"The large-scale homogeneity of the universe makes it very difficult to believe that the structure of the universe is determined by anything so peripheral as some complicated molecular structure on a minor planet orbiting a very average star in the outer suburbs of a fairly typical galaxy."

— Steven Hawking

NASA - Breaking News

Syndicate content
Official National Aeronautics and Space Administration Website
Updated: 6 hours 13 min ago

Artemis II Core Stage Integration – Complete!

7 hours 37 min ago
NASA/Frank Michaux

Technicians from NASA and primary contractor Amentum join the SLS (Space Launch System) rocket with the stacked solid rocket boosters for the Artemis II mission at NASA’s Kennedy Space Center in Florida on March 23, 2025. The core stage is the largest component of the rocket, standing 212 feet tall and weighing about 219,000 pounds with its engines. The stage is the backbone of the rocket, supporting the launch vehicle stage adapter, interim cryogenic propulsion stage, Orion stage adapter, and the Orion spacecraft.

Artemis II is the first crewed test flight under NASA’s Artemis campaign and is another step toward missions on the lunar surface and helping the agency prepare for future human missions to Mars.

Image credit: NASA/Frank Michaux

Categories: NASA

Career Spotlight: Technologist (Ages 14-18)

8 hours 28 min ago

4 Min Read Career Spotlight: Technologist (Ages 14-18) What does a technologist do?

Technologists are professionals who research, develop, and test emerging technologies. They also find useful ways to put new technologies to work. A technologist is an expert in a specific type of technology, often within a specific field. Many industries rely on innovations developed by technologists. Some of these include aerospace, research, manufacturing, healthcare, and information technology.

NASA technologists make use of technological advancements to improve NASA’s capabilities and better meet the needs of its missions. They also oversee how technologies developed by NASA can improve life on Earth through commercial products. These products are called spinoffs. For examples of how NASA shows up in your everyday life, visit: https://spinoff.nasa.gov.

What are some technology careers at NASA?

Instrument scientist: Works to improve or develop instruments that collect data. In aerospace, an instrument is a sensor or other device that takes measurements or gathers scientific information. This role may include working with other specialties to design, create, and test scientific instruments.

Data scientist: Uses computer science to create tools that manage data. Some of the tasks a data scientist might perform include developing predictive models, machine learning algorithms, or software to extract useful information from large sets of data.

Information technology (IT) specialist: Designs, maintains, implements, and protects IT systems across the agency. Develops software, manages IT projects, and develops applications to support both organizational and mission operations.

One of three small lunar rovers that are part of a NASA technology demonstration called CADRE (Cooperative Autonomous Distributed Robotic Exploration) is prepared for shipping in a clean room at the agency’s Jet Propulsion Laboratory in Southern California.NASA/JPL-Caltech How can I become a technologist?

There are many different types of careers in technology, and the requirements vary. While you’re in high school, explore the possibilities and learn about the specialties and roles that will fit your interests. Then, investigate the academic path and experience you’ll need to eventually be hired into those roles. Current job openings, guidance counselors, and mentors can shed light on the types of certifications or degrees required. With this information, you can begin planning for the skills and education you’ll need.

It’s important to remember that technology is always advancing. Even after you’ve launched your technologist career, a “lifelong learning” mindset will help you keep up with new innovations and skills.

How can I start preparing today to become a technologist?

Start growing your technology skills today with hands-on activities created by NASA STEM. Looking for something more involved? Many of NASA’s student challenges, competitions, and activities offer authentic experience in aerospace technology, computer science, and more.

Students aged 16 and up who are U.S. citizens are eligible to apply for a paid NASA internship. Interns work on real projects with the guidance of a NASA mentor. Internship sessions are held each year in spring, summer, and fall; visit NASA’s Internships website to learn about important deadlines and current opportunities.

Frank Pena, test director, checks on the 10-foot Mock Truss-Braced Wing at NASA’s Armstrong Flight Research Center in Edwards, California. The aircraft concept involves a wing braced on an aircraft using diagonal struts that also add lift and could result in significantly improved aerodynamics.NASA Advice from NASA technologists

“Think about your personal interests and passions, and also the impact you’d like your work to have. What do you feel personally interested in when it comes to science and technology? Is there a problem that you think is very important for our society to solve? Often there is a research or technology field that can combine those two things!” – Olivia Tyrrell, NASA research engineer

What do you feel personally interested in when it comes to science and technology?

Olivia Tyrrell

NASA Research Engineer

“If you like to create things or find solutions to problems, working in technology is a great choice. Scientists identify problems, engineers solve problems, but ultimately, we need to create new technologies, new things, new gadgets.  Technologists are building the next generation toolbox for engineers and scientists to pull from, enabling everyone to solve problems in more effective and innovative ways. (Technologists invent things… what’s cooler than that?!)” – Kristen John, technical integration manager for lunar dust mitigation

Additional Resources

NASA Data Science, Cybersecurity, and IT Careers

NASA Space Technology

Technology | NASA+

Keep Exploring Discover More Topics From NASA

For Students Grades 9-12

NASA Internship Programs

NASA STEM Opportunities and Activities For Students

Careers

Categories: NASA

Career Spotlight: Scientist (Ages 14-18)

8 hours 28 min ago
4 Min Read Career Spotlight: Scientist (Ages 14-18) What does a scientist do?

Science is about exploring answers to questions. A scientist uses research and evidence to form hypotheses, test variables, and then share their findings.

NASA scientists conduct groundbreaking research to answer some of humanity’s most profound questions. Most scientists start as project scientists in their early careers. They spend a lot of time publishing their peer-reviewed literature and presenting scientific research. Senior-level scientists provide leadership in the NASA community, actively publish research group work, and take on management roles.

What are some of the different types of scientists that work at NASA?

Many types of scientists work at NASA to support its wide variety of missions. The agency’s scientists research the foods we send to space, the habitability of other planets, the weather in space, and so much more. Here are a few examples of types of scientists at NASA.

Planetary scientist: Discovers and studies the planetary objects in our solar system. These efforts shed light on the history of the solar system and the distribution of life within it.

Astrobiologist: Studies the origins of life, how life evolves, and where it might be found in the universe.

Astrophysicist: Studies the physical and chemical structures of stars, planets, and other natural objects found in space.

Biological/physical scientist: Studies how biological and physical processes work in challenging environments like space. This information helps NASA design longer human space missions and also benefits life on Earth.

Earth scientist: Uses observations and data from satellites and other sources to study Earth’s atmosphere, oceans, land cover, and land use.

Heliophysicist: Studies the Sun and its behaviors, such as magnetic fields, solar wind, and space weather. This knowledge helps us better understand and predict the Sun’s effects on Earth and in space.

How can I become a scientist?

Focus on building your scientific knowledge and skills. You can do this by taking challenging academic courses, participating in science fairs, and joining extracurricular activities that have a scientific focus. This is also a good time to research what types of sciences you’re most interested in, possible careers in those fields, and academic degrees required for those jobs.

Scientists typically need at least a four-year degree. Most pursue a master’s degree or even a doctorate (Ph.D.) to become experts in their field.

How can I start preparing today to become a scientist?

Interested in applying some science skills right away? NASA provides a variety of hands-on activities for a range of skill levels. The space agency also offers student challenges, competitions, and activities that provide authentic experience in a variety of science fields. For up-to-date opportunities, visit:

NASA also offers paid internships for U.S. citizens aged 16 and up. Interns work on real projects with the guidance of a NASA mentor. Internship sessions are held each year in spring, summer, and fall; visit NASA’s Internships website to learn about important deadlines and current opportunities.

Advice from NASA scientists

    “Take advantage of opportunities in different fields like attending summer classes, volunteering on the weekends, visiting museums, attending community lectures, and reading introductory books at the library. These are a few ways to expand your scope of possibility within the sciences, while simultaneously narrowing your focus in a field.” – Angela Garcia, exploration geologist

    “The key to being a scientist is to love asking questions. If you are fascinated about how and why things work — you are already a scientist.”

    Nicola Fox

    NASA Associate Administrator, Science Mission Directorate

    “One general skill that is often overlooked is the ability to write well and clearly. There’s a misconception that being a scientist means using big words and writing in ways that no one understands, when it’s actually the opposite. The ability to communicate your thoughts and ideas so that a child can understand is not easy, but it’s essential for good scientific writing.” – Matt Mickens, NASA horticulturist

    Additional Resources

    Careers in Science and Research

    NASA Science Career Path Navigator

    NASA Science Mission Directorate

    People of NASA Science

    Explore NASA+ Scientist Resources

    Keep Exploring Discover More Topics From NASA

    For Students Grades 9-12

    NASA Internship Programs

    NASA STEM Opportunities and Activities For Students

    Careers

    Categories: NASA

    20-Year Hubble Study of Uranus Yields New Atmospheric Insights

    9 hours 13 min ago
    Explore Hubble

    5 Min Read 20-Year Hubble Study of Uranus Yields New Atmospheric Insights

    The image columns show the change of Uranus for the four years that STIS observed Uranus across a 20-year period. Over that span of time, the researchers watched the seasons of Uranus as the south polar region darkened going into winter shadow while the north polar region brightened as northern summer approaches.

