Watch the stars and from them learn. To the Master's honor all must turn, Each in its track, without a sound, Forever tracing Newton's ground

— Albert Einstein

NASA - Breaking News

Syndicate content
Official National Aeronautics and Space Administration Website
Updated: 7 hours 37 min ago

Sols 4188-4190: Aurora Watch on Mars

Mon, 05/20/2024 - 7:02pm

4 min read

Sols 4188-4190: Aurora Watch on Mars This image was taken by MAHLI onboard NASA’s Mars rover Curiosity on Sol 4187 NASA/JPL-Caltech/MSSS

Earth planning date: Friday, May 17, 2024

During the night of May 10, Earth experienced a fantastic display of aurorae (Northern and Southern Lights) which extended all the way to tropical latitudes, courtesy of the strongest geomagnetic storm since 2003. The enormous solar active region 3664, which produced the X-class flares and powerful coronal mass ejections powering this magnetic storm, has since rotated away from Earth. However, this explosive sunspot group now faces Mars. Just as the active region rotated into Mars view, it unleashed the largest flare in 20 years, an X8.7 monster. This solar flare also aimed a coronal mass ejection (CME) at Mars, which is potentially capable of producing auroras. Given Mars’ lack of a global magnetic field, Martian aurorae are not concentrated at the poles as they are on Earth, but instead appear as a “global diffuse aurora” that are associated with Mars’ ancient, magnetized crust. One of the planned observations for Curiosity this weekend will be a night-time 12×1 Mastcam observation of the sky above Texoli Butte, in a hope to capture one of these elusive Martian aurorae. 

Contact science on “Tuolumne Meadows” and “Parker Lakes” on sol 4187 completed successfully. The included picture is a MAHLI image of “Parker Lakes” taken on Sol 4187, which shows abundant bedrock nodules, some perched on tiny stalks like a miniature version of the hoodoos in Bryce Canyon National Park. Unfortunately, the drive on sol 4187 faulted after 10 m due to a steer stall on the right rear wheel, and the resulting wheel placement was too uncertain to support contact science. Our current plan skips sol 4188, as Earth passes are too low on the horizon for Curiosity to successfully receive commands for that sol. On Sol 4189,  Curiosity will observe the layered bedrock target “Polemonium Pass” with ChemCam LIBS and Mastcam, as well as more distant white rocks around “Falls Ridge” with ChemCam RMI and Mastcam. The first target is named for a 11,600 ft pass near the northern border of Yosemite National Park. The word “Polemonium” refers to Polemonium eximium, the skypilot or showy sky pilot alpine flower only found above 10000 feet in the Sierra Nevada. The target name “Falls Ridge” honors a towering ridge-line of granite domes forming the southern wall of the Grand Canyon of the Tuolumne River. All targets in this area of Mount Sharp are named after the Bishop geological quadrangle in the High Sierra and Owens Valley of Calfornia. Mastcam will also image a nearby troughs between the blocky rocks surrounding the rover.  Atmospheric observations in this science block include a dust devil survey, atmospheric opacity measurement, Navcam suprahorizon movie, and rover deck image. Curiosity will then perform a block of atmospheric observations with APXS and SAM to measure atmospheric constituents. Well after dark, Mastcam will search for aurora in the sky above our rover. Curiosity starts the next sol (4190) with a ChemCam LIBS and Mastcam observation of “The Fissures,” a finely laminated bedrock target named for a deep bedrock joint on the south wall of Yosemite Valley. This is followed by a 10×1 RMI mosaic of Texoli butte, ChemCam passive sky, deck monitor, and dust devil survey.  Curiosity then will start its 27 m drive, finishing near the lip of the Gediz Vallis channel. After the drive ends, Curiosity will perform its usual post drive panoramic imaging and take a MARDI frame of the ground under the rover. The next morning, Curiosity will perform early morning atmospheric observations including Mastcam solar tau to measure dust in the atmosphere, Navcam opacity measurement, and Navcam zenith and suprahorizon cloud movies.  On Monday, we will do contact science at the new location, then decide where to drive across the channel sands on our way up Mount Sharp.

Written by Deborah Padgett, OPGS Task Lead at NASA’s Jet Propulsion Laboratory

Share

Details

Last Updated

May 20, 2024

Related Terms Explore More

3 min read Sols 4186-4188: Almost there…

Article


3 days ago

3 min read Sols 4184-4185: Look Near! Look Far!

Article


6 days ago

3 min read Sols 4182-4183: We Reached the South Side of Pinnacle Ridge… What’s Next?

Article


1 week ago

Keep Exploring Discover More Topics From NASA

Mars

Mars is no place for the faint-hearted. It’s dry, rocky, and bitter cold. The fourth planet from the Sun, Mars…


All Mars Resources


Rover Basics


Mars Exploration Science Goals

Categories: NASA

Aurorasaurus Roars During Historic Solar Storm

Mon, 05/20/2024 - 5:20pm

2 min read

Aurorasaurus Roars During Historic Solar Storm During the peak of activity (May 10-11, 2024) the Aurorasaurus website showed widespread reports and real-time alerts.

The largest geomagnetic storm in 21 years lit up the sky last weekend, and NASA’s volunteers were ready. Between May 10th and 12th 2024, NASA’s Aurorasaurus project received an unprecedented number of reports from around the world. It also helped eager aurora chasers get a better view.

“Aurorasaurus made all the difference for me,” said volunteer Damon Tighe. “I was able to see it in Oakland, CA and knew it was coming based upon user data in Reno.”

At Aurorasaurus.org you’ll see the latest model predictions for where the aurora is visible. Then you can submit your own report, helping scientists test and improve the models and characterize what is seen. When people report seeing the aurora beyond where the model predicts the system adapts in real time and puts out volunteer-generated alerts in those areas. During the May 10-12 extreme event, auroras visible as far south as Texas and Alabama triggered those special alerts.

Thank you to everyone who submitted data! During the last major solar storm, back in 2003, digital cameras were not widespread and cell phones didn’t even have cameras. But during this current solar maximum, the data you’re collecting has incredible scientific value.

It’s not too late to help document this historic event. You can submit back-dated reports at our website and help do NASA Science. While you’re there, sign up for your own alerts and don’t miss out on the next spectacular storm!

Share

Details

Last Updated

May 20, 2024

Related Terms Explore More

5 min read How NASA Tracked the Most Intense Solar Storm in Decades

Article


4 days ago

2 min read NASA Partner Zooniverse Receives White House Open Science Award

Article


3 weeks ago

1 min read Major Martian Milestones

Article


3 weeks ago

Categories: NASA

NASA Selects BAE Systems to Develop Ocean Color Instrument for NOAA

Mon, 05/20/2024 - 4:00pm

NASA, on behalf of the National Oceanic and Atmospheric Administration (NOAA), has selected BAE Systems (formerly known as Ball Aerospace & Technologies Corporation) of Boulder, Colorado, to develop an instrument to analyze ocean data as part of NOAA’s Geostationary Extended Observations (GeoXO) satellite program.

This cost-plus-award-fee contract is valued at approximately $450 million. It includes the development of two flight instruments as well as options for additional units. The anticipated period of performance for this contract includes support for 10 years of on-orbit operations and five years of on-orbit storage, for a total of 15 years for each flight model. The work will take place at BAE Systems, NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and the agency’s Kennedy Space Center in Florida.

The GeoXO Ocean Color instrument (OCX) will monitor U.S. coastal waters, the exclusive economic zone, and the Great Lakes. The instrument will observe ocean biology, chemistry, and ecology to assess ocean productivity, ecosystem change, coastal and inland water quality, seafood safety, and hazards like harmful algal blooms. With updates at least every three hours, the instrument will deliver a more frequent and comprehensive view of ocean and coastal conditions than is currently available.

Frequent observations will show daily changes in ocean biology and rapid coastal ocean dynamics. The instrument also will track and assist in the response to climate-driven ocean and coastal ecosystem changes, supporting ecological forecasters, marine resource managers, fisheries, health departments, water treatment managers, and the commerce, recreation, and tourism industries.

The contract scope includes the tasks and deliverables necessary to design, analyze, develop, fabricate, integrate, test, verify, and evaluate the ocean color instrument; support the launch; supply and maintain the instrument ground support equipment; and support mission operations at the NOAA Satellite Operations Facility in Suitland, Maryland.

The GeoXO Program is the follow-on to the Geostationary Operational Environmental Satellites – R (GOES-R) Series Program. The GeoXO satellite system will advance Earth observations from geostationary orbit. The mission will supply vital information to address major environmental challenges of the future in support of weather, ocean, and climate operations in the United States. Advanced capabilities from GeoXO will help address our changing planet and the evolving needs of NOAA’s data users. NOAA and NASA are working to ensure these critical observations are in place by the early 2030s when the GOES-R Series nears the end of its operational lifetime.

Together, NOAA and NASA will oversee the development, launch, testing, and operation of all the satellites in the GeoXO Program. NOAA funds and manages the program, operations, and data products. On behalf of NOAA, NASA and commercial partners develop and build the instruments and spacecraft and launch the satellites.

For more information on the GeoXO program, visit:

https://www.nesdis.noaa.gov/geoxo

-end-

Liz Vlock
Headquarters, Washington
202-358-1600
elizabeth.a.vlock@nasa.gov

Jeremy Eggers
Goddard Space Flight Center, Greenbelt, Md.
757-824-2958
jeremy.l.eggers@nasa.gov

John Leslie
NOAA’s National Environmental Satellite, Data, and Information Service
202-527-3504
nesdis.pa@noaa.gov

Share Details Last Updated May 20, 2024 LocationNASA Headquarters
Categories: NASA

55 Years Ago: Two Months Until the Moon Landing

Mon, 05/20/2024 - 3:13pm

The march to the first Moon landing took a giant leap forward in May 1969 with the successful completion of Apollo 10, essentially a dress rehearsal for the landing mission. During their eight-day flight, the all-veteran Apollo 10 crew of Thomas P. Stafford, John W. Young, and Eugene A. Cernan rehearsed nearly every aspect of the Moon landing with the exception of the landing itself, flying to within nine miles of the lunar surface. Their mission sorted many of the unknowns for the lunar landing. While Apollo 10 traveled to the Moon, workers at NASA’s Kennedy Space Center (KSC) in Florida rolled Apollo 11 to its launch pad. The Apollo 11 astronauts continued training for their July Moon landing mission while workers across NASA continued other preparations for the historic flight.

Apollo 10


The Apollo 10 flight plan.

