comparing the radio and X-ray data, researchers identified key differences between the sources of the two types of light. In particular, some prominent X-ray features, including the jet towards the bottom of the image and the inner parts of the three “fingers” towards the top, are not detected in radio waves. This suggests that highly energetic particles are leaking out from a shock wave — similar to a supersonic plane’s sonic boom — near the pulsar and moving along magnetic field lines to create the fingers.
The radio data also shows that RCW 89’s structure is different from typical young supernova remnants. Much of the radio emission is patchy and closely matches clumps of X-ray and optical emission. It also extends well beyond the X-ray emission. All of these characteristics support the idea that RCW 89 is colliding with a dense cloud of nearby hydrogen gas.
However, the researchers do not fully understand all that the data is showing them. One area that is perplexing is the sharp boundary of X-ray emission in the upper right of the image that seems to be the blast wave from the supernova — see the labeled feature. Supernova blast waves are usually bright in radio waves for young supernova remnants like RCW 89, so it is surprising to researchers that there is no radio signal at the X-ray boundary.
MSH 15–52 and RCW 89 show many unique features not found in other young sources. There are, however, still many open questions regarding the formation and evolution of these structures. Further work is needed to provide better understanding of the complex interplay between the pulsar wind and the supernova debris.
A paper describing this work, led by Shumeng Zhang of the University of Hong Kong, with co-authors Stephen C.Y. Ng of the University of Hong Kong and Niccolo’ Bucciantini of the Italian National Institute for Astrophysics, has been published in The Astrophysical Journal and is available at https://iopscience.iop.org/article/10.3847/1538-4357/adf333.
NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
Read more from NASA’s Chandra X-ray ObservatoryLearn more about the Chandra X-ray Observatory and its mission here:
Visual DescriptionThis release features a composite image of a nebula and pulsar that strongly resembles a cosmic hand reaching for a neon red cloud.
The neon red cloud sits near the top of the image, just to our right of center. Breaks in the cloud reveal interwoven strands of gold resembling spiderwebs, or a latticework substructure. This cloud is the remains of the supernova that formed the pulsar at the heart of the image. The pulsar, a rapidly spinning neutron star only 12 miles in diameter, is far too small to be seen in this image, which represents a region of space over 150 light-years across.
The bottom half of the image is dominated by a massive blue hand reaching up toward the pulsar and supernova cloud. This is an intricate nebula called MSH 15-52, an energetic wind of electrons and other particles driven away from the pulsar. The resemblance to a hand is undeniable. Inside the nebula, streaks and swirls of blue range from pale to navy, evoking a medical X-ray, or the yearning hand of a giant, cosmic ghost.
The hand and nebula are set against the blackness of space, surrounded by scores of gleaming golden specks. At our lower left, a golden hydrogen gas cloud extends beyond the edges of the image. In this composite, gold represents optical data; red represents ATCA radio data; and blue, orange, and yellow represent X-ray data from Chandra. Where the blue hand of the nebula overlaps with the radio data in red, the fingers appear hazy and purple.
News Media ContactMegan Watzke
Chandra X-ray Center
Cambridge, Mass.
617-496-7998
mwatzke@cfa.harvard.edu
Corinne Beckinger
Marshall Space Flight Center, Huntsville, Alabama
256-544-0034
corinne.m.beckinger@nasa.gov
While the Artemis II crew will be the first humans to test NASA’s Orion spacecraft…
Article 7 hours ago 5 min read NASA, Army National Guard Partner on Flight Training for Moon Landing Article 3 days ago 4 min read NASA Challenge Winners Cook Up New Industry Developments Article 3 days ago