    Credits:
    NASA, ESA, Erich Karkoschka (LPL)

    The ice-giant planet Uranus, which travels around the Sun tipped on its side, is a weird and mysterious world. Now, in an unprecedented study spanning two decades, researchers using NASA’s Hubble Space Telescope have uncovered new insights into the planet’s atmospheric composition and dynamics. This was possible only because of Hubble’s sharp resolution, spectral capabilities, and longevity. 

    The team’s results will help astronomers to better understand how the atmosphere of Uranus works and responds to changing sunlight. These long-term observations provide valuable data for understanding the atmospheric dynamics of this distant ice giant, which can serve as a proxy for studying exoplanets of similar size and composition.

    When Voyager 2 flew past Uranus in 1986, it provided a close-up snapshot of the sideways planet. What it saw resembled a bland, blue-green billiard ball. By comparison, Hubble chronicled a 20-year story of seasonal changes from 2002 to 2022. Over that period, a team led by Erich Karkoschka of the University of Arizona, and Larry Sromovsky and Pat Fry from the University of Wisconsin used the same Hubble instrument, STIS (the Space Telescope Imaging Spectrograph), to paint an accurate picture of the atmospheric structure of Uranus. 

    Uranus’ atmosphere is mostly hydrogen and helium, with a small amount of methane and traces of water and ammonia. The methane gives Uranus its cyan color by absorbing the red wavelengths of sunlight.

    The Hubble team observed Uranus four times in the 20-year period: in 2002, 2012, 2015, and 2022. They found that, unlike conditions on the gas giants Saturn and Jupiter, methane is not uniformly distributed across Uranus. Instead, it is strongly depleted near the poles. This depletion remained relatively constant over the two decades. However, the aerosol and haze structure changed dramatically, brightening significantly in the northern polar region as the planet approaches its northern summer solstice in 2030.

    The image columns show the change of Uranus for the four years that STIS observed Uranus across a 20-year period. Over that span of time, the researchers watched the seasons of Uranus as the south polar region darkened going into winter shadow while the north polar region brightened as northern summer approaches. NASA, ESA, Erich Karkoschka (LPL)

    Uranus takes a little over 84 Earth years to complete a single orbit of the Sun. So, over two decades, the Hubble team has only seen mostly northern spring as the Sun moves from shining directly over Uranus’ equator toward shining almost directly over its north pole in 2030. Hubble observations suggest complex atmospheric circulation patterns on Uranus during this period. The data that are most sensitive to the methane distribution indicate a downwelling in the polar regions and upwelling in other regions. 

    The team analyzed their results in several ways. The image columns show the change of Uranus for the four years that STIS observed Uranus across a 20-year period. Over that span of time, the researchers watched the seasons of Uranus as the south polar region (left) darkened going into winter shadow while the north polar region (right) brightened as it began to come into a more direct view as northern summer approaches.

    The top row, in visible light, shows how the color of Uranus appears to the human eye as seen through even an amateur telescope. 

    In the second row, the false-color image of the planet is assembled from visible and near-infrared light observations. The color and brightness correspond to the amounts of methane and aerosols. Both of these quantities could not be distinguished before Hubble’s STIS was first aimed at Uranus in 2002. Generally, green areas indicate less methane than blue areas, and red areas show no methane. The red areas are at the limb, where the stratosphere of Uranus is almost completely devoid of methane. 

    The two bottom rows show the latitude structure of aerosols and methane inferred from 1,000 different wavelengths (colors) from visible to near infrared. In the third row, bright areas indicate cloudier conditions, while the dark areas represent clearer conditions. In the fourth row, bright areas indicate depleted methane, while dark areas show the full amount of methane. 

    At middle and low latitudes, aerosols and methane depletion have their own latitudinal structure that mostly did not change much over the two decades of observation.  However, in the polar regions, aerosols and methane depletion behave very differently. 

    In the third row, the aerosols near the north pole display a dramatic increase, showing up as very dark during early northern spring, turning very bright in recent years. Aerosols also seem to disappear at the left limb as the solar radiation disappeared. This is evidence that solar radiation changes the aerosol haze in the atmosphere of Uranus. On the other hand, methane depletion seems to stay quite high in both polar regions throughout the observing period. 

    Astronomers will continue to observe Uranus as the planet approaches northern summer.

    The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.

    Facebook logo @NASAHubble

    @NASAHubble

    Instagram logo @NASAHubble

    Related Images & Videos

    20 Years of Uranus Observations




    Share

    Details

    Last Updated

    Mar 31, 2025

    Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center

    Contact

    Media

    Claire Andreoli
    NASA’s Goddard Space Flight Center
    Greenbelt, Maryland
    claire.andreoli@nasa.gov

    Ann Jenkins
    Space Telescope Science Institute, Baltimore, Maryland

    Ray Villard
    Space Telescope Science Institute, Baltimore, Maryland

    Related Terms

    Categories: NASA

    University High Triumphs at JPL-Hosted Ocean Sciences Bowl

    9 hours 26 min ago

    3 min read

    Preparations for Next Moonwalk Simulations Underway (and Underwater) This team from University High School in Irvine, California, won the 2025 regional Oceans Science Bowl, hosted by NASA’s Jet Propulsion Laboratory. From left: Nethra Iyer, Joanne Chen, Matthew Feng, Avery Hexun, Angelina Yan, and coach David Knight.NASA/JPL-Caltech

    The annual regional event puts students’ knowledge of ocean-related science to the test in a fast-paced academic competition.

    A team of students from University High School in Irvine earned first place at a fast-paced regional academic competition focused on ocean science disciplines and hosted by NASA’S Jet Propulsion Laboratory in Southern California.

    Eight teams from Los Angeles and Orange counties competed at the March 29 event, dubbed the Los Angeles Surf Bowl. It was the last of about 20 regional competitions held across the U.S. this year in the lead-up to the virtual National Ocean Sciences Bowl finals event in mid-May.

    Santa Monica High School earned second place; Francisco Bravo Medical Magnet High School in Los Angeles came in third. With its victory, University repeated its winning performance from last year. The school also won the JPL-hosted regional Science Bowl earlier this month.

    Teams from all eight schools that participated in the JPL-hosted 2025 regional Ocean Sciences Bowl pose alongside volunteers and coaches.NASA/JPL-Caltech

    For the Ocean Sciences Bowl, teams are composed of four to five students and a coach. To prepare for the event, team members spend months answering multiple-choice questions with a “Jeopardy!”-style buzzer in just five seconds. Questions come in several categories, including biology, chemistry, geology, and physics along with related geography, technology, history, policy, and current events topics.

    A question in the chemistry category might be “What chemical is the principal source of energy at many of Earth’s hydrothermal vent systems?” (It’s hydrogen sulfide.) Other questions can be considerably more challenging.

    When a team member buzzes in and gives the correct answer to a multiple-choice question, the team earns a bonus question, which allows teammates to consult with one another to come up with an answer. More complicated “team challenge questions” prompt students to work together for a longer period. The theme of this year’s competition is “Sounding the Depths: Understanding Ocean Acoustics.”

    University High junior Matthew Feng, a return competitor, said the team’s success felt like a payoff for hours of studying together, including on weekends. He keeps coming back to the competition partly for the sense of community and also for the personal challenge, he said. “It’s nice to compete and meet people, see people who were here last year,” Matthew added. “Pushing yourself mentally — the first year I was shaking so hard because I wasn’t used to that much adrenaline.”

    Since 2000, JPL’s Public Services Office has coordinated the Los Angeles regional contest with the help of volunteers from laboratory staff and former Ocean Sciences Bowl participants in the local community. JPL is managed for NASA by Caltech.

    The National Ocean Sciences Bowl is a program of the Center for Ocean Leadership at the University Corporation for Atmospheric Research, a nonprofit consortium of colleges and universities focused in part on Earth science-related education.