Designed as a final dress rehearsal for the Moon landing, the Apollo 10 mission plan replicated all aspects of that flight except for the landing itself. During the eight-day flight, Stafford, Young, and Cernan would spend three days traveling to the Moon before entering orbit around it. Stafford and Cernan would board the Lunar Module (LM) Snoopy, leaving Young aboard the Command Module (CM) Charlie Brown, and simulating a descent to the surface, fly to within 50,000 feet of the Moon. They would fly an approach to Apollo 11’s designated landing site in the Sea of Tranquility, photographing the area in as much detail as possible. After eight hours, Stafford and Cernan would rejoin Young. The primary goal of the mission accomplished, they would leave lunar orbit and travel back to Earth for a splashdown in the Pacific Ocean. Apollo 10 would address unknowns about navigation and communications required for a successful lunar landing.


Left: Astronaut-geologist Harrison H. Schmitt, second from left, provides geology instruction to Apollo 10 astronauts Thomas P. Stafford, left, John W. Young, and Eugene A. Cernan. Middle: The Launch Control Center at NASA’s Kennedy Space Center in Florida during the Apollo 10 Countdown Demonstration Test. Right: Cernan, left, Young, and Stafford pose in front of their Saturn V rocket.

During the final weeks before launch, Stafford, Young, and Cernan honed their skills in spacecraft simulators. They also received many hours of lunar geology instruction from experts, including Harrison H. Schmitt, the only geologist in the astronaut corps. At KSC, engineers completed the Countdown Demonstration Test on May 6, with Stafford, Young, and Cernan participating in the final hours, much as they would on launch day.


Left: Vice President Spiro T. Agnew, second from left, shares a laugh with Apollo 10 astronauts Eugene A. Cernan, left, Thomas P. Stafford, and John W. Young the day before launch. Middle: Stafford pats a giant stuffed Snoopy as he and Young and Cernan leave crew quarters for the trip to the launch pad. Right: Young, front, Stafford, and Cernan prepare to board the van for the ride to Launch Pad 39B.

Engineers began the countdown for Apollo 10 on May 13, as Stafford, Young, and Cernan finished their final simulator runs. Vice President Spiro T. Agnew joined them for dinner the night before launch. On launch day, they donned their spacesuits and boarded the van for the ride to Launch Pad 39B, where they climbed aboard their spacecraft.


Left: The official photo of the Apollo 10 crew of Eugene A. Cernan, left, Thomas P. Stafford, and John W. Young. Middle: The Apollo 10 crew patch. Right: Liftoff of Apollo 10.

Apollo 10 lifted off at 12:49 p.m. EDT, the only lunar mission to use Launch Pad 39B. The three stages of the Saturn V rocket performed flawlessly, placing Apollo 10 and its attached S-IVB third stage into a temporary parking orbit around the Earth. Two and a half hours later, after the ground and crew verified the normal functioning of all spacecraft systems, Mission Control called up, “10, you’re go for TLI,” the Trans-Lunar Injection. The S-IVB fired for 5 minutes and 43 seconds, sending Apollo 10 toward the Moon. The engine burned so precisely that Apollo 10 needed only one of the planned four midcourse corrections.


Left: Image of the rapidly receding Earth taken shortly after Trans-Lunar Injection. Middle: The Lunar Module Snoopy still attached to the S-IVB third stage during the Transposition and Docking maneuver. Right: A much smaller Earth taken late during the translunar coast.

Thirty minutes after the TLI burn, the crew separated Charlie Brown from the S-IVB, with Snoopy still snuggled atop the third stage. Young guided Charlie Brown about 150 feet away, turned the spacecraft around, then flew it back to dock with Snoopy, completing the Transposition and Docking maneuver. Viewers received the first color TV images from space, the first of 17 transmission during the mission, showing Snoopy atop the S-IVB as Young brought Charlie Brown in for the docking. Thirty minutes later springs ejected Snoopy, now firmly docked with Charlie Brown, from the S-IVB, with Stafford exclaiming, “Snoopy’s coming out of the doghouse.” By this time, Apollo 10 had traveled more than 13,000 miles from Earth, with its velocity decreasing as the home planet’s gravity inexorably tugged at the spacecraft. The next two days passed without incident, with the astronauts performing routine navigation and housekeeping tasks and providing viewers at home more televised views of themselves and the receding Earth. About 62 hours after launch, they crossed into the Moon’s gravitational sphere of influence and their speed began to increase. Eleven hours later and still about 9,000 miles from the Moon, Apollo 10 passed into the darkness of the lunar shadow. Less than three hours later, Apollo 10 passed behind the Moon, cutting off communications with Earth.


Left: Earthrise as seen from lunar orbit. Middle: The Lunar Module Snoopy as seen from the Command Module Charlie Brown shortly after undocking. Right: Charlie Brown seen from Snoopy after undocking.

The Lunar Orbit Insertion (LOI) maneuver, a six-minute firing of the Service Propulsion System (SPS) engine, took place behind the Moon, placing Apollo 10 into an elliptical orbit. As they rounded the backside of the Moon, Stafford radioed to Mission Control, “You can tell the world that we have arrived.” All three crew members began excitedly describing the lunar scenery passing by beneath them, with Cernan summing it up best, “It might sound corny, but the view is really out of this world.” After two revolutions around the Moon, the astronauts once again fired the SPS engine, this time for 14 seconds, to circularize their orbit. Cernan opened the hatch to Snoopy for the first time, and floated inside to partially activate it, perform a brief inspection, conduct communications checks, and transfer equipment needed later during Snoopy’s free flight. Cernan reported on Snoopy’s condition, “I’m personally very happy with the fellow.” The crew prepared to settle down for their first night’s sleep in lunar orbit, with Cernan asking the ground to “watch Snoopy well tonight, and make him sleep good, and we’ll take him out for a walk and let him stretch his legs in the morning.” The next morning, all three crew members donned their spacesuits, Stafford and Cernan transferred to Snoopy, leaving Young in Charlie Brown, and then closed the hatches between the two spacecraft. Mission Control gave the crew the go to undock, and soon after Young separated the two spacecraft. Minutes later, with the two spacecraft flying separately, Snoopy began a slow roll so that Young could inspect and photograph the vehicle. Young then fired Charlie Brown’s thrusters to separate from Snoopy. And then, the time came to take Snoopy for a walk and let him stretch his legs, as Cernan had promised the night before.


Left: View of the Apollo 11 landing site in the Sea of Tranquility taken from the Lunar Module Snoopy during its close approach to the surface. Middle: Command and Service Module Charlie Brown as seen from Snoopy during the rendezvous and docking maneuver. Right: Snoopy as seen from Charlie Brown during the rendezvous and docking maneuver.

Mission Control gave Snoopy the go for the Descent Orbit Insertion burn of the LM’s Descent Propulsion System (DPS) engine to lower its orbital low point to about 50,000 feet. The 27-second burn began with the engine at 11.3% thrust for the first 15 seconds, then Stafford throttled it up to 40% thrust for the remainder of the maneuver. Stafford and Cernan began taking photographs and film of the surface as they started their descent to the low point, later calculated as about 47,000 feet. Cernan reported, “We is down among them,” referring to their low altitude over the lunar landscape. They successfully tested Snoopy’s landing radar, a critical test before the actual landing mission, all the while continuing a running commentary describing the landscape below them including all the landmarks leading up to the planned Apollo 11 landing site in the Sea of Tranquility. Stafford and Cernan then separated the LM’s ascent stage from the descent stage. During the staging, Snoopy experienced some unexpected motions in all three axes that Stafford and Cernan quickly brought under control. Investigators later attributed the gyrations to a switch placed in the wrong position. Ten minutes later, they fired Snoopy’s Ascent Propulsion System (APS) engine for 15 seconds that simulated a liftoff from the Moon, and began the rendezvous process to rejoin Young in Charlie Brown, using the same maneuvers as during a landing mission. Young completed the docking and Stafford exclaimed, “Snoopy and Charlie Brown are hugging each other.” Snoopy had been on a very long leash, travelling up to 390 miles from Charlie Brown, meeting all planned objectives during its 8-hour 10-minute solo flight. Soon, the crew opened the hatches between the two spacecraft and Stafford and Cernan rejoined Young in Charlie Brown, bringing with them cameras and exposed film. They then closed the hatches for the final time and bid farewell to Snoopy. Due to residual air pressure in the docking tunnel that couldn’t be vented, Snoopy departed at a higher than expected speed. Stafford commented, “Snoop went some place,” and Young added, “Man, when he leaves, he leaves.” To prevent an unwanted recontact between the two spacecraft, Snoopy fired its APS engine to fuel depletion, which sent it safely out of lunar orbit and into an orbit around the Sun. Cernan, perhaps feeling some guilt about disposing of Snoopy, said, “I feel sort of bad about that, because he’s a pretty nice guy; he treated us pretty well today.” 


Left: The rapidly receding Moon shortly after the Trans-Earth Injection. Middle: Earth photographed during the trans Earth coast. Right: Apollo 10 on its three main parachutes shortly before splashdown.

During their 31st and final orbit around the Moon, the astronauts prepared the spacecraft for its next critical maneuver, the Trans Earth Injection (TEI), to propel them out of lunar orbit and back toward home. “Houston, we are returning to Earth!” With those words, Stafford announced that the TEI, a 165-second burn of the SPS engine had succeeded. The three-day return trip to Earth passed uneventfully, the crew conducting a single midcourse maneuver. As they approached the Earth, the crew separated the CM from the Service Module and turned its blunt heat shield into the direction of travel. By the time it made first contact with the Earth’s atmosphere 16 minutes later at an altitude of 400,000 feet, the point called Entry Interface, Apollo 10 had accelerated to 24,791 miles per hour, the fastest reentry for any crewed space mission. The spacecraft entered a radio blackout period a few seconds later, caused by the buildup of ionized gases as a result of rapid deceleration. At 24,000 feet altitude, two drogue parachutes deployed to provide initial deceleration, followed at 10,000 feet by the three main parachutes that provided a splashdown velocity of about 22 miles per hour.


Left: The recovery helicopter delivered Apollo 10 astronauts Eugene A. Cernan, left, Thomas P. Stafford, and John W. Young to the deck of the U.S.S. Princeton. Middle: Dignitaries greet Cernan, left, Stafford, and Young during their stopover in American Samoa. Right: Young, Stafford, and Cernan greet well-wishers upon their arrival at Houston’s Ellington Air Force Base.

