Feed aggregator
Moon quiz: For all lunatics
Scientists just recreated the universe's first ever molecules — and the results challenge our understanding of the early cosmos
This Week In Space podcast: Episode 173 — The Return of the Malik
If everyone in the world turned on the lights at the same time, what would happen?
Titan darkens Saturn in rare shadow transit on Aug. 19: Here's how to see it
Tiny devices propelled by sunlight could explore a mysterious region of Earth's atmosphere
How Did Jupiter's Galilean Moons Form?
We already know a decent amount about how planets form, but moon formation is another process entirely, and one we’re not as familiar with. Scientists think they understand how the most important Moon in our solar system (our own) formed, but its violent birth is not the norm, and can’t explain larger moon systems like the Galilean moons around Jupiter. A new book chapter (which was also released as a pre-print paper) from Yuhito Shibaike and Yann Alibert from the University of Bern discusses the differing ideas surrounding the formation of large moon systems, especially the Galileans, and how we might someday be able to differentiate them.
A Cosmic Noon Puzzle: Why Did Cosmic Noon Galaxies Emit So Many Cosmic Rays?
The Universe's early galaxies were engulfed in halos of high-energy cosmic rays. It's likely because they had tangled and turbulent magnetic fields. These fields accelerate cosmic rays to higher energies.
China’s Crewed Lunar Lander Passes Key Test Milestone
China took a step closer to the Moon, with the first short test for their crewed lunar lander. The test was completed on Wednesday, August 6th at a facility in China’s northern Hebei Province, and lasted just under 30 seconds. The tethered test successfully demonstrated the integration and performance of key systems, simulating descent, guidance, control and engine shutdown. This marks the first test for a China’s Manned (crewed) Space Agency (CMSA’s) human-rated lander.
JPL Is Ready To Test Mars Samples - If They're Ever Returned
Taking a walk is great for inspiration. There have been numerous studies about how people think more clearly on walks, and how new ideas come to them more frequently while doing so. That’s part of the reason some of the most famous minds in history included a daily walk in their schedule. Just such an inspiration must have happened recently to Nicholas Heinz, a scientist at NASA’s Jet Propulsion Laboratory (JPL) in California. On a hike in Arizona he found a rock that could be used as an analog of a unique one found by the Perseverance rover on Mars - and decided to take it back to his lab to study it.x
How Climate Change Will Reshape Space Weather's Impact on Satellites
Climate change isn't just transforming weather on Earth's surface, it’s also fundamentally altering how space weather affects the thousands of satellites orbiting our planet. New research reveals that rising carbon dioxide levels will dramatically change how geomagnetic storms impact the upper atmosphere, creating both opportunities and challenges for the satellite industry in the decades ahead.
How Gecko Feet Could Save Space Travel
Space is getting dangerously crowded. More than 50,000 pieces of debris larger than 10 centimetres are currently hurtling around Earth at breakneck speeds, turning Earth orbits into veritable minefields. Dead satellites, rocket fragments, and collision debris pose such a serious threat that the International Space Station regularly performs emergency manoeuvres to dodge potential impacts. Now, an international team of researchers thinks they've found an elegant solution to this growing crisis and it's inspired by a humble house gecko's amazing ability to walk on walls.
New Theory Points to the Universe's Greatest Fireworks Show
What if the universe began with a fireworks show? A new theory suggests that supermassive black holes, the mysterious giants found at the heart of galaxies, were born from the universe's very first stars in a spectacular flash of light that ionised all of space before vanishing forever. This dramatic "Pop III.1" model could finally explain how these giant stellar remnants grew so impossibly large so quickly after the Big Bang, while potentially solving several major puzzles plaguing modern astronomy, from the Hubble Tension to the nature of Cosmic Dawn itself.