    News Media Contact

    Melissa Pamer
    Jet Propulsion Laboratory, Pasadena, Calif.
    626-314-4928
    melissa.pamer@jpl.nasa.gov

    2025-044

    Share Details Last Updated Mar 31, 2025 Related Terms Explore More 6 min read NASA’s Curiosity Rover Detects Largest Organic Molecules Found on Mars

    Researchers analyzing pulverized rock onboard NASA’s Curiosity rover have found the largest organic compounds on…

    Article 1 week ago
    5 min read NASA Takes to the Air to Study Wildflowers Article 1 week ago 6 min read Next-Generation Water Satellite Maps Seafloor From Space Article 2 weeks ago Keep Exploring Discover Related Topics

    Missions

    Humans in Space

    Climate Change

    Solar System

    Categories: NASA

    El X-59 de la NASA completa la prueba de ‘control de crucero’ mantenimiento automático de velocidad del motor

    9 hours 39 min ago

    3 min read

    Preparations for Next Moonwalk Simulations Underway (and Underwater) El avión de investigación supersónico silencioso X-59 de la NASA se encuentra en una rampa de Lockheed Martin Skunk Works en Palmdale, California, durante el atardecer. Esta aeronave única en su tipo es propulsada por un motor General Electric F414, una variante de los motores utilizados en los aviones F/A-18. El motor está montado sobre el fuselaje para reducir la cantidad de ondas de choque que llegan al suelo. El X-59 es la pieza central de la misión Quesst de la NASA, que busca demostrar el vuelo supersónico silencioso y permitir futuros viajes comerciales sobre tierra – más rápidos que la velocidad del sonido.Lockheed Martin Corporation/Garry Tice El avión de investigación supersónico silencioso X-59 de la NASA se encuentra en una rampa de Lockheed Martin Skunk Works en Palmdale, California, durante el atardecer. Esta aeronave única en su tipo es propulsada por un motor General Electric F414, una variante de los motores utilizados en los aviones F/A-18. El motor está montado sobre el fuselaje para reducir la cantidad de ondas de choque que llegan al suelo. El X-59 es la pieza central de la misión Quesst de la NASA, que busca demostrar el vuelo supersónico silencioso y permitir futuros viajes comerciales sobre tierra – más rápidos que la velocidad del sonido.Lockheed Martin Corporation/Garry Tice

    Read this story in English here.

    El equipo detrás del X-59 de la NASA completó en marzo otra prueba crítica en tierra, garantizando que el silencioso avión supersónico será capaz de mantener una velocidad específica durante su funcionamiento. Esta prueba, conocida como mantenimiento automático de velocidad del motor, es el más reciente marcador de progreso a medida que el X-59 se acerca a su primer vuelo este año. 

    “El mantenimiento automático de la velocidad del motor es básicamente la versión de control de crucero de la aeronave,” explicó Paul Dees, jefe adjunto de propulsión de la NASA del X-59 en el Centro de Investigación de Vuelo Armstrong de la agencia en Edwards, California. “El piloto activa el control de velocidad a su velocidad actual y luego puede aumentarla o ajustarla gradualmente según sea necesario.” 

    El equipo del X-59 ya había realizado una prueba similar en el motor, pero sólo como un sistema aislado. La prueba de marzo verificó que la retención de velocidad funciona correctamente tras su integración en la aviónica de la aeronave. 

    “Necesitábamos verificar que el mantenimiento automático de velocidad funcionara no sólo dentro del propio motor, sino como parte de todo el sistema del avión,” explicó Dees. “Esta prueba confirmó que todos los componentes – software, enlaces mecánicos y leyes de control – funcionan juntos según lo previsto.” 

    El éxito de la prueba confirmó la habilidad de la aeronave para controlar la velocidad con precisión, lo cual será muy invaluable durante el vuelo. Esta capacidad aumentará la seguridad de los pilotos, permitiéndoles enfocarse en otros aspectos críticos de la operación de vuelo. 

    “El piloto va a estar muy ocupado durante el primer vuelo, asegurándose de que la aeronave sea estable y controlable,” dijo Dees. “Al tener la función del mantenimiento automático de velocidad, de reduce parte de esa carga de trabajo, lo que hace que el primer vuelo sea mucho más seguro.” 

    Inicialmente el equipo tenía planeado comprobar el mantenimiento automático de velocidad como parte de una próxima serie de pruebas en tierra donde alimentarían la aeronave con un sólido conjunto de datos para verificar su funcionalidad tanto en condiciones normales como de fallo, conocidas como pruebas de pájaro de aluminio (una estructura que se utiliza para probar los sistemas de una aeronave en un laboratorio, simulando un vuelo real). Sin embargo, el equipo se dio cuenta que había una oportunidad de probarlo antes. 

    “Fue un objetivo de oportunidad,” dijo Dees. “Nos dimos cuenta de que estábamos listos para probar el mantenimiento automático de velocidad del motor por separado mientras otros sistemas continuaban con la finalización de su software. Si podemos aprender algo antes, siempre es mejor.” 

    Con cada prueba exitosa, el equipo integrado de la NASA y Lockheed Martin acerca el X-59 al primer vuelo, y hacer historia en la aviación a través de su tecnología supersónica silenciosa. 

    Artículo Traducido por: Priscila Valdez

    Share Details Last Updated Mar 31, 2025 EditorDede DiniusContactNicolas Cholulanicolas.h.cholula@nasa.gov Related Terms Keep Exploring Discover More Topics From NASA

    Armstrong Flight Research Center

    Humans in Space

    Climate Change

    Solar System

    Categories: NASA

    She Speaks for the Samples: Meet Dr. Juliane Gross, Artemis Campaign Sample Curation Lead 

    12 hours 7 min ago

    Based at NASA’s Johnson Space Center in Houston, the Astromaterials Research and Exploration Science Division, or ARES, curates the most extensive collection of extraterrestrial materials on Earth, ranging from microscopic cosmic dust particles to Apollo-era Moon rocks. Soon, ARES’ team of world-leading sample scientists hopes to add something new to its collection – lunar samples from the Moon’s South Pole region. 

    As the Artemis campaign sample curation lead, Dr. Juliane Gross is helping ARES and NASA prepare to collect and return those samples safely. “I’m responsible for representing the voice of the Moon rocks and advocating for their protection, preservation, and maintaining their integrity during the planning and execution of all stages of the different Artemis sample return missions,” she said. 

    Juliane Gross leads a geology lesson for Artemis II crew members as part of their field training in Iceland in 2024.NASA

    Her multifaceted role includes preparing the Johnson facility that will receive new lunar samples, developing curation strategies, and collaborating with mission teams to plan sampling operations, which encompass collection, handling, transport, and storage processes for all stages of Artemis missions. She trains program managers and engineers on the importance of sample return and teaches crew members how to identify lunar samples and collect them without contamination. She also works with the different programs and teams that oversee the vehicles used at different stages of lunar missions – collaborating with the human landing system team around tool storage and delivery to the lunar surface, the Orion Program to coordinate sample stowage for the return to Earth, and Exploration Ground Systems to plan sample recovery after splashdown.  

    Once samples are returned to Earth, Gross and the ARES curation team will conduct a preliminary examination of the materials and release a sample catalog from which members of the global scientific community may request loans to carry out their respective research. 

    Working across Artemis teams raised an unexpected but fun challenge for Gross – learning to communicate effectively with colleagues who have different academic and professional backgrounds. “Scientists like me speak a different language than engineers, and we all speak a different language than managers or the general public,” she said. “I have worked hard to find common vocabulary and to ‘translate’ science needs into the different types of languages that exist within the Artemis campaign. I’m trying to use our differences as strengths to enable mission success and to connect and build relationships with all these different teams through my love and passion for the Moon and rocks from the Moon.” 

    That passion emerged shortly after Gross completed her Ph.D. in geology, while working on lunar samples with the Lunar and Planetary Institute. She went on to become a research scientist with the American Museum of Natural History in New York, and then a tenured professor of planetary sciences at Rutgers University in Piscataway, New Jersey.  

    In 2019, NASA asked Gross to join the Apollo Next Generation Sample Analysis Program. Under the program, NASA preserved some of the 382 kilograms of lunar samples returned by Apollo missions, keeping them sealed for future generations to open and analyze. “NASA had the foresight to understand that technology would evolve and our level of sophistication for handling and examining samples would greatly increase,” Gross said.  

    She and two other scientists had the incredible opportunity to open and examine two samples returned by Apollo 17. Their work served as a practice run for Artemis sample returns while building upon the fundamental insights into the shared origin and history of Earth and the Moon that scientists previously derived from other Apollo samples. For example, the team extracted gas from one sample that will provide information about the volatiles that future lunar missions may encounter around the Moon’s South Pole.  

    “The Apollo Next Generation Sample Analysis Program linked the first generation of lunar explorers from Apollo with future explorers of the Moon with Artemis,” Gross said. “I’m very proud to have played such an important role in this initiative that now feeds forward to Artemis.” 

    Juliane Gross examines lunar samples returned by Apollo 17 in Johnson Space Center’s Lunar Sample Laboratory Facility. NASA

    Gross’ connection with NASA began even earlier in her career. She was selected to join the agency-sponsored Antarctic Search for Meteorites team and lived in the deep ice fields of Antarctica for two months with seven other people. “We lived in tiny two-person tents without any support and recovered a total of 263 space rocks under challenging conditions,” she said. “I experienced the powerful forces of Antarctica and traveled 332 miles on skidoos. My body changed in the cold – I stuffed my face with enough butter, chocolate, and peanut M&Ms to last a lifetime and yet I lost weight.”  