At precisely 11:53 a.m. CDT on May 26, 1969, Apollo 10 splashed down in the Pacific Ocean 460 miles east of American Samoa. The splashdown occurred shortly before sunrise, just 1.5 miles from the targeted point and 3.3 miles from the prime recovery ship the U.S.S. Princeton (LPH-5). Stafford, Cernan, and Young had completed a flight lasting 192 hours and 3 minutes. Within 39 minutes, recovery forces delivered the trio to the deck of the Princeton, where the ship’s captain and dozens of cheering sailors greeted them. After a brief stay aboard the Princeton, Stafford, Cernan, and Young flew by helicopter to Pago Pago, American Samoa, where the governor, his wife, and 5,000 Samoan well-wishers greeted them. From there, they took a C-141 transport aircraft back to Ellington Air Force Base (AFB) in Houston, where they reunited with their families and a cheering crowd welcomed them home. Sailors offloaded the CM Charlie Brown from the Princeton in Hawaii on May 31. From there, workers flew it to Long Beach, California, on June 4, and then trucked it to the North American Rockwell plant in Downey to undergo postflight inspection. NASA transferred accountability for Charlie Brown to the Smithsonian Institution in April 1970, following which the United States Information Agency took it on a tour of Europe, including the Soviet Union, France, and The Netherlands. The Smithsonian loaned the spacecraft to the London Science Museum in January 1976, where it remains on display today.


Left: Meeting of the minds – the Apollo 10 crew debriefs the Apollo 11 crew. Middle: Stafford, left, Young, and Cernan brief reporters during their postflight press conference. Right: The Apollo 10 Command Module on display at the London Science Museum. Image credit: courtesy London Science Museum.

Apollo 11


Left: The Apollo 11 Saturn V leaves the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida on its way to Launch Pad 39A. Middle: Apollo 11 at Launch Pad 39A. Right: Apollo 11 astronauts Neil A. Armstrong, left, Michael Collins, and Edwin E. “Buzz” Aldrin pose with their Saturn V rocket.

While Apollo 10 headed for the Moon, on May 20 workers at KSC rolled the Apollo 11 Saturn V from the Vehicle Assembly Building (VAB) to Launch Pad 39A. Two days later, they rolled the Mobile Service Structure around the rocket and began integrated tests on the launch vehicle.


At the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston, Apollo 11 astronauts conduct vacuum runs in Chamber B of the Space Environment Simulation Laboratory. Prime crew members Neil A. Armstrong, left, and Edwin E. “Buzz” Aldrin, and backup crew members James A. Lovell, and Fred W. Haise.

The Apollo 11 prime crew of Neil A. Armstrong, Michael Collins, and Edwin E. “Buzz” Aldrin and their backups James A. Lovell, William A. Anders, and Fred W. Haise continued training for the Moon landing. Armstrong, Aldrin, Lovell, and Haise each completed altitude runs in Chamber B of MSC’s Space Environment Simulation Laboratory. During these tests, the spacesuited astronauts practiced various lunar surface activities, such as activating the television camera, collecting rock samples, and deploying the scientific experiments of the Early Apollo Surface Experiment Package (EASEP).


Left: Neil A. Armstrong deploys the Passive Seismic Experiment Package. Middle: An Apollo 11 astronaut deploys the Laser Ranging Retro-Reflector. Right: Edwin E. “Buzz” Aldrin deploys the Solar Wind Collection experiment.

Armstrong and Aldrin practiced the deployment of the three scientific instruments they planned to deploy during their 2.5-hour surface excursion. Two instruments made up the EASEP – the Passive Seismic Experiment Package (PSEP), and the Laser Ranging Retro-Reflector (LRRR). The EASEP instruments remained on the surface after the astronauts departed, while the astronauts deployed and retrieved a third instrument, the Solar Wind Composition (SWC) experiment, during their spacewalk. The solar powered PSEP collected data to detect any possible moonquakes. Scientists used the passive LRRR to make precise measurements of the Earth-Moon distance. The SWC’s sheet of aluminum collected particles of the solar wind, in particular the noble gases helium, neon, argon, krypton, and xenon. 


Left: Apollo 11 astronauts Edwin E. “Buzz” Aldrin, left, Neil A. Armstrong, and Michael Collins aboard the MV Retriever prepare for the water egress test using the Biological Isolation Garment (BIG). Middle: Engineer John K. Hirasaki demonstrates the BIG. Right: Armstrong emerges from the boilerplate Command Module to join Aldrin and Collins, as recovery team’s decontamination office Clancy Hatleberg monitors the activity.

On May 24, the Apollo 11 astronauts rehearsed splashdown procedures in the Gulf of Mexico near Galveston, Texas, using a boilerplate Apollo CM and supported by the Motorized Vessel (MV) Retriever. The week before, NASA had decided that following splashdown, helicopter recovery forces would retrieve the astronauts from life rafts as on earlier missions. NASA rejected an alternative plan to have sailors aboard the carrier hoist the spacecraft with the astronauts inside onto the deck as too dangerous. Because the standard method would expose the astronauts to the air, raising the risk of contamination, the biological decontamination swimmer would give the astronauts Biological Isolation Garments (BIG) prior to their exiting the spacecraft after splashdown. For Apollo 11, the U.S. Navy’s Underwater Demolition Team-11 (UDT-11) assigned Lieutenant Clarence J. “Clancy” Hatleberg as the decontamination swimmer, and he joined Armstrong, Collins, and Aldrin for the May 24 exercise. Exactly two months later, they would carry out the activity for real in the Pacific Ocean.


Left: The Mobile Quarantine Facility planned for Apollo 11 arrives at the Manned Spacecraft Center (MSC), now NASA’s Johnson Space Center in Houston. Middle: NASA test pilot Harold E. “Bud” Ream flies the Lunar Landing Training Vehicle at Ellington Air Force Base to certify it for astronaut operations. Right: Lunar Module-2 during one of the drop tests at the Vibration and Acoustics Test Facility at MSC.

The next step in the quarantine process involved the astronauts entering the Mobile Quarantine Facility (MQF) aboard the recovery ship. The astronauts remained inside the MQF until delivered portside, from where a cargo jet would fly them back to Ellington AFB in Houston. From there, a truck delivered the MQF and the astronauts to the Lunar Receiving Laboratory at MSC where they finished their 21-day quarantine. The MQF assigned to Apollo 11, the third of four units built, arrived at MSC on May 12.  At Ellington AFB, MSC pilot Harold E. “Bud” Ream continued to fly the Lunar Landing Training Vehicle-2 (LLTV-2) to certify it for astronaut flights following the December 1968 crash of LLTV-1. Astronauts used the LLTV as a key training tool to simulate the flying characteristics of the LM especially of the final 500 feet of the descent. With astronauts still barred from flying the LLTV, they used the LLTV simulator and the Lunar Landing Research Facility (LLRF) at NASA’s Langley Research Center in Hampton, Virginia, to practice the final descent to the surface. Once managers cleared the LLTV for astronaut use in early June, Armstrong and Lovell completed their training flights later that month. On May 7, in MSC’s Vibration and Acoustics Test Facility engineers completed drop tests using LM-2, certifying the LM and its systems for the loads they would encounter during a lunar landing.

Apollo 12


Left: In the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, workers lift the first stage of the Apollo 12 Saturn V rocket to begin the stacking process. Middle: Workers lower the second stage onto the first stage. Right: Workers have lowered the third stage onto stack.

While Apollo 10 headed for the Moon and Apollo 11 headed for its launch pad, workers prepared Apollo 12 for its eventual journey to the Moon, then tentatively planned for September. If Apollo 11 succeeded in its Moon landing mission, Apollo 12 would fly later, most likely in November. At KSC, the S-IC first stage of the Apollo 12 Saturn V arrived on May 3, joining the second and third stages already there. Workers in the VAB’s High Bay 3 stacked the first stage on its Mobile Launcher on May 7, added the S-II second stage on May 21, and the S-IVB third stage the following day. In the nearby Manned Spacecraft Operations Building, workers prepared the Apollo 12 CSM and LM for altitude chamber runs with the prime and backup crews, planned for June.


Left: Apollo 12 astronaut Charles “Pete” Conrad during the geology field trip to Big Bend, Texas. Middle and right: At the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston, Apollo 12 astronauts Conrad and Alan L. Bean conduct vacuum runs in Chamber B of the Space Environment Simulation Laboratory.

The Apollo 12 prime crew of Charles “Pete” Conrad, Richard F. Gordon, and Alan L. Bean and their backups David R. Scott, Alfred M. Worden, and James B. Irwin continued their training. Conrad and Bean, along with support astronaut Edward G. Gibson and several geologists, took part in a geology field trip to Big Bend, Texas, on May 1-2. During the two-day event, they simulated various lunar surface tasks to verify procedures, while receiving geology instruction along the way. Back at MSC, Conrad and Bean tested their spacesuits and spacewalking equipment and procedures in SESL’s Chamber B.


Left: Apollo 12 astronauts Alan L. Bean, left, and Charles “Pete” Conrad examine lunar surface science instruments. Middle: Apollo 12 support astronauts Gerald P. Carr, second from left, and Edward G. Gibson, right, assist Bean and Conrad in examining lunar surface science instruments. Right: Bean, wearing spacesuit at right, participates in procedures development for lunar surface activities.

The Apollo 12 mission plan called for two surface excursions and deployment of the first Apollo Lunar Surface Experiment Package (ALSEP), a more complex set of instruments than the Apollo 11 EASEP. Conrad and Bean completed their first examination of the hardware for the four ALSEP instruments planned for their mission.

In other NASA news:


Left: U.S. postage stamp dedication to Apollo 8. Image credit: courtesy USPS. Middle: Apollo 8 astronauts Frank Borman, left, James A. Lovell, and William A. Anders hold the Collier Trophy. Right: Borman narrates a film of the Apollo 8 mission at the COSPAR meeting in Prague.

On May 5, in a ceremony at the Rice Hotel in Houston, Postmaster General Winton M. Blount dedicated a postage stamp commemorating the Apollo 8 mission, presenting the first albums to the Apollo 8 crew of Frank Borman, James A. Lovell, and William A. Anders. Two days later, Borman, Lovell, and Anders accepted the Robert J. Collier award for their participation in the Apollo 8 mission.

On May 5, astronaut Alan B. Shepard marked the eighth anniversary of his suborbital Mercury-Redstone-3 mission aboard the Freedom 7 capsule. Two days later, Shepard had more reason to celebrate – flight surgeons returned him to full spaceflight status. Surgeons grounded Shepard in 1963 when he developed Meniere’s disease, an inner ear condition that causes dizziness. A minor operation in 1968 corrected the problem and Shepard remained symptom-free. Said Shepard of his return to flight status, “The sooner I get off the ground, the better.” He went on to command Apollo 14 in 1971, the only Mercury 7 astronaut to walk on the Moon.

On May 7, NASA established a task group to study development of a space station, headed by George E. Mueller, Associate Administrator for Manned Space Flight, with Apollo 8 astronaut Borman reporting to him as Field Director of Advanced Space Stations at MSC.

On May 16, President Richard M. Nixon nominated Apollo 8 astronaut Anders, also serving on Apollo 11 backup crew, as Executive Secretary of the National Aeronautics and Space Council, chaired by Vice President Agnew, effective in August, after Apollo 11 mission.

Between May 19-22, Borman attended the 12th annual meeting of the Committee on Space Research (COSPAR) in Prague, Czechoslovakia. He presented a film of the Apollo 8 mission and received a medal from the Czechoslovak Academy of Sciences.

To be continued …

News from around the world in May 1969:

May 2 – The new cruise ship “Queen Elizabeth II” sets sail from Southampton to New York, marking first private use of Global Position System, relying on four U.S. Navy satellites.

May 5 – Milwaukee Bucs sign number one draft pick, UCLA center Lew Alcindor, who now calls himself Kareem Abdul Jabbar.

May 11 – British comedy group Monty Python forms.

May 16 – The Soviet Union’s Venera 5 spacecraft descends through Venus’ atmosphere, returning 43 minutes of data.

May 17 – The Soviet Union’s Venera 6 spacecraft descends through Venus’ atmosphere, returning data for 51 minutes.

May 19 – The Who release their rock opera album “Tommy.”

May 21 – President Richard M. Nixon selects Warren E. Burger as the next Chief Justice of the United States.

May 24 – The cartoon band “The Archies” release their song “Sugar, Sugar,” Billboard’s Song of the Year for 1969.

May 27 – Walt Disney World construction begins in Florida.

May 29 – Britain’s Trans-Arctic expedition makes first crossing of Arctic sea ice.

May 31 – Stevie Wonder releases the single “My Cherie Amour.”

Explore More 16 min read 15 Years Ago: STS-125, the Final Hubble Servicing Mission Article 1 week ago 11 min read 20 Years Ago: NASA Selects its 19th Group of Astronauts Article 2 weeks ago 14 min read 35 Years Ago: STS-30 Launches Magellan to Venus Article 3 weeks ago
Categories: NASA

NASA, Sierra Space Deliver Dream Chaser to Florida for Launch Preparation

Mon, 05/20/2024 - 3:05pm
Dream Chaser Tenacity, Sierra Space’s uncrewed cargo spaceplane, is processed inside the Space Systems Processing Facility (SSPF) at NASA’s Kennedy Space Center in Florida on Monday, May 20, 2024. The spaceplane arrived inside a climate-controlled transportation container from the agency’s Neil Armstrong Test Facility in Ohio. Final testing and prelaunch processing will be completed inside the high bay of the SSPF ahead of Dream Chaser’s inaugural launch atop a ULA (United Launch Alliance) Vulcan rocket from nearby Cape Canaveral Space Force Station.  Photo credit: NASA/Kim Shiflett

As part of NASA’s efforts to expand commercial resupply in low Earth orbit, Sierra Space’s uncrewed spaceplane arrived at NASA’s Kennedy Space Center in Florida ahead of its first flight to the International Space Station. 
 
The Dream Chaser spaceplane, named Tenacity, arrived at Kennedy on May 18 inside a climate-controlled transportation container from NASA’s Neil Armstrong Test Facility in Sandusky, Ohio, and joined its companion Shooting Star cargo module, which arrived on May 11. 
 
Before arriving at Kennedy, the spaceplane and its cargo module underwent vibration testing atop the world’s highest capacity and most powerful spacecraft shaker system inside the agency’s Space Environments Complex, exposing the stack to vibrations like those it will experience during launch and re-entry to the Earth’s atmosphere. Following vibration testing, the duo moved to NASA’s In-Space Propulsion Facility and was exposed to low ambient pressures and temperatures ranging from -150 to 300 degrees Fahrenheit. 

To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video

A recap of the NASA testing procedures that Sierra Space's Dream Chaser Tenacity spaceplane underwent at NASA's Neil Armstrong Test Facility in Sandusky, Ohio. This included vibration testing and exposure to low ambient pressures and temperatures.Credits: NASA/Steve Logan

Upon arrival at Kennedy, teams moved Dream Chaser Tenacity to the high bay inside the Space Systems Processing Facility, where it will undergo final testing and prelaunch processing ahead of its launch scheduled for later this year. 

The spaceplane will lift off aboard a ULA (United Launch Alliance) Vulcan rocket from Space Launch Complex-41 at Cape Canaveral Space Force Station and is set to deliver 7,800 pounds of cargo to the orbiting laboratory. 
 
The remaining pre-flight activities at Kennedy include acoustic and electromagnetic interference and compatibility testing, completion of work on the spaceplane’s thermal protection system, and final payload integration. 
 
Dream Chaser is a lifting body design spaceplane that measures 30 feet long by 15 feet wide. The unique winged design allows it to transport cargo to and from low Earth orbit and maintain the ability to land on a runway in the style of NASA’s space shuttle. The 15-foot Shooting Star module can carry up to 7,000 pounds of cargo internally and features three unpressurized external payload mounts. 
 
The partially reusable transportation system will perform at least seven cargo missions to the space station as part of the agency’s efforts to expand commercial resupply services in low Earth orbit. Future missions may last as long as 75 days and deliver as much as 11,500 pounds of cargo. 
 
While the Dream Chaser spacecraft is reusable and can return up to 3,500 pounds of cargo to Earth, the Shooting Star module is designed to be jettisoned and burn up during reentry, creating the opportunity to dispose of up to 8,500 pounds of trash with each mission. 
 
Dream Chaser Tenacity is the first in a planned fleet of Sierra Space spaceplanes to help carry out these missions. 
 
As part of the process to certify the vehicle system for future agency resupply missions, NASA and Sierra Space will put the spaceplane through its paces once in-orbit. As Dream Chaser Tenacity approaches the space station, it will conduct a series of demonstrations to prove attitude control, translational maneuvers, and abort capabilities. After completing the maneuverability demonstration, space station astronauts will use the Canadarm2 robotic arm to grapple the spacecraft and dock it to an Earth-facing port. 
 
After remaining at the orbiting laboratory for about 45 days, the spaceplane will be released from the station and return for a landing at Kennedy’s Launch and Landing Facility. After landing, Dream Chaser is powered down, and the Sierra Space team will transfer it back to the processing facility to perform necessary inspections, offload remaining NASA cargo, and begin the process of preparing it for its next mission. 
 
For updates on NASA’s commercial resupply services, visit: 

https://www.nasa.gov/international-space-station/commercial-resupply/

Categories: NASA

Astronaut Exercise

Mon, 05/20/2024 - 3:00pm
Science in Space: May 2024

Future missions to the Moon and Mars must address many challenges, including preventing loss of bone and muscle tissue in astronauts. Research on the International Space Station is helping to address this challenge.

Without Earth’s gravity, both bone and muscle atrophy, or become smaller and weaker. Early on, scientists realized that exercise is a critical part of maintaining healthy bones and muscles in space, just as it is on Earth. From simple elastic bands on early missions, exercise hardware has become increasingly advanced. Current equipment includes the Advanced Resistive Exercise Device (ARED) weight-lifting system, a second generation-treadmill called T2, and the Cycle Ergometer with Vibration Isolation and Stabilization System (CEVIS) cycling machine. Studies continue to refine this equipment as well as the intensity and duration of how astronauts use it, with crew members now averaging two hours of exercise per day.

To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video

NASA astronauts Bob Hines and Kjell Lindgren work out on the Advanced Resistive Exercise Device (ARED).NASA

Installed in 2008, ARED uses a piston and flywheel system to provide loading that essentially mimics weightlifting in weightlessness. A current investigation from ESA (European Space Agency), ARED Kinematics analyzes the effect of this type of exercise on the body in microgravity to help determine optimal workout programs before, during, and after spaceflight. Results have shown that preflight exercise training improves an individual’s performance while on the space station just as pre-season training helps athletes in later competition.1

From 2001 to 2011, crew members used the Interim Resistive Exercise Device (IRED), which could be configured for at least 18 different exercises using both upper and lower body muscles with up to 300 pounds of resistive force. A retrospective evaluation showed some correlation between preflight strength and postflight changes, and analysis suggested that a resistance device that provides higher loads and improved exercise prescriptions could provide greater benefits.2

JAXA (Japan Aerospace Exploration Agency) astronaut Satoshi Furukawa pedals on the upgraded CEVIS system.NASA

CEVIS, installed in 2001 and upgraded in 2023, uses friction and resistance and is computer-controlled to maintain an accurate workload. The system displays parameters such as cycling speed, heart rate, elapsed time, and exercise prescription details. A study using the data collected by CEVIS concluded that up to 17% of astronauts could experience loss of muscle performance, bone health, and cardiorespiratory fitness if future missions continue to use current exercise countermeasures. The researchers note that this highlights the need to further refine current regimens, add other interventions, or enhance conditioning preflight.3

NASA astronauts Jack Fischer and Peggy Whitson prepare for a session of the Sprint study.NASA

Appropriate equipment is important, but so is the way it is used. Early exercise regimens included running on a treadmill at low velocity and conducting resistance exercise at low loads for long periods of time. Despite spending up to 10 hours per week exercising, astronauts continued to lose muscle mass and bone density. Growing evidence showed that high-intensity, low-volume exercise was more effective at maintaining fitness on Earth. The Integrated Resistance and Aerobic Training Study (Sprint) compared results of low-intensity, high-volume with high-intensity, low-volume workouts in microgravity. The outcomes were similar, but shorter workouts save crew time – a valuable resource on missions – and reduce wear and tear on exercise equipment.4 Future missions may be limited to a single device for both aerobic and resistance exercise, necessitating shorter workouts so each crew member gets a turn. Higher intensity exercise could compensate for these limits.

NASA astronaut Don Pettit conducts the VO2max experiment using the CEVIS.NASA

An investigation called VO2max documented changes in maximum oxygen uptake, which is considered a standard measure of a person’s aerobic and physical working capacity. Long-duration spaceflight caused a significant decrease in maximal oxygen uptake and aerobic exercise capacity.5 These results have important implications for future long-duration space missions, adding to the evidence that current countermeasures may not be adequate.