    This formative experience taught Gross to find and celebrate beauty, even in her toughest moments. “I drank tea made with Antarctic glacier ice that is thousands to millions of years old. I will never forget the beautiful bell-like sounds that snow crystals make when being blown across the ice, the rainbow-sparkling ice crystals on a really cold day, the vast expanses of ice sheets looking like oceans frozen in eternity, and the icy bite of the wind on any unprotected skin that made me feel so alive and reminded me how vulnerable and precious life is,” she said. “And I will never ever forget the thrill and utter joy of finding a meteorite that you know no one on this planet has ever seen before you.”  

    Gross ultimately received the Antarctica Service Medal of the United States Armed Forces from the U.S. Department of Defense for her work. 

    Juliane Gross returns to McMurdo Station in Antarctica after working in the deep field for two months as part of the Antarctic Search for Meteorites team.Image courtesy of Juliane Gross

    Transitioning from full-time academia to her current position at NASA has been a big adjustment for Gross, but she has learned to love the change and the growth opportunities that come with it. “Being part of this incredible moment in history when we are about to return to the Moon with Artemis, our Apollo of today, feels so special and humbling that it made the transition easier,” she said.  

    The job has also increased Gross’ love and excitement for space exploration and reminds her every day why sample return missions are important. “The Moon is a museum of planetary history,” she said. “It has recorded and preserved the changes that affected the Earth-Moon system and is the best and most accessible place in the solar system to study planet-altering processes that have affected our corner of the universe.”  

    Still, “The Moon is only our next frontier,” she said. “Keep looking up and never give up. Ad astra!” 

    Watch below to learn about NASA’s rich history of geology training and hear how scientists and engineers are getting ready to bring back samples that will help us learn about the origins of our solar system.

    Categories: NASA

    NASA Awards Astrophysics Postdoctoral Fellowships for 2025

    12 hours 13 min ago
    Explore Hubble

    5 min read

    NASA Awards Astrophysics Postdoctoral Fellowships for 2025

    The highly competitive NASA Hubble Fellowship Program (NHFP) recently named 24 new fellows to its 2025 class. The NHFP fosters excellence and leadership in astrophysics by supporting exceptionally promising and innovative early-career astrophysicists. Over 650 applicants vied for the 2025 fellowships. Each fellowship provides the awardee up to three years of support at a U.S. institution.

    Once selected, fellows are named to one of three sub-categories corresponding to three broad scientific questions that NASA seeks to answer about the universe:

    How does the universe work? – Einstein Fellows

    How did we get here? – Hubble Fellows

    Are we alone? – Sagan Fellows

    “The 2025 class of the NASA Hubble Fellowship Program is comprised of outstanding NASA Astrophysics researchers,” said Shawn Domagal-Goldman, acting director of the Astrophysics Division at NASA Headquarters in Washington. “This class of competitively-selected fellows will inspire future generations through the products of their research, and by sharing the results of that work with the public. Their efforts will help NASA continue its worldwide leadership in space-based astrophysics research.”

    The class of 2025 NHFP Fellows are shown in this photo montage (left to right, top to bottom): The Einstein Fellows (seen in the blue hexagons) are: Shi-Fan Chen, Nicolas Garavito Camargo, Jason Hinkle, Itai Linial, Kenzie Nimmo, Massimo Pascale, Elia Pizzati, Jillian Rastinejad and Aaron Tohuvavohu. The Hubble Fellows (seen in the red hexagons) are: Aliza Beverage, Anna de Graaff, Karia Dilbert, Emily Griffith, Viraj Karambelkar, Lindsey Kwok, Abigail Lee, Aaron Pearlman, Dominick Rowan, Nicholas Rui, Nadine Soliman, Bingjie Wang. The Sagan Fellows (seen in green hexagons) are: Kyle Franson, Caprice Phillips, and Keming Zhang.NASA, ESA, Megan Crane (Caltech/IPAC)

    The list below provides the names of the 2025 awardees, their fellowship host institutions, and their proposed research topics.

    The 2025 NHFP Einstein Fellows are:

    • Shi-Fan Chen, Columbia University, Galaxies, Shapes and Weak Lensing in the Effective Field Theory of Large-Scale Structure
    • Nicolas Garavito Camargo, University of Maryland, College Park, Local Group Galaxies in Disequilibrium; Building New Frameworks to Constrain the Nature of Dark Matter
    • Jason Hinkle, University of Illinois, Urbana-Champaign, Nuclear Transients in the Golden Era of Time-Domain Astronomy
    • Itai Linial, New York University, Repeating Nuclear Transients – Probes of Supermassive Black Holes and Their Environments
    • Kenzie Nimmo, Northwestern University, From Glimmering Jewels to Cosmic Ubiquity: Unraveling the Origins of FRBs
    • Massimo Pascale, University of California, Los Angeles, The Universe Seen Through Strong Gravitational Lensing
    • Elia Pizzati, Harvard University, The Missing Link: Connecting Black Hole Growth and Quasar Light Curves in the Young Universe
    • Jillian Rastinejad, University of Maryland, College Park, Illuminating the Explosive Origins of the Heavy Elements
    • Aaron Tohuvavohu, California Institute of Technology, Ultraviolet Space Telescopes for the new era of Time Domain and Multi-Messenger Astronomy

    The 2025 NHFP Hubble Fellows are:

    • Aliza Beverage, Carnegie Observatories, Revealing Massive Galaxies Formation Using Chemical Abundances
    • Anna de Graaff, Harvard University, Early giants in context: How could galaxies in the first billion years grow so rapidly?
    • Karia Dibert, California Institute of Technology, Superconducting on-chip spectrometers for high-redshift astrophysics and cosmology
    • Emily Griffith, University of Colorado, Boulder, Beyond Mg and Fe: Exploring Detailed Nucleosynthetic Patterns
    • Viraj Karambelkar, Columbia University, The Anthropology of Merging Stars
    • Lindsey Kwok, Northwestern University, Determining the Astrophysical Origins of White-Dwarf Supernovae with JWST Infrared Spectroscopy
    • Abigail Lee, University of California, Berkeley, AGB Stars in the Era of NIR Astronomy: New Probes of Cosmology and Galaxy Evolution
    • Aaron Pearlman, Massachusetts Institute of Technology, Pinpointing the Origins of Fast Radio Bursts and Tracing Baryons in the Cosmic Web
    • Dominick Rowan, University of California, Berkeley, Fundamental Stellar Parameters Across the Hertzsprung-Russell Diagram
    • Nicholas Rui, Princeton University, A seismic atlas of the stellar merger sky
    • Nadine Soliman, Institute for Advanced Study, Micro Foundations, Macro Realities: Modeling the Multi-scale Physics Shaping Planets, Stars and Galaxies
    • Bingjie Wang, Princeton University, Inference at the Edge of the Universe

    The 2025 NHFP Sagan Fellows are:

    • Kyle Franson, University of California, Santa Cruz, Mapping the Formation, Migration, and Thermal Evolution of Giant Planets with Direct Imaging and Astrometry
    • Caprice Phillips, University of California, Santa Cruz, Aging in the Cosmos: JWST Insights into the Evolution of Brown Dwarf Atmospheres and Clouds
    • Keming Zhang, Massachusetts Institute of Technology, Understanding the Origin and Abundance of Free-Floating Planets via Microlensing and Machine Learning

    The class of 2025 NHFP Fellows are shown in this photo montage (left to right, top to bottom): The Einstein Fellows (seen in the blue hexagons) are: Shi-Fan Chen, Nicolas Garavito Camargo, Jason Hinkle, Itai Linial, Kenzie Nimmo, Massimo Pascale, Elia Pizzati, Jillian Rastinejad and Aaron Tohuvavohu.

    The Hubble Fellows (seen in the red hexagons) are: Aliza Beverage, Anna de Graaff, Karia Dilbert, Emily Griffith, Viraj Karambelkar, Lindsey Kwok, Abigail Lee, Aaron Pearlman, Dominick Rowan, Nicholas Rui, Nadine Soliman, Bingjie Wang.

    The Sagan Fellows (seen in green hexagons) are: Kyle Franson, Caprice Phillips, and Keming Zhang.

    For short bios and photos, please visit the link at the end of the article.

    An important part of the NHFP is the annual Symposium, which allows Fellows the opportunity to present results of their research, and to meet each other and the scientific and administrative staff who manage the program. The 2024 symposium was held at the NASA Exoplanet Science Institute (NExScI) in Pasadena, California. Science topics ranged through exoplanets, gravitational waves, fast radio bursts, cosmology and more. Non-science sessions included discussions about career paths and developing mentorship skills, as well as an open mic highlighting an array of talents other than astrophysics.