ESA (European Space Agency) astronaut Samantha Cristoforetti runs on the station’s T2 treadmill. ESA/NASA

Muscle Biopsy, an investigation from ESA (European Space Agency), analyzed molecular changes in skeletal muscle before and after spaceflight and identified an enzyme product that could be used as a possible indicator of muscle health. The findings suggest that current exercise protocols are effective in preventing muscle deconditioning and support improvements in countermeasures to protect crew health and performance on future deep space exploration missions.6

While current exercise programs appear to moderate changes in musculoskeletal systems, individual results vary. In addition, current regimens likely cannot directly transfer to longer exploration missions due to space constraints, environmental issues such as removal of heat and moisture, device maintenance and repair needs, and the challenges of finding time for exercise and avoiding interference with the work of other crew members.7

Planned missions to explore the Moon and deep space may last up to three years. Research continues to zero in on the combination of diet, exercise, and medication that could keep astronauts healthy during spaceflight, when they set foot on the Moon or Mars, and when they return to Earth. Because aging, sedentary lifestyles, and illnesses cause bone and muscle loss on Earth, this research also can benefit people on the ground.

Melissa Gaskill
International Space Station Research Communications Team
NASA’s Johnson Space Center

Search this database of scientific experiments to learn more about those mentioned above.

Citations:

1 Lambrecht G, Petersen N, Weerts G, Pruett CJ, Evetts SN, et al. The role of physiotherapy in the European Space Agency strategy for preparation and reconditioning of astronauts before and after long duration space flight. Musculoskeletal Science & Practice. 2017 January; 27 Suppl 1S15-S22. DOI: 10.1016/j.math.2016.10.009

2 English KL, Lee SM, Loehr JA, Ploutz-Snyder RJ, Ploutz-Snyder LL. Isokinetic strength changes following long-duration spaceflight on the ISS. Aerospace Medicine and Human Performance. 2015 December 1; 86(12): 68-77. DOI: 10.3357/AMHP.EC09.2015.

3 Scott JM, Feiveson AH, English KL, Spector ER, Sibonga JD, et al. Effects of exercise countermeasures on multisystem function in long duration spaceflight astronauts. npj Microgravity. 2023 February 3; 9(1): 11. DOI: 10.1038/s41526-023-00256-5.

4 English KL, Downs ME, Goetchius EL, Buxton RE, Ryder JW, et al. High intensity training during spaceflight: results from the NASA Sprint Study. npj Microgravity. 2020 August 18; 6(1): 21. DOI: 10.1038/s41526-020-00111-x.

5 Ade CJ, Broxterman RM, Moore Jr. AD, Barstow TJ. Decreases in maximal oxygen uptake following long-duration spaceflight: Role of convective and diffusive O2 transport mechanisms. Journal of Applied Physiology. 2017 April; 122(4): 968-975. DOI: 10.1152/japplphysiol.00280.2016.

6 Blottner D, Moriggi M, Trautmann G, Furlan S, Block K, et al. Nitrosative Stress in Astronaut Skeletal Muscle in Spaceflight. Antioxidants. 2024 April; 13(4): 432. DOI: 10.3390/antiox13040432

7 Scott JP, Weber T, Green DA. Introduction to the Frontiers Research Topic: Optimisation of Exercise Countermeasures for Human Space Flight – Lessons from Terrestrial Physiology and Operational Considerations. Frontiers in Physiology. 2019 10173. DOI: 10.3389/fphys.2019.00173.

Keep Exploring Discover More Topics

Latest News from Space Station Research

Living in Space

Human Health and Performance

The Human Health and Performance (HH&P) Directorate is the primary organization focused on humans living, working and thriving in space,…

Station Science 101: Human Research

Categories: NASA

Johnson Celebrates AA and NHPI Heritage Month: Anima Patil-Sabale

Mon, 05/20/2024 - 2:00pm

Anima Patil-Sabale has been shooting for the stars since she was a little girl growing up in India. Inspired by books about the Apollo-era space program, Patil-Sabale decided she would be an astronaut one day.

For the first step on her journey to space, Patil-Sabale hoped to become a fighter pilot, but India did not allow women to serve in these combat roles at the time. (The Indian Air Force began accepting female candidates in 2015.) Instead, Patil-Sabale pursued degrees in physics and computer applications and worked as a software engineer in Mumbai before getting a job as a software consultant in San Jose, California. Her proximity to NASA’s Ames Research Center inspired her to pursue another master’s degree, in aerospace engineering, and to apply for opportunities with the agency. Her first job with NASA was working as a software and operations engineer supporting the Kepler space telescope at Ames. She has held a variety of positions at Ames and Johnson since then.

Anima Patil-Sabale’s passion for astronautics is fulfilled through her work at NASA and her participation in a variety of external research projects. Here she is pictured boarding a Falcon 20 aircraft to conduct spacesuit performance tests while flying more than 50 parabolas.Image courtesy of Anima Patil-Sabale

Patil-Sabale currently serves as a private astronaut mission (PAM) integrator for the International Space Station Program’s Avionics and Software Office. In that role, she works closely with Axiom Space team members to understand and integrate requirements for their PAMs into the space station’s onboard computers, laptops, and networking systems. It is a relatively new position, meaning Patil-Sabale is often charting new territory in her day-to-day work. “The challenges of working on something new that has not been done before on the International Space Station and the possibilities it creates for future commercialization – being a part of that all makes the job rewarding and fun,” she said.

Patil-Sabale’s time at NASA has also provided opportunities to sample the dreamed-of astronaut experience. In 2015, she was selected to serve as commander for the Human Exploration Research Analog (HERA) Campaign 2 Mission 3. The mission marked her first trip to Johnson. “Coming to the home of astronauts was exciting and emotional for me,” she said, adding that she has participated in several research projects and missions since HERA.  “I love the fact that in addition to the amazing work I do at NASA, I get to contribute to the human spaceflight program as a human test subject. Time will tell if I get to fly to space, but meanwhile I am happy to contribute – even if a tiny bit – to an active area of research that will help us live and thrive on Mars and eventually become a space-faring species.”

The Human Exploration Research Analog Campaign 2 Mission 3 crew, from left: Mission Specialist II Debra Hodges, Flight Engineer Samuel Wald, Mission Specialist I Samson Phan, and Commander Anima Patil-Sabale.NASA/Bill Stafford

Patil-Sabale first engaged with Johnson’s ASIA ERG in 2019, when the group invited her to give a presentation about her personal and professional journey. She currently serves as the group’s Social/Culture Committee lead. “I love bringing people together,” she said. “I believe people enjoy not just talking about each other’s cultures and traditions, but also  being a part of them.”

That belief inspired her to spearhead a Johnson-based Diwali celebration in 2023, in addition to participating in the agencywide event organized by NASA Headquarters. Johnson’s celebration included several dance and musical performances, a fashion show, and delicious food.

“These cultural events give us an opportunity to bond in a very different way,” she said. “We get to know many sides of each other that we wouldn’t discover as strictly work colleagues.” ERG events also help people from different teams connect. “For my Diwali dance performance, I had seven people from seven different teams who did not know each other or about their work, and they got to connect during our practice sessions.”

Anima Patil-Sabale (foreground) with her dance performance team members during Johnson Space Center’s 2023 Diwali celebration.Image courtesy of Anima Patil-Sabale

Patil-Sabale hopes to see more cultural celebrations hosted at Johnson in the future and encouraged others to take the initiative to organize events and involve as many colleagues as possible. She also believes it is important for ERGs to continue offering these social and cultural opportunities, in addition to professional development programs. “Giving us these opportunities means so much to people like me,” she said.

Patil-Sabale appreciates any event that promotes diversity, equity, and inclusion, as well. She regularly meets with high school girls to encourage their interest in STEM careers and often speaks at International Women’s Day celebrations, where she urges women of all ages to pursue their dreams. “It’s never too late to pursue your interests, your passions,” she said.

Categories: NASA

Webb Cracks Case of Inflated Exoplanet

Mon, 05/20/2024 - 11:00am
7 Min Read Webb Cracks Case of Inflated Exoplanet

This artist’s concept shows what the warm Neptune exoplanet WASP-107 b could look like.

Why is the warm gas-giant exoplanet WASP-107 b so puffy? Two independent teams of researchers have an answer.

Data collected using NASA’s James Webb Space Telescope, combined with prior observations from NASA’s Hubble Space Telescope, show surprisingly little methane (CH4) in the planet’s atmosphere, indicating that the interior of WASP-107 b must be significantly hotter and the core much more massive than previously estimated.

The unexpectedly high temperature is thought to be a result of tidal heating caused by the planet’s slightly non-circular orbit, and can explain how WASP-107 b can be so inflated without resorting to extreme theories of how it formed.

The results, which were made possible by Webb’s extraordinary sensitivity and accompanying ability to measure light passing through exoplanet atmospheres, may explain the puffiness of dozens of low-density exoplanets, helping solve a long-standing mystery in exoplanet science.

Image: Warm Gas-Giant Exoplanet WASP-107 b (Artist’s Concept) This artist’s concept shows what the warm Neptune exoplanet WASP-107 b could look like based on recent data gathered by NASA’s James Webb Space Telescope along with previous observations from NASA’s Hubble Space Telescope and other observatories. Observations captured by Hubble’s WFC3 (Wide Field Camera 3), Webb’s NIRCam (Near-Infrared Camera), Webb’s NIRSpec (Near-Infrared Spectrograph), and Webb’s MIRI (Mid-Infrared Instrument) suggest that the planet has a relatively large core surrounded by a relatively small mass of hydrogen and helium gas, which has been inflated due to tidal heating of the interior. The Problem with WASP-107 b

At more than three-quarters the volume of Jupiter but less than one-tenth the mass, the “warm Neptune” exoplanet WASP-107 b is one of the least dense planets known. While puffy planets are not uncommon, most are hotter and more massive, and therefore easier to explain.

“Based on its radius, mass, age, and assumed internal temperature, we thought WASP-107 b had a very small, rocky core surrounded by a huge mass of hydrogen and helium,” explained Luis Welbanks from Arizona State University (ASU), lead author on a paper published today in Nature. “But it was hard to understand how such a small core could sweep up so much gas, and then stop short of growing fully into a Jupiter-mass planet.”

If WASP-107 b instead has more of its mass in the core, the atmosphere should have contracted as the planet cooled over time since it formed. Without a source of heat to re-expand the gas, the planet should be much smaller. Although WASP-107 b has an orbital distance of just 5 million miles (one-seventh the distance between Mercury and the Sun), it doesn’t receive enough energy from its star to be so inflated.