    The Space Telescope Science Institute in Baltimore, Maryland, administers the NHFP on behalf of NASA, in collaboration with the Chandra X-ray Center at the Smithsonian Astrophysical Observatory in Cambridge, Massachusetts, and the NASA Exoplanet Science Institute and the Jet Propulsion Laboratory, in Pasadena, California.

    Short bios and photos of the 2025 NHFP Fellows can be found at:
    https://www.stsci.edu/stsci-research/fellowships/nasa-hubble-fellowship-program/2025-nhfp-fellows

    Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Related Images & Videos 2025 NHFP Fellows

    The class of 2025 NHFP Fellows are shown in this photo montage.

    Share Details Last Updated Mar 31, 2025 EditorAndrea GianopoulosLocationNASA Goddard Space Flight Center Related Terms
    Categories: NASA

    NASA Awards Launch Services Contract for SpaceX Starship

    Fri, 03/28/2025 - 5:26pm
    NASA logo.

    NASA has awarded SpaceX of Starbase, Texas, a modification under the NASA Launch Services (NLS) II contract to add Starship to their existing Falcon 9 and Falcon Heavy launch service offerings.

    The NLS II contracts provide a broad range of commercial launch services for NASA’s planetary, Earth-observing, exploration, and scientific satellites. These high-priority, low and medium risk tolerant missions have full NASA technical oversight and mission assurance, resulting in the highest probability of launch success.

    The NLS II contracts are multiple award, indefinite-delivery/indefinite-quantity, with an ordering period through June 2030 and an overall period of performance through December 2032. The contracts include an on-ramp provision that provides an opportunity annually for new launch service providers to add their launch service on an NLS II contract and compete for future missions and allows existing contractors to introduce launch services not currently on their NLS II contracts.

    The contracts support the goals and objectives of the agency’s Science Mission Directorate, Space Operations Mission Directorate, Explorations Systems Development Mission Directorate, and the Space Technology Mission Directorate. Under the contracts, NASA also can provide launch services to other federal government agencies.

    NASA’s Launch Services Program Office at the agency’s Kennedy Space Center in Florida manages the NLS II contracts. For more information about NASA and agency programs, visit:

    https://www.nasa.gov

    -end-

    Tiernan Doyle / Joshua Finch
    Headquarters, Washington
    202-358-1600 / 202-358-1100
    tiernan.doyle@.nasa.gov / joshua.a.finch@nasa.gov

    Patti Bielling
    Kennedy Space Center, Florida
    321-501-7575
    patricia.a.bielling@nasa.gov

    Share Details Last Updated Mar 31, 2025 LocationNASA Headquarters Related Terms
    Categories: NASA

    NASA Boosts Efficiency with Custom X-66 Flooring

    Fri, 03/28/2025 - 5:00pm

    2 min read

    Preparations for Next Moonwalk Simulations Underway (and Underwater) Eric Garza, an engineering technician in the Experimental Fabrication Shop at NASA’s Armstrong Flight Research Center in Edwards, California, cuts plywood to size for temporary floorboards for the X-66 experimental demonstrator aircraft on Aug. 26, 2024.NASA/Steve Freeman

    NASA designed temporary floorboards for the MD-90 aircraft to use while it is transformed into the X-66 experimental demonstrator aircraft. These floorboards will protect the original flooring and streamline the modification process.

    Supporting the agency’s Sustainable Flight Demonstrator project, a small team in the Experimental Fabrication Shop at NASA’s Armstrong Flight Research Center in Edwards, California, built temporary floorboards to save the project time and resources. Repeated removal and installation of the original flooring during the modification process was time-consuming. Using temporary panels also ensures the original floorboards are protected and remain flightworthy for when modifications are complete, and the original flooring is reinstalled.

    “The task of creating the temporary floorboards for the MD-90 involves a meticulous process aimed at facilitating modifications while maintaining safety and efficiency. The need for these temporary floorboards arises from the detailed procedure required to remove and reinstall the Original Equipment Manufacturer (OEM) floorboards,” said Jason Nelson, experimental fabrication lead. He is one of two members of the fabrication team – one engineering technician and one inspector – manufacturing about 50 temporary floorboards, which range in size from 20 inches by 36 inches to 42 inches by 75 inches.

    A wood router cuts precise holes in plywood for temporary floorboards on Aug. 26, 2024, in the Experimental Fabrication Shop at NASA’s Armstrong Flight Research Center in Edwards, California. The flooring was designed for the X-66 experimental demonstrator aircraft. NASA/Steve Freeman

    Nelson continued, “Since these OEM boards will be removed and reinstalled multiple times to accommodate necessary modifications, the temporary floorboards will save the team valuable time and resources. They will also provide the same level of safety and strength as the OEM boards, ensuring that the process runs smoothly without compromising quality.”

    Designing and prototyping the flooring was a meticulous process, but the temporary solution plays a crucial role in optimizing time and resources as NASA works to advance safe and efficient air travel. The agency’s Sustainable Flight Demonstrator project seeks to inform the next generation of single-aisle airliners, the most common aircraft in commercial aviation fleets around the world. NASA partnered with Boeing to develop the X-66 experimental demonstrator aircraft.

    NASA Armstrong’s Experimental Fabrication Shop carries out modifications and repair work on aircraft, ranging from the creation of something as small as an aluminum bracket to modifying wing spars, fuselage ribs, control surfaces, and other tasks to support missions.

    Eric Garza, an engineering technician in the Experimental Fabrication Shop at NASA’s Armstrong Flight Research Center in Edwards, California, observes a wood router cut holes for temporary floorboards on Aug. 26, 2024. The flooring was designed for the X-66 experimental demonstrator aircraft.  NASA/Steve Freeman Share Details Last Updated Mar 28, 2025 EditorDede DiniusContactSarah Mannsarah.mann@nasa.gov Related Terms Explore More 2 min read The Sky’s Not the Limit: Testing Precision Landing Tech for Future Space Missions Article 5 days ago 5 min read NASA Demonstrates New Wildland Fire Airspace Management System Article 6 days ago 3 min read New Aircraft Wing Undergoes Crucial NASA Icing Testing Article 6 days ago Keep Exploring Discover More Topics From NASA

    Armstrong Flight Research Center

    Humans in Space

    Climate Change

    Solar System

    Categories: NASA

    Visiting Mars on the Way to the Outer Solar System

    Fri, 03/28/2025 - 2:23pm
    Explore This Section

    3 min read

    Visiting Mars on the Way to the Outer Solar System

    Written by Roger Wiens, Principal Investigator, SuperCam instrument / Co-Investigator, SHERLOC instrument at Purdue University

    A portion of the “Sally’s Cove” outcrop where the Perseverance rover has been exploring. The radiating lines in the rock on the left of the image may indicate that it is a shatter cone, showing the effects of the shock wave from a nearby large impact. The image was taken by Mastcam-Z’s left camera on March 21, 2025 (Sol 1452, or Martian day 1,452 of the Mars 2020 mission) at the local mean solar time of 12:13:44. Mastcam-Z is a pair of cameras located high on the rover’s mast. This image was voted by the public as “Image of the week.” NASA/JPL-Caltech/ASU

    Recently Mars has had a few Earthly visitors. On March 1, NASA’s Europa Clipper flew within 550 miles (884 kilometers) of the Red Planet’s surface on its way out to Jupiter. On March 12, the European Space Agency’s Hera spacecraft flew within about 3,100 miles (5,000 kilometers) of Mars, and only 300 kilometers from its moon, Deimos. Hera is on its way to study the binary asteroid Didymos and its moon Dimorphos. Next year, in May 2026, NASA’s Psyche mission is scheduled to buzz the Red Planet on its way to the metal-rich asteroid 16 Psyche, coming within a few thousand kilometers.

    Why all these visits to Mars? You might at first think that they’re using Mars as an object of opportunity for their cameras, and you would be partially right. But Mars has more to give these missions than that. The main reason for these flybys is the extra speed that Mars’ velocity around the Sun can give them. The idea that visiting a planet can speed up a spacecraft is not all that obvious, because the same gravity that attracts the spacecraft on its way towards the planet will exert a backwards force as the spacecraft leaves the planet.

    The key is in the direction that it approaches and leaves the planet. If the spacecraft leaves Mars heading in the direction that Mars is traveling around the Sun, it will gain speed in that direction, slingshotting it farther into the outer solar system. A spacecraft can typically gain several percent of its speed by performing such a slingshot flyby. The closer it gets to the planet, the bigger the effect. However, no mission wants to be slowed by the upper atmosphere, so several hundred kilometers is the closest that a mission should go. And the proximity to the planet is also affected by the exact direction the spacecraft needs to go when it leaves Mars.

    Clipper’s Mars flyby was a slight exception, slowing down the craft — by about 1.2 miles per second (2 kilometers per second) — to steer it toward Earth for a second gravity assist in December 2026. That will push the spacecraft the rest of the way to Jupiter, for its 2030 arrival.

    While observing Mars is not the main reason for their visits, many of the visiting spacecraft take the opportunity to use their cameras either to perform calibrations or to study the Red Planet and its moons.

    During Clipper’s flyby over sols 1431-1432, Mastcam-Z was directed to watch the skies for signs of the interplanetary visitor. Clipper’s relatively large solar panels could have reflected enough sunlight for it to be seen in the Mars night sky, much as we can see satellites overhead from Earth. Unfortunately, the spacecraft entered the shadow of Mars just before it came into potential view above the horizon from Perseverance’s vantage point, so the sighting did not happen. But it was worth a try.

    Meanwhile, back on the ground, Perseverance is performing something of a cliff-hanger. “Sally’s Cove” is a relatively steep rock outcrop in the outer portion of Jezero crater’s rim just north of “Broom Hill.” Perseverance made an approach during March 19-23, and has been exploring some dark-colored rocks along this outcrop, leaving the spherules behind for the moment. Who knows what Perseverance will find next?

    Share

    Details

    Last Updated

    Mar 28, 2025

    Related Terms Explore More

    2 min read Sols 4493-4494: Just Looking Around

    Article


    4 hours ago

    2 min read Sols 4491-4492: Classic Field Geology Pose

    Article


    2 days ago

    3 min read Sols 4488-4490: Progress Through the Ankle-Breaking Terrain (West of Texoli Butte, Climbing Southward)

    Article


    4 days ago

    Keep Exploring Discover More Topics From NASA

    Mars

    Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


    All Mars Resources

    Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


    Rover Basics

    Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


    Mars Exploration: Science Goals

    The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

    Categories: NASA

    Turning Vanes inside the Altitude Wind Tunnel

    Fri, 03/28/2025 - 12:51pm
    NASA

    Men stand in front of turning vanes inside the Altitude Wind Tunnel (AWT) at the National Advisory Committee for Aeronautics Aircraft Engine Research Laboratory in this February 1944 publicity photo. The photo was taken just weeks after the tunnel became operational.

    The AWT was the only wind tunnel capable of testing full-size aircraft engines in simulated altitude conditions. A large wooden drive fan, located on the other side of these vanes, created wind speeds up to 500 miles per hour. Each corner of the rectangular tunnel had turning vanes, which straightened the airflow and directed it around the corners. This set of vanes was in the 31-foot-diameter southeast corner of the tunnel. These elliptical panels consisted of 36 to 42 vertical vanes that were supported by three horizontal supports. The individual vanes were 2.5 feet long and half-moon shaped. Each set of vanes took weeks to assemble before they were installed during the summer of 1943.

    The Aircraft Engine Research Laboratory went through several name updates and changes through NACA and NASA history; it is now NASA’s Glenn Research Center in Cleveland.

    Image credit: NASA

    Categories: NASA

    Sols 4493-4494: Just Looking Around

    Fri, 03/28/2025 - 11:14am
    Curiosity Navigation

    2 min read

    Sols 4493-4494: Just Looking Around NASA’s Mars rover Curiosity acquired this image using its Left Navigation Camera on March 25, 2025 — sol 4491, or Martian day 4,491 of the Mars Science Laboratory mission — at 17:16:50 UTC. NASA/JPL-Caltech

    Written by Alex Innanen, atmospheric scientist at York University

    Earth planning date: Wednesday, March 26, 2025

    It’s my second shift of the week as the Environmental theme lead and keeper of the plan (a bit of a mouthful we shorten to ESTLK) and today started out feeling eerily similar to Monday. Once again, Curiosity is posing like a geologist, which means that once again we can’t unstow the arm and will be skipping contact science. The silver lining is that this means we have extra time to have a good look around.

    The plan also looks similar to Monday’s — targeted remote sensing on the first sol before driving away, and then untargeted remote sensing on the next. On sol 4493 we start our remote sensing, almost as remote as we can get, with a suprahorizon movie looking for clouds in the south. A dust-devil survey rounds out the sol’s environmental observations, and then the geology theme group can get down to the serious business of looking at rocks. For Mastcam this means observing a group of bedrock targets all called “Observatory Trail” (one of which you can see in the middle of the image above), pointing out some interesting veins in “Point Loma,” and casting their gaze out toward “Black Butte” (which I could not think of a fun pun for…). ChemCam has a LIBS observation of “Cholla,” as well as two long-distance observations of the Texoli Butte and the boxwork structures. Our second sol is a little more restrained, as untargeted sols tend to be. But Curiosity will still have plenty of energy after a good rest. We’re taking advantage of that with an extra-long dust-devil movie. Even though we’re in our cloudy season, we still sometimes see dust lifting, and having that extra time to look out for it increases our chances of catching a wind gust or a dust devil in action. Alongside that we also have a Mastcam tau observation to keep an eye on the amount of dust in the atmosphere, and wrap up with a ChemCam AEGIS activity to autonomously choose a LIBS target.

    Share

    Details

    Last Updated

    Mar 28, 2025

    Related Terms Explore More

    2 min read Sols 4491-4492: Classic Field Geology Pose

    Article


    2 days ago

    3 min read Sols 4488-4490: Progress Through the Ankle-Breaking Terrain (West of Texoli Butte, Climbing Southward)

    Article


    4 days ago

    3 min read Sols 4486-4487: Ankle-Breaking Kind of Terrain!

    Article


    7 days ago

    Keep Exploring Discover More Topics From NASA

    Mars

    Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


    All Mars Resources

    Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


    Rover Basics

    Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


    Mars Exploration: Science Goals

    The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

    Categories: NASA

    Hubble Spots a Chance Alignment

    Fri, 03/28/2025 - 7:39am
    Explore Hubble

    2 min read

    Hubble Spots a Chance Alignment This NASA/ESA Hubble image features the spiral galaxy NGC 5530. ESA/Hubble & NASA, D. Thilker

    The subject of today’s NASA/ESA Hubble Space Telescope image is the stunning spiral galaxy NGC 5530. This galaxy is situated 40 million light-years away in the constellation Lupus, the Wolf, and classified as a ‘flocculent’ spiral, meaning its spiral arms are patchy and indistinct.

    While some galaxies have extraordinarily bright centers that host a feasting supermassive black hole, the bright source near the center of NGC 5530 is not an active black hole but a star within our own galaxy, only 10,000 light-years from Earth. This chance alignment gives the appearance that the star is at the dense heart of NGC 5530.

    If you pointed a backyard telescope at NGC 5530 on the evening of September 13, 2007, you would have seen another bright point of light adorning the galaxy. That night, Australian amateur astronomer Robert Evans discovered a supernova, named SN 2007IT, by comparing NGC 5530’s appearance through the telescope to a reference photo of the galaxy. While it’s remarkable to discover even one supernova using this painstaking method, Evans has in fact discovered more than 40 supernovae this way! This particular discovery was truly serendipitous: it’s likely that the light from the supernova completed its 40-million-year journey to Earth just days before Evans spotted the explosion.

    Facebook logo @NASAHubble

    @NASAHubble

    Instagram logo @NASAHubble

    Share

    Details

    Last Updated

    Mar 28, 2025

    Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center

    Related Terms Keep Exploring Discover More Topics From Hubble

    Hubble Space Telescope

    Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


    Hubble’s Galaxies


    Hubble’s 35th Anniversary


    Hubble’s Night Sky Challenge

    Categories: NASA

    NASA Shares SpaceX Crew-11 Assignments for Space Station Mission

    Thu, 03/27/2025 - 5:07pm
    NASA’s SpaceX Crew-11 members stand inside the Space Vehicle Mockup Facility at the agency’s Johnson Space Center in Houston. From left are Mission Specialist Kimiya Yui from JAXA (Japan Aerospace Exploration Agency), Commander NASA astronaut Zena Cardman, Mission Specialist Oleg Platonov of Roscosmos, and Pilot NASA astronaut Mike Fincke.Credit: NASA

    As part of NASA’s SpaceX Crew-11 mission, four crew members from three space agencies will launch in the coming months to the International Space Station for a long-duration science expedition aboard the orbiting laboratory.

    NASA astronauts Commander Zena Cardman and Pilot Mike Fincke, JAXA (Japan Aerospace Exploration Agency) astronaut Mission Specialist Kimiya Yui, and Roscosmos cosmonaut Mission Specialist Oleg Platonov will join crew members aboard the space station no earlier than July 2025.

    The flight is the 11th crew rotation with SpaceX to the station as part of NASA’s Commercial Crew Program. The crew will conduct scientific investigations and technology demonstrations to help prepare humans for future missions to the Moon, as well as benefit people on Earth.

    Cardman previously was assigned to NASA’s SpaceX Crew-9 mission, and Fincke previously was assigned to NASA’s Boeing Starliner-1 mission. NASA decided to reassign the astronauts to Crew-11 in overall support of planned activities aboard the International Space Station. Cardman carries her experience training as a commander on Dragon spacecraft, and Fincke brings long-duration spaceflight experience to this crew complement.