“WASP-107 b is such an interesting target for Webb because it’s significantly cooler and more Neptune-like in mass than many of the other low-density planets, the hot Jupiters, we’ve been studying,” said David Sing from the Johns Hopkins University (JHU), lead author on a parallel study also published today in Nature. “As a result, we should be able to detect methane and other molecules that can give us information about its chemistry and internal dynamics that we can’t get from a hotter planet.”

A Wealth of Previously Undetectable Molecules

WASP-107 b’s giant radius, extended atmosphere, and edge-on orbit make it ideal for transmission spectroscopy, a method used to identify the various gases in an exoplanet atmosphere based on how they affect starlight.

Combining observations from Webb’s NIRCam (Near-Infrared Camera), Webb’s MIRI (Mid-Infrared Instrument), and Hubble’s WFC3 (Wide Field Camera 3), Welbanks’ team was able to build a broad spectrum of 0.8- to 12.2-micron light absorbed by WASP-107 b’s atmosphere. Using Webb’s NIRSpec (Near-Infrared Spectrograph), Sing’s team built an independent spectrum covering 2.7 to 5.2 microns.

The precision of the data makes it possible to not just detect, but actually measure the abundances of a wealth of molecules, including water vapor (H2O), methane (CH4), carbon dioxide (CO2), carbon monoxide (CO), sulfur dioxide (SO2), and ammonia (NH3). 

Image:Warm Gas-Giant Exoplanet WASP-107 b Transmission Spectrum (Hubble WFC3, Webb NIRCam, and Webb MIRI This transmission spectrum, captured using NASA’s Hubble and James Webb space telescopes, shows the amounts of different wavelengths (colors) of starlight blocked by the atmosphere of the gas-giant exoplanet WASP-107 b. The spectrum includes light collected over four separate observations using a total of three different instruments: Hubble’s WFC3 (Wide Field Camera 3) Grism Spectrometer in green, Webb’s NIRCam (Near-Infrared Camera) Grism Spectrometer in orange, and Webb’s MIRI (Mid-Infrared Instrument) Low-Resolution Spectrometer in pink. This spectrum shows clear evidence for water (H2O), carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), sulfur dioxide (SO2), and ammonia (NH4) in the planet’s atmosphere, allowing researchers to estimate the interior temperature and mass of the core. Image:Warm Gas-Giant Exoplanet WASP-107 b (Transmission Spectrum: Webb NIRSpec) This transmission spectrum, captured using Webb’s NIRSpec (Near-Infrared Spectrograph) Bright Object Spectrometer, shows the amounts of different wavelengths (colors) of near-infrared starlight blocked by the atmosphere of the gas-giant exoplanet WASP-107 b. The spectrum shows clear evidence for water (H2O), carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), and sulfur dioxide (SO2) in the planet’s atmosphere, allowing researchers to estimate the interior temperature and core mass. Roiling Gas, Hot Interior, and Massive Core

Both spectra show a surprising lack of methane in WASP-107 b’s atmosphere: one-thousandth the amount expected based on its assumed temperature.

“This is evidence that hot gas from deep in the planet must be mixing vigorously with the cooler layers higher up,” explained Sing. “Methane is unstable at high temperatures. The fact that we detected so little, even though we did detect other carbon-bearing molecules, tells us that the interior of the planet must be significantly hotter than we thought.”

A likely source of WASP-107 b’s extra internal energy is tidal heating caused by its slightly elliptical orbit. With the distance between the star and planet changing continuously over the 5.7-day orbit, the gravitational pull is also changing, stretching the planet and heating it up.

Researchers had previously proposed that tidal heating could be the cause of WASP-107 b’s puffiness, but until the Webb results were in, there was no evidence.

Once they established that the planet has enough internal heat to thoroughly churn up the atmosphere, the teams realized that the spectra could also provide a new way to estimate the size of the core.

“If we know how much energy is in the planet, and we know what proportion of the planet is heavier elements like carbon, nitrogen, oxygen, and sulfur, versus how much is hydrogen and helium, we can calculate how much mass must be in the core,” explained Daniel Thorngren from JHU.

It turns out that the core is at least twice as massive as originally estimated, which makes more sense in terms of how planets form.

All together, WASP-107 b is not as mysterious as it once appeared.

“The Webb data tells us that planets like WASP-107 b didn’t have to form in some odd way with a super small core and a huge gassy envelope,” explained Mike Line from ASU. “Instead, we can take something more like Neptune, with a lot of rock and not as much gas, just dial up the temperature, and poof it up to look the way it does.”

The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).

Downloads

Right click the images in this article to open a larger version in a new tab/window.
Download full resolution images for this article from the Space Telescope Science Institute.
The research results are published in Nature.

Media Contacts

Laura Betzlaura.e.betz@nasa.gov, Rob Gutrorob.gutro@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Margaret Carruthers mcarruthers@stsci.edu, Christine Pulliamcpulliam@stsci.edu
Space Telescope Science Institute, Baltimore, Md.

Related Information

Research Paper: “A high internal heat flux and large core in a warm Neptune exoplanet” by L. Welbanks, et al

Research Paper: “A warm Neptune’s methane reveals core mass and vigorous atmospheric mixing” by D. Sing, et al

Research Paper: “MIRI observation of WASP-107 b: SO2, silicate clouds, but no CH4 detected in a warm Neptune” by A. Dyrek, et al

What is an Exoplanet?

VIDEO: How do we learn about a planets Atmosphere?

Webb’s Impact on Exoplanet Research

More Webb News – https://science.nasa.gov/mission/webb/latestnews/

More Webb Images – https://science.nasa.gov/mission/webb/multimedia/images/

Webb Mission Page – https://science.nasa.gov/mission/webb/

Related For Kids

What is a exoplanet?

What is the Webb Telescope?

SpacePlace for Kids

En Español

Para Niños : Qué es una exoplaneta?

Ciencia de la NASA

NASA en español 

Space Place para niños

Keep Exploring Related Topics

James Webb Space Telescope

Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


Exoplanets


Stars


Universe

Share

Details

Last Updated

May 20, 2024

Editor Stephen Sabia Contact Laura Betz laura.e.betz@nasa.gov

Related Terms
Categories: NASA

NASA to Start Designing More Sustainable Jet Engine Core

Sat, 05/18/2024 - 6:00am

4 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) This artist concept shows a NASA-developed small-core jet engine installed in General Electric Aerospace’s CFM RISE jet engine design. The more fuel-efficient small core powers a large open turbofan, which also helps increase efficiency. The effort is part of NASA’s Sustainable Flight National Partnership to help inform the next generation of ultra-efficient airliners.GE Aerospace

NASA, alongside industry, will soon begin designing a new jet engine concept for the next generation of ultra-efficient airliners — officially graduating to the project’s next phase.

As part of NASA’s goal to make the aviation industry more sustainable, the agency is developing a small core for a hybrid-electric turbofan jet engine that could reduce fuel burn by 10% compared to today’s engines.

A jet engine’s core is where compressed air is combined with fuel and ignited to generate power. By making this core smaller, fuel efficiency can be improved and carbon emissions reduced.

The goal of the project, named Hybrid Thermally Efficient Core (HyTEC), is to demonstrate this compact core and have the technology ready for adoption in engines powering next-generation aircraft in the 2030s. HyTEC is a key component of NASA’s Sustainable Flight National Partnership.

To achieve its ambitious goal, HyTEC is structured in two phases:

  • Phase 1, which is wrapping up, focused on selecting the component technologies to use in the core demonstrator.
  • Phase 2, starting now, will see researchers design, build, and test a compact core in collaboration with GE Aerospace.

“Phase 1 of HyTEC is winding down and we are ramping up Phase 2,” said Anthony Nerone, who leads HyTEC at NASA’s Glenn Research Center in Cleveland. “This phase will culminate in a core demonstration test that proves the technology so it can transition to industry.”

The End of the Beginning

Before researchers could start the design and build process for the core, they had to explore innovative new materials to use in the engine. After three years of notably fast progress, HyTEC researchers came up with solutions.

“We’ve been laser-focused since day one. We began the project with certain technical goals and metrics for success and, so far, we haven’t had to change course from any of them,” Nerone said.

To shrink the size of a core while maintaining the same level of thrust, heat and pressure must increase compared to standard jet engines used today. This means the engine core must be made of more durable materials that can withstand higher temperatures.

In addition to conducting materials research, the project also explored advanced aerodynamics and other key technical elements.

Cross section of a typical turbofan jet engine highlights parts of the core HyTEC will work to advance. These include the high-pressure compressor, combustor, high pressure turbine, and power extraction components.NASA What Comes Next

Phase 2 builds on Phase 1 to create a compact core for ground testing that proves HyTEC’s capabilities.

“Phase 2 is very complex. It’s not just a core demonstration,” Nerone said. “What we’re creating has never been done before, and it involves many different technologies coming together to form a new type of engine.”

Technologies tested in the HyTEC program will help enable a much higher bypass ratio, hybridization, and compatibility with sustainable aviation fuels.

The bypass ratio describes the relationship between the amount of air flowing through the engine core compared to the amount of air bypassing the core to flow around it.

By decreasing the core size while increasing the size of the turbofan it powers – while maintaining the same thrust output — the HyTEC concept would use less fuel and reduce carbon emissions.

“HyTEC is an integral part of our RISE program,” said Kathleen Mondino, who helps lead RISE program technologies at GE Aerospace. “GE Aerospace and NASA have a long history of collaboration to advance the latest aviation technologies. The HyTEC program builds on this relationship to help chart the future of more sustainable flight.”

Another piece of the puzzle is hybridization. HyTEC’s hybrid-electric capability means the core will also be augmented by electrical power to further reduce fuel use and carbon emissions.

“This engine will be the first mild hybrid-electric engine, and hopefully, the first production engine for airliners that is hybrid-electric,” Nerone said.

About the AuthorJohn GouldAeronautics Research Mission Directorate

John Gould is a member of NASA Aeronautics' Strategic Communications team at NASA Headquarters in Washington, DC. He is dedicated to public service and NASA’s leading role in scientific exploration. Prior to working for NASA Aeronautics, he was a spaceflight historian and writer, having a lifelong passion for space and aviation.