    Selected as a NASA astronaut in 2017, Cardman will conduct her first spaceflight. The Williamsburg, Virginia, native holds a bachelor’s degree in Biology and a master’s in Marine Sciences from the University of North Carolina at Chapel Hill. At the time of selection, she had begun pursuing a doctorate in Geosciences. Cardman’s research in geobiology and geochemical cycling focused on subsurface environments, from caves to deep sea sediments. Since completing initial training, Cardman has supported real-time station operations and lunar surface exploration planning.

    This will be Fincke’s fourth trip to the space station, having logged 382 days in space and nine spacewalks during Expedition 9 in 2004, Expedition 18 in 2008, and STS-134 in 2011, the final flight of space shuttle Endeavour. Throughout the past decade, Fincke has applied his expertise to NASA’s Commercial Crew Program, advancing the development and testing of the SpaceX Dragon and Boeing Starliner toward operational certification. The Emsworth, Pennsylvania, native is a distinguished graduate of the United States Air Force Test Pilot School and holds bachelors’ degrees from the Massachusetts Institute of Technology, Cambridge, in both Aeronautics and Astronautics, as well as Earth, Atmospheric and Planetary Sciences. He also has a master’s degree in Aeronautics and Astronautics from Stanford University in California. Fincke is a retired U.S. Air Force colonel with more than 2,000 flight hours in more than 30 different aircraft.

    With 142 days in space, this will be Yui’s second trip to the space station. After his selection as a JAXA astronaut in 2009, Yui flew as a flight engineer for Expedition 44/45 and became the first Japanese astronaut to capture JAXA’s H-II Transfer Vehicle. In addition to constructing a new experimental environment aboard Kibo, he conducted a total of 21 experiments for JAXA. In November 2016, Yui was assigned as chief of the JAXA Astronaut Group. He graduated from the School of Science and Engineering at the National Defense Academy of Japan in 1992. He later joined the Air Self-Defense Force at the Japan Defense Agency (currently Ministry of Defense). In 2008, Yui joined the Air Staff Office at the Ministry of Defense as a lieutenant colonel.

    The Crew-11 mission will be Platonov’s first spaceflight. Before his selection as a cosmonaut in 2018, Platonov earned a degree in Engineering from Krasnodar Air Force Academy in Aircraft Operations and Air Traffic Management. He also earned a bachelor’s degree in State and Municipal Management in 2016 from the Far Eastern Federal University in Vladivostok, Russia. Assigned as a test cosmonaut in 2021, he has experience in piloting aircraft, zero gravity training, scuba diving, and wilderness survival.

    For more than two decades, people have lived and worked continuously aboard the International Space Station, advancing scientific knowledge and demonstrating new technologies, making research breakthroughs not possible on Earth. The station is a critical testbed for NASA to understand and overcome the challenges of long-duration spaceflight and to expand commercial opportunities in low Earth orbit. As commercial companies focus on providing human space transportation services and destinations as part of a robust low Earth orbit economy, NASA’s Artemis campaign is underway at the Moon, where the agency is preparing for future human exploration of Mars.

    Learn more about NASA’s Commercial Crew Program at:

    https://www.nasa.gov/commercialcrew

    -end-

    Joshua Finch / Jimi Russell
    Headquarters, Washington
    202-358-1100
    joshua.a.finch@nasa.gov / james.j.russell@nasa.gov

    Courtney Beasley / Chelsey Ballarte
    Johnson Space Center, Houston
    281-483-5111
    courtney.m.beasley@nasa.gov / chelsey.n.ballarte@nasa.gov

    Share Details Last Updated Mar 27, 2025 LocationNASA Headquarters Related Terms

    Categories: NASA

    Meet the Space Ops Team: Anum Ashraf

    Thu, 03/27/2025 - 3:44pm

    3 min read

    Preparations for Next Moonwalk Simulations Underway (and Underwater)

    For Anum Ashraf, Ph.D., the interconnectedness of NASA’s workforce presents the exciting opportunity to collaborate with a multitude of people and teams. With more than 11 years at the agency, Ashraf has played a fundamental role in leading efforts that actively bridge these connections and support NASA’s mission. 

    Ashraf serves as the mission commitment lead for NASA’s SCaN (Space Communication and Navigation) Program, which is managed through the agency’s Space Operations Mission Directorate. SCaN provides communications and navigation services that are essential to the operation of NASA’s spaceflight missions, including enabling the success of more than 100 NASA and non-NASA missions through the Near Space Network and Deep Space Network. Whether she is supporting missions involving astronauts in space or near-Earth missions monitoring the health of our planet, Ashraf ensures that critical data is efficiently transferred between groups. 

    Near Space Network antennas at the White Sands Complex in Las Cruces, New Mexico.NASA

    “I am the ‘front door’ for all missions that are requesting space communication through the SCaN program,” said Ashraf. “My job is to understand the mission requirements and pair them with the right assets to enable successful back and forth communication throughout their mission life cycle.” 

    Prior to her current role, Ashraf served as the principal investigator for the DEMETER (DEMonstrating the Emerging Technology for measuring the Earth’s Radiation) project at NASA’s Langley Research Center in Hampton, Virginia. DEMETER is the next-generation observational platform for measuring Earth’s radiation. Leading a team of engineers and scientists across NASA’s multifaceted organizations, Ashraf helped develop an innovative solution that will allow future researchers to assess important climate trends affecting the planet.

    Outside of work, Ashraf finds a creative outlet through hobbies like knitting, cross stitching, and playing piano. She brings her ambitious, passionate, and authentic qualities to caring for her two children, who are also her daily source of inspiration.  

    “Inspiration is a two-way street for me; my kids inspire me to be my best, and, in turn, I inspire them,” said Ashraf. “My kids love telling their friends that we are a NASA family.” 

    Anum Ashraf, Ph.D., mission commitment lead for NASA’s Space Communications and Navigation Program


    Looking toward the future, Ashraf is excited to see a collaboration between NASA, industry, academia, and international space enthusiasts working together towards a common goal of space exploration. As a devoted and collaborative leader, Ashraf will continue to play an important role in advancing the agency’s missions of space research and exploration. 

    NASA’s Space Operations Mission Directorate maintains a continuous human presence in space for the benefit of people on Earth. The programs within the directorate are the hub of NASA’s space exploration efforts, enabling Artemis, commercial space, science, and other agency missions through communication, launch services, research capabilities, and crew support.

    To learn more about NASA’s Space Operation Mission Directorate, visit:  

    https://www.nasa.gov/directorates/space-operations

    Share Details Last Updated Mar 27, 2025 Related Terms Explore More 3 min read NASA Successfully Acquires GPS Signals on Moon  Article 4 weeks ago 2 min read More Than 400 Lives Saved with NASA’s Search and Rescue Tech in 2024 Article 2 months ago 3 min read Meet the Space Ops Team: Lindsai Bland Article 2 months ago Keep Exploring Discover Related Topics

    Humans In Space

    International Space Station

    Commercial Space

    NASA Directorates

    Categories: NASA

    NEO Surveyor Instrument Enclosure Inside Historic Chamber A 

    Thu, 03/27/2025 - 3:00pm
    NASA

    The instrument enclosure of NASA’s Near-Earth Object Surveyor is prepared for critical environmental tests inside the historic Chamber A at the Space Environment Simulation Laboratory at NASA’s Johnson Space Center in Houston in December 2024. Wrapped in silver thermal blanketing, the 12-foot-long (3.7-meter-long) angular structure was subjected to the frigid, airless conditions that the spacecraft will experience when in deep space. The cavernous thermal-vacuum test facility is famous for testing the Apollo spacecraft that traveled to the Moon in the 1960s and ’70s.

    The instrument enclosure is designed to protect the spacecraft’s infrared telescope while also removing heat from it during operations. After environmental testing was completed, the enclosure returned to NASA’s Jet Propulsion Laboratory in Southern California for further work, after which it will ship to the Space Dynamics Laboratory (SDL) in Logan, Utah, and be joined to the telescope. Both the instrument enclosure and telescope were assembled at JPL.

    As NASA’s first space-based detection mission specifically designed for planetary defense, NEO Surveyor will seek out, measure, and characterize the hardest-to-find asteroids and comets that might pose a hazard to Earth. While many near-Earth objects don’t reflect much visible light, they glow brightly in infrared light due to heating by the Sun. The spacecraft’s telescope, which has an aperture of nearly 20 inches (50 centimeters), features detectors sensitive to two infrared wavelengths in which near-Earth objects re-radiate solar heat.