Explore More 4 min read Aviary: A New NASA Software Platform for Aircraft Modelling Article 3 days ago 4 min read NASA’s X-59 Passes Milestone Toward Safe First Flight  Article 5 days ago 4 min read NASA Teammates Recall Favorite Memories Aboard Flying Laboratory Article 6 days ago Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Keep Exploring Discover More Topics From NASA

Missions

Humans in Space

Artemis

Aeronautics STEM

Share Details Last Updated May 17, 2024 EditorJim BankeContactBrian Newbacherbrian.t.newbacher@nasa.gov Related Terms
Categories: NASA

Hubble Views the Dawn of a Sun-like Star 

Fri, 05/17/2024 - 4:17pm
This NASA Hubble Space Telescope image captures a triple-star star system.NASA, ESA, G. Duchene (Universite de Grenoble I); Image Processing: Gladys Kober (NASA/Catholic University of America)

Looking like a glittering cosmic geode, a trio of dazzling stars blaze from the hollowed-out cavity of a reflection nebula in this new image from NASA’s Hubble Space Telescope. The triple-star system is made up of the variable star HP Tau, HP Tau G2, and HP Tau G3. HP Tau is known as a T Tauri star, a type of young variable star that hasn’t begun nuclear fusion yet but is beginning to evolve into a hydrogen-fueled star similar to our Sun. T Tauri stars tend to be younger than 10 million years old ― in comparison, our Sun is around 4.6 billion years old ― and are often found still swaddled in the clouds of dust and gas from which they formed.

Learn more about HP Tau.

Image Credit: NASA, ESA, G. Duchene (Universite de Grenoble I); Image Processing: Gladys Kober (NASA/Catholic University of America)

Categories: NASA

NASA Awards Contracts for Rapid Spacecraft Acquisition Services

Fri, 05/17/2024 - 4:04pm

NASA has selected four companies to provide spacecraft and related services, including acquiring spacecraft components and equipment, in support of NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

The multiple awards, indefinite-delivery/indefinite-quantity base contracts, are firm-fixed-price with a total combined value of $6 billion. These multi-agency contracts may support other NASA centers and federal agencies. The performance period is through Aug. 31, 2025, with the potential to extend the effective ordering period until Aug. 31, 2030. The spacecraft designs, related items, and services may be tailored, as needed, to meet the unique needs of each mission.

The following companies have been awarded the Rapid Spacecraft Acquisition IV (Rapid IV) On-Ramp III contract:

  • ARGOTEC Inc., of Largo, Maryland
  • Blue Canyon Technologies LLC, of Lafayette, Colorado
  • General Atomics, of San Diego, California
  • Kongsberg NanoAvionics US LLC, of Riverdale, Maryland

The Rapid IV contract includes an “on ramp” feature, which allows for the original solicitation to be periodically re-opened to give new vendors the opportunity to propose flight proven spacecraft designs. On ramps also give vendors already awarded a Rapid IV contract the opportunity to propose additional flight-proven spacecraft designs and/or update their existing catalog designs.

Primarily, the work will be performed at the contractor’s facilities. Additional work will be required at the government launch site.

For information about NASA and other agency programs, visit:

https://www.nasa.gov

-end-

Abbey Donaldson
Headquarters, Washington
202-358-1600
Abbey.a.donaldson@nasa.gov

Categories: NASA

Dr. Lori Glaze to begin six-month Detail as Acting Deputy Associate Administrator for ESDMD

Fri, 05/17/2024 - 4:04pm

3 min read

Dr. Lori Glaze to begin six-month Detail as Acting Deputy Associate Administrator for ESDMD May 17, 2024

I am pleased to share some exciting news regarding senior executive detail backfills to provide broadening opportunities for some of our leadership team.

Agency leadership has chosen Dr. Lori Glaze to begin a six-month detail as the Acting Deputy AA for the Exploration Systems Development Mission Directorate (ESDMD) due to the transition of Kelvin Manning back to KSC at the end of May 2024. It is expected that this detail will begin imminently, to allow for some transition time before the end of May. Lori’s detail will be for a 6-month period, while ESDMD broadly advertises the Deputy AA position.

This is an incredible opportunity to have an exceptional leader and advocate for planetary science, and all science, within ESDMD. Lori’s outstanding leadership of the Planetary Science Division make her uniquely qualified and the ideal candidate to help continue to strengthen the ties between science and exploration. As we know, exploration enables science, and science enables exploration.  

Lori has done an incredible job of leading the NASA Planetary Science community for the past six years. To name only a selection of highlights, Lori has overseen: Insight landing on Mars and completion of its mission, Perseverance beginning the task of Mars Sample Return, Ingenuity’s paradigm-changing 72 flights, DART’s successful impact, the launch of Lucy and Psyche, OSIRIS-REx’s incredible return of 121 g of material from Bennu, the start of a real renaissance in Venus exploration, and Europa Clipper preparing for its launch this fall.

To temporarily backfill Lori’s position, I have asked Dr. Gina DiBraccio to join the SMD leadership team on a short-term detail beginning May 27. Gina currently serves as the Deputy Director of the Heliophysics Science Division at NASA’s Goddard Space Flight Center. Gina also serves as the Deputy Principal Investigator and Project Scientist of NASA’s MAVEN mission. Gina has also been involved in research at Mercury, Mars, Jupiter, Saturn, and Uranus by utilizing data from the MESSENGER, MAVEN, Juno, Cassini, and Voyager 2 missions.

We are very excited about these temporary changes in ESDMD, SMD and GSFC leadership, and the broadening opportunities it provides for our Agency leaders. These changes strengthen all three organizations by taking advantage of the great leaders we have in place to ensure all our organizations have strong management. We look forward to continued success in leading the entire Agency team in achieving our mission and science objectives.

While it is hard to let Lori go from SMD, I am so pleased and excited that we will have an incredible leader in science help steward the Artemis campaign. Please join me in wishing Lori great success in her temporary new role and welcoming Gina into SMD and her new role!

Explore More

2 min read Hubble Views Cosmic Dust Lanes

Article


10 hours ago

5 min read How NASA Tracked the Most Intense Solar Storm in Decades

Article


1 day ago

3 min read NASA Recognizes 5 Early Career Planetary Scientists

Article


1 day ago

Categories: NASA

NASA Around the World: Interns Teach Virtual Lessons in Kenya

Fri, 05/17/2024 - 8:17am

2 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Video Credit: NASA/Dennis Brown, TechLit Africa

When it comes to inspiring the next generation, NASA interns know no bounds. Interns at NASA’s Glenn Research Center in Cleveland taught students 7,600 miles away in Mogotio, Kenya, but thanks to technology, they didn’t travel a single mile.

Collaborating with TechLit Africa — a non-profit organization that teaches digital skills in Kenyan rural primary schools — interns shared virtual lessons on robot simulation, artificial intelligence, and drawing and modeling applications.

Nelly Cheboi, TechLit Africa CEO and founder, enjoys a virtual reality demonstration in NASA Glenn’s GVIS Laboratory. Credit: NASA/Jef Janis

“It was an absolute privilege to help these kids and being a part of it,” said Marc Frances, extended reality developer and former NASA Glenn intern. “We do a lot of outreach events and try to influence kids from every part of life to become an engineer and be part of something that’s bigger than themselves.”

Students learn digital skills in rural primary schools in Mogotio, Kenya.Credit: TechLit Africa

The opportunity arose after Herb Schilling, a Glenn computer scientist, met Nelly Cheboi, TechLit Africa CEO and founder, through a virtual event in 2020. The two began talking about Cheboi’s work with Kenyan students, and Schilling felt inspired to get involved.

“I haven’t done a lot of the teaching,” Schilling said. “I let the interns do it, because I want to give them the experience and encourage them to do these kinds of things too.”

Nelly Cheboi tests a virtual reality demonstration in NASA Glenn’s GVIS Laboratory.Credit: NASA/Jef Janis

Using a beginner-level coding application, the interns showed Cheboi’s students how to design and animate a rocket that would launch into space. After several virtual lessons, Cheboi, CNN’s 2022 Hero of the Year, and her partner, Tyler Cinnamon, visited Glenn to learn more about NASA and meet Schilling in person.

“I think it has really helped shape our curriculum, Cheboi said. “For these kids to look at this experience as something normal to them really speaks volumes of the impact. It matters what environment you grow up into, and you really can only be it if you see it.”  

Learn more about how to engage with NASA on the NASA Engages web page.

Explore More 5 min read How NASA Tracked the Most Intense Solar Storm in Decades

May 2024 has already proven to be a particularly stormy month for our Sun. During…

Article 4 days ago
2 min read FY2024 TEAM II NOFO Announcement Article 4 days ago 1 min read Maintenance on High-Speed Wind Tunnel Article 5 days ago
Categories: NASA

Sols 4186-4188: Almost there…

Fri, 05/17/2024 - 7:43am

3 min read

Sols 4186-4188: Almost there… NASA’s Mars rover Curiosity acquired this image using its Mars Hand Lens Imager (MAHLI), located on the turret at the end of the rover’s robotic arm, on May 14, 2024, Sol 4184 of the Mars Science Laboratory Mission, at 06:58:35 UTC. NASA/JPL-Caltech/MSSS

Earth planning day: Wednesday, May 15, 2024

The rover planning engineers yet again did a great job navigating through the large bedrock blocks that litter the terrain in front of us. We are getting ever closer to being able to cross the Gediz Vallis channel and associated deposits, a feature we identified long before landing and of high scientific interest. As a member of the group responsible for planning the observations we hope to get on the Gediz Vallis deposits and associated landforms (called the Channel Surfers), I am very excited to finally be at this point in the mission. To help decide where to drive onto the deposit, we are driving a little closer to the edge and taking extra post-drive imaging to aid in that decision. We are also acquiring a large Mastcam mosaic of an area of the deposit we hope to study in more detail, “Arc Pass.”

Before we drive, we will of course acquire lots of science observations from our current location. The workspace in front of the rover contained an interesting textured block that immediately drew all our attention – a polygonally patterned erosional feature (“Tuolumne Meadows”) that we were able to place the rover’s arm on for contact science. We will also be able to brush it and clear the dust before analyzing with APXS for chemistry and MAHLI for the fine-scale texture. ChemCam will also analyze the same spot, as well as the front face of the same block (“Wapama Falls”), which will also be documented by Mastcam. To compare with this block, we are also planning APXS and MAHLI on a separate, more typical looking bedrock block, “Parker Lakes.”

Looking a little further afield, the views continue to be stunning as we climb Mount Sharp, and so of course we wanted to document features of interest. The Yardang unit, high above us on Mount Sharp, is about to disappear from view, so we planned a ChemCam RMI mosaic to capture structures and textures. A little closer to the rover, we will also image another area of the “Pinnacle Ridge” section of the Gediz Vallis deposit to continue documenting the textures and structures associated with this relatively young feature in Gale crater. 