    More information about NEO Surveyor is available at: https://science.nasa.gov/mission/neo-surveyor/

    Image credit: NASA

    Categories: NASA

    Understanding Cosmic Explosions: StarBurst Arrives at NASA for Testing

    Thu, 03/27/2025 - 2:13pm
    From left to right, NASA Marshall engineers Carlos Diaz and John Luke Bili, U.S. Naval Research Laboratory mechanical engineer contractor Eloise Stump, and Marshall engineers Tomasz Liz, David Banks, and Elise Doan observe StarBurst in the cleanroom environment before it’s unboxed from its shipping container. The cleanroom environment at Marshall is designed to minimize contamination and protect the observatory’s sensitive instruments. Image Credit: NASA /Daniel Kocevski  

    StarBurst, a wide-field gamma ray observatory, arrived at NASA’s Marshall Space Flight Center in Huntsville, Alabama, March 4 for environmental testing and final instrument integration. The instrument is designed to detect the initial emission of short gamma-ray bursts, a key electromagnetic indicator of neutron star mergers.

    “Gamma-ray bursts are among the most powerful explosions in the universe, and they serve as cosmic beacons that help us understand extreme physics, including black hole formation and the behavior of matter under extreme conditions,” said Dr. Daniel Kocevski, principal investigator of the StarBurst mission at NASA Marshall.

    According to Kocevski, neutron star mergers are particularly exciting because they produce gamma-ray bursts and gravitational waves, meaning scientists can study these events using two different signals – light and ripples in space time.

    Starburst Principal Investigator Dr. Daniel Kocevski, left, and Integration and Test Engineer Elise Doan, right, pose with the StarBurst instrument after it was unboxed in the cleanroom environment at NASA Marshall. The Naval Research Lab transferred the instrument to NASA in early March.Image Credit: NASA/Davy Haynes

    The merging of neutron stars forges heavy elements such as gold and platinum, revealing the origins of some of Earth’s building blocks.

    “By studying these gamma-ray bursts and the neutron star mergers that produce them, we gain insights into fundamental physics, the origins of elements, and even the expansion of the universe,” Kocevski said. “Neutron star mergers and gamma-ray bursts are nature’s laboratories for testing our understanding of the cosmos.”

    StarBurst will undergo flight vibration and thermal vacuum testing at Marshall in the Sunspot Thermal Vacuum Testing Facility. These tests ensure it can survive the rigors of launch and harsh environment of space.

    Final instrument integration will happen in the Stray Light Facility, which is a specialized environment to help identify and reduce unwanted light in certain areas of the optical systems.

    The StarBurst Multimessenger Pioneer is a wide-field gamma-ray observatory designed to detect the initial emission of short gamma-ray bursts, important electromagnetic indicators of neutron star mergers. With an effective area over five times that of the Fermi Gamma-ray Burst Monitor and complete visibility of the unobscured sky, StarBurst will conduct sensitive observations. NASA/Daniel Kocevski

    StarBurst is a collaborative effort led by NASA’s Marshall Space Flight Center, with partnerships with the U.S. Naval Research Laboratory, the University of Alabama Huntsville, the Universities Space Research Association, and the UTIAS Space Flight Laboratory. StarBurst was selected for development as part of the NASA Astrophysics Pioneers program, which supports lower-cost, smaller hardware missions to conduct compelling astrophysics science.

    To learn more about StarBurst visit:

    https://science.nasa.gov/mission/starburst/

    Media Contact:

    Lane Figueroa
    Marshall Space Flight Center
    Huntsville, Alabama
    256.544.0034
    lane.e.figueroa@nasa.gov

    Categories: NASA

    NASA’s Dust Shield Successfully Repels Lunar Regolith on Moon

    Thu, 03/27/2025 - 1:52pm

    NASA’s Electrodynamic Dust Shield (EDS) successfully demonstrated its ability to remove regolith, or lunar dust and dirt, from its various surfaces on the Moon during Firefly Aerospace’s Blue Ghost Mission 1, which concluded on March 16. Lunar dust is extremely abrasive and electrostatic, which means it clings to anything that carries a charge. It can damage everything from spacesuits and hardware to human lungs, making lunar dust one of the most challenging features of living and working on the lunar surface. The EDS technology uses electrodynamic forces to lift and remove the lunar dust from its surfaces. The “before” image highlights the glass and thermal radiator surfaces covered in a layer of regolith, while the “after” image reveals the results following EDS activation. Dust was removed from both surfaces, proving the technology’s effectiveness in mitigating dust accumulation.

    This milestone marks a significant step toward sustaining long-term lunar and interplanetary operations by reducing dust-related hazards to a variety of surfaces for space applications ranging from thermal radiators, solar panels, and camera lenses to spacesuits, boots, and helmet visors. The EDS technology is paving the way for future dust mitigation solutions, supporting NASA’s Artemis campaign and beyond. NASA’s Electrodynamic Dust Shield was developed at Kennedy Space Center in Florida with funding from NASA’s Game Changing Development Program, managed by the agency’s Space Technology Mission Directorate.

    Image Credit: NASA

    Categories: NASA

    NASA, NSIDC Scientists Say Arctic Winter Sea Ice at Record Low

    Thu, 03/27/2025 - 12:02pm

    3 min read

    Preparations for Next Moonwalk Simulations Underway (and Underwater) Ice cover ebbs and flows through the seasons in the Arctic (left) and the Antarctic (right). Overall, ice cover has declined since scientists started tracking it half a century ago. Download this visualization from NASA’s Scientific Visualization Studio: https://svs.gsfc.nasa.gov/5099Trent Schindler/NASA’s Scientific Visualization Studio

    Winter sea ice cover in the Arctic was the lowest it’s ever been at its annual peak on March 22, 2025, according to NASA and the National Snow and Ice Data Center (NSIDC) at the University of Colorado, Boulder. At 5.53 million square miles (14.33 million square kilometers), the maximum extent fell below the prior low of 5.56 million square miles (14.41 million square kilometers) in 2017. 

    In the dark and cold of winter, sea ice forms and spreads across Arctic seas. But in recent years, less new ice has been forming, and less multi-year ice has accumulated. This winter continued a downward trend scientists have observed over the past several decades. This year’s peak ice cover was 510,000 square miles (1.32 million square kilometers) below the average levels between 1981 and 2010. 

    In 2025, summer ice in the Antarctic retreated to 764,000 square miles (1.98 million square kilometers) on March 1, tying for the second lowest minimum extent ever recorded. That’s 30% below the 1.10 million square miles (2.84 million square kilometers) that was typical in the Antarctic prior to 2010. Sea ice extent is defined as the total area of the ocean with at least 15% ice concentration.

    The reduction in ice in both polar regions has led to another milestone — the total amount of sea ice on the planet reached an all-time low. Globally, ice coverage in mid-February of this year declined by more than a million square miles (2.5 million square kilometers) from the average before 2010. Altogether, Earth is missing an area of sea ice large enough to cover the entire continental United States east of the Mississippi. 

    “We’re going to come into this next summer season with less ice to begin with,” said Linette Boisvert, an ice scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “It doesn’t bode well for the future.”

    To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video

    Observations since 1978 show that ice cover has declined at both poles, leading to a downward trend in the total ice cover over the entire planet. In February 2025, global ice fell to the smallest area ever recorded. Download this visualization from NASA's Scientific Visualization Studio: https://svs.gsfc.nasa.gov/5521Mark Subbaro/NASA's Scientific Visualization Studio

    Scientists primarily rely on satellites in the Defense Meteorological Satellite Program, which measure Earth’s radiation in the microwave range. This natural radiation is different for open water and for sea ice — with ice cover standing out brightly in microwave-based satellite images. Microwave scanners can also penetrate through cloud cover, allowing for daily global observations. The DMSP data are augmented with historical sources, including data collected between 1978 and 1985 with the Nimbus-7 satellite that was jointly operated by NASA and the National Oceanic and Atmospheric Administration. 

    “It’s not yet clear whether the Southern Hemisphere has entered a new norm with perennially low ice or if the Antarctic is in a passing phase that will revert to prior levels in the years to come,” said Walt Meier, an ice scientist with NSIDC.

    Credits: Charles Connell / NASA Goddard Space Flight Center

    By James Riordon
    NASA’s Earth Science News Team

    Media contact: Elizabeth Vlock
    NASA Headquarters

    Share Details Last Updated Mar 27, 2025 LocationNASA Goddard Space Flight Center Related Terms Explore More 1 min read Arctic Sea Ice Near Historic Low; Antarctic Ice Continues Decline

    This summer, Arctic sea ice decreased to a its minimum extent on September 11, 2024.…

    Article 6 months ago
    1 min read Keeping PACE with the Oceans

    NASA can detect tiny organisms, phytoplankton, that affect the color of ocean from space, and…

    Article 9 months ago
    1 min read Antarctic Sea Ice Hits Annual Minimum, Second Lowest On Record

    On February 20th, 2024, Antarctic sea ice officially reached its minimum extent for the year.

    Article 1 year ago
    Keep Exploring Discover More Topics From NASA

    Missions

    Humans in Space

    Climate Change

    Solar System

    Categories: NASA