The team also planned a series of observations to monitor environmental and atmospheric conditions. These included Navcam dust devil and suprahorizon movies, a line of sight scan and deck monitoring. Standard DAN and RAD round out this jam-packed plan.

As the APXS strategic planner this week, and as a Channel Surfer, I am excited for the downlink from this plan, and for the upcoming investigations of the Gediz Vallis deposit. To whet our appetite, we got down the results of APXS and MAHLI observations from the previous plan on an interesting textured, included block from the deposit. See the image associated with this post to marvel at the “Tenaya Lake” rock.

Written by Lucy Thompson, Planetary Geologist at University of New Brunswick

Share

Details

Last Updated

May 17, 2024

Related Terms Explore More

3 min read Sols 4184-4185: Look Near! Look Far!

Article


3 days ago

3 min read Sols 4182-4183: We Reached the South Side of Pinnacle Ridge… What’s Next?

Article


7 days ago

3 min read Sols 4180-4181: Imaging fest!

Article


1 week ago

Keep Exploring Discover More Topics From NASA

Mars

Mars is no place for the faint-hearted. It’s dry, rocky, and bitter cold. The fourth planet from the Sun, Mars…


All Mars Resources


Rover Basics


Mars Exploration Science Goals

Categories: NASA

Hubble Views Cosmic Dust Lanes

Fri, 05/17/2024 - 7:24am

2 min read

Hubble Views Cosmic Dust Lanes This Hubble Space Telescope image showcases a nearly edge-on view of the lenticular galaxy NGC 4753. ESA/Hubble & NASA, L. Kelsey

Featured in this new image from the NASA/ESA Hubble Space Telescope is a nearly edge-on view of the lenticular galaxy NGC 4753. Lenticular galaxies have an elliptical shape and ill-defined spiral arms.

This image is the object’s sharpest view to date, showcasing Hubble’s incredible resolving power and ability to reveal complex dust structures. NGC 4753 resides around 60 million light-years from Earth in the constellation Virgo and was first discovered by the astronomer William Herschel in 1784. It is a member of the NGC 4753 Group of galaxies within the Virgo II Cloud, which comprises roughly 100 galaxies and galaxy clusters.

This galaxy is likely the result of a galactic merger with a nearby dwarf galaxy roughly 1.3 billion years ago. NGC 4753’s distinct dust lanes around its nucleus probably accreted from this merger event.

Astronomers think that most of the mass in the galaxy lies in a slightly flattened, spherical halo of dark matter. Dark matter is called ‘dark’ because we cannot directly observe it, but astronomers think it comprises about 85% of all matter in the universe. Dark matter doesn’t appear to interact with the electromagnetic field, and therefore does not seem to emit, reflect, or refract light. We can only detect it by its gravitational influence on the matter we can see, called normal matter.

NGC 4753’s low-density environment and complex structure make it scientifically interesting to astronomers who can use the galaxy in models that test different theories of formation of lenticular galaxies. The galaxy has also hosted two known Type Ia supernovae. These types of supernovae are extremely important in the study of the expansion rate of the universe. Because they are the result of exploding white dwarfs which have companion stars, they always peak at the same brightness — 5 billion times brighter than the Sun. Knowing the intrinsic brightness of these events and comparing that with their apparent brightness allows astronomers to use them to measure cosmic distances, which in turn help us determine how the universe has expanded over time.

Text Credit: European Space Agency (ESA)


Download this image

Explore More
Hubble Space Telescope


Tracing the Growth of Galaxies


Galaxy Details and Mergers


Shining a Light on Dark Matter

Facebook logo @NASAHubble

@NASAHubble

Instagram logo @NASAHubble

Media Contact:

Claire Andreoli
NASA’s Goddard Space Flight CenterGreenbelt, MD
claire.andreoli@nasa.gov

Share

Details

Last Updated

May 17, 2024

Editor Andrea Gianopoulos Location Goddard Space Flight Center

Related Terms Keep Exploring Discover More Topics From NASA

Hubble Space Telescope

Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


Galaxies Stories


Stars Stories


Dark Matter & Dark Energy

Categories: NASA

Aviary: A New NASA Software Platform for Aircraft Modelling

Fri, 05/17/2024 - 6:00am

4 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) Christopher Bennett, left, and Jason Kirk are seen in an Aeronautics Systems Analysis Branch laboratory at NASA’s Langley Research Center in Virginia, discussing computer code that is part of Aviary, a new digital modeling tool that helps engineers innovate new aircraft designs.

NASA has created a new digital modelling tool for aeronautical engineers to innovate new aircraft designs, building on decades of experience using highly advanced computer code for aviation.

Using this tool, researchers can create simulations of conceptual aircraft featuring never-flown technology and receive detailed data about how it would work.

Named “Aviary” for enclosures where birds are kept and studied, the tool creates virtual models of airplanes based on information provided by the user. In this analogy, Aviary is the enclosure, and the birds are the virtual airplane models.

Researchers can input information about an aircraft’s shape, range, and other characteristics. Then, Aviary creates a corresponding digital model of that airplane.

“Aviary is flexible enough that you can decide what you want to learn more about, then configure it to teach you.”

Jennifer Gratz

Aviary Task Lead

Aviary is a significant leap in progress. Unlike past aviation modelling tools, Aviary can link with other codes and programs to expand and customize its capabilities.

“We wanted to make it easy to extend the code and tie it in with other tools,” said Jennifer Gratz, who leads Aviary’s integration and development. “Aviary is intentionally designed to be able to integrate disciplines together more tightly.”

Aviary is free and accessible to all. The code continues to grow as contributions are made by the public. The code is hosted on GitHub, along with its key documentation.

This image of a Transonic Truss Braced Wing airplane represents a digital model created by Aviary, a new computer modelling tool aeronautical engineers can use to innovate new aircraft designs, The Aviary code builds on NASA’s decades of experience using highly advanced computer code for aviation. Aviary is a resource created by NASA’s Transformational Tools and Technologies project. Building Aviary from a Legacy

Aviary is a descendant of two prior modelling tools created by NASA decades ago: the Flight Optimization System, and the General Aviation Synthesis Program.

These older legacy codes, however, were comparatively limited in terms of flexibility and detail.

“The older legacy codes were not designed to handle these more modern-day concepts such as hybrid-electric aircraft,” Gratz said. “They viewed certain systems as more separated than they really are in the vehicles we envision now.”

Aviary bridges that gap, enabling researchers to seamlessly incorporate detailed information reflecting the more integrated, enmeshed systems needed to model newer aircraft.

The team began creating Aviary by taking the best parts of the legacy codes and merging them, then adding in new code to make Aviary extendable and compatible with other tools.

“That’s one of its most important characteristics,” Gratz said. “Aviary is flexible enough that you can decide what you want to learn more about, then configure it to teach you.”

Members of the NASA team responsible for developing Aviary, a new computer-based digital modeling tool for designing aircraft, pose for a group picture outside an office building at the Langley Research Center in Virginia. Front row from left: Eric Hendricks, Rob Falck, Jennifer Gratz, Ben Phillips, Eliot Aretskin-Hariton, and Ken Moore. Back row from left: Darrell (DJ) Caldwell, Greg Wrenn, Carl Recine, John Jasa, and Jason Kirk.NASA / Rich Wahls Expanded Capabilities

Learning specific, tailored information ahead of time can inform researchers what direction the aircraft design should take before doing costly flight tests.

Instead of having to use built-in estimates for certain parameters such as a battery’s power level, as would be done with past tools, Aviary users can easily use information generated by other tools with specific information catered to batteries.

Another capability Aviary touts is gradients. A gradient, essentially, is how much a certain value affects another value when changed.

Say a researcher is considering how powerful a battery should be to successfully power an aircraft. Using older systems, the researcher would have to run a separate simulation for each battery power level.

But Aviary can accomplish this task in one simulation by considering gradients.

“You could tell Aviary to figure out how powerful a battery should be to make using it worthwhile. It will run a simulated flight mission and come back with the result,” Gratz said. “Older tools can’t do that without modification.”

Aviary can simulate all these concepts simultaneously – no other modelling tool can easily consider prior legacy tools, separate tools introduced by users, and gradients.

“Other tools have some of these things, but none of them have all of these things,” Gratz said.

What’s more, Aviary comes with extensive documentation.

“Documentation is another important part of Aviary,” Gratz said. “If nobody can understand the tool, nobody can use it. By having a good record of Aviary’s development and changes, more people can benefit. You don’t have to be an expert to use it.”

NASA’s Glenn Research Center in Cleveland, Ames Research Center in California, and Langley Research Center in Virginia contributed to Aviary.

About the AuthorJohn GouldAeronautics Research Mission Directorate

John Gould is a member of NASA Aeronautics' Strategic Communications team at NASA Headquarters in Washington, DC. He is dedicated to public service and NASA’s leading role in scientific exploration. Prior to working for NASA Aeronautics, he was a spaceflight historian and writer, having a lifelong passion for space and aviation.

Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More 4 min read NASA to Start Designing More Sustainable Jet Engine Core Article 2 days ago 4 min read NASA’s X-59 Passes Milestone Toward Safe First Flight  Article 5 days ago 4 min read NASA Teammates Recall Favorite Memories Aboard Flying Laboratory Article 6 days ago Keep Exploring Discover More Topics From NASA

Artemis

Humans in Space

NASA History

Aeronautics STEM

Share Details Last Updated May 16, 2024 EditorJim BankeContactDiana Fitzgeralddiana.r.fitzgerald@nasa.gov Related Terms
Categories: NASA

NASA Earns Best Place to Work in Government for 12 Straight Years

Thu, 05/16/2024 - 6:31pm
2023 image capturing the Sun’s glint in between a cloudy stretch of the south Atlantic Ocean off the coast of Argentina.Credits: NASA

NASA was named Thursday as the 2023 Best Place to Work in the Federal Government – large agency – for the 12th year in a row by the Partnership for Public Service. The title serves as a reflection of employee satisfaction with the workplace and functioning of the overall agency as NASA explores the unknown and discovers new knowledge for the benefit of humanity.

“Once again, NASA has shown that with the world’s finest workforce, we can reach the stars,” said NASA Administrator Bill Nelson. “Through space exploration, advances in aviation, groundbreaking science, new technologies, and more, the team of wizards at NASA do what is hard to achieve what is great. That’s the pioneer spirit that makes NASA the best place to work in the federal government. With this ingenuity and passion, we will continue to innovate for the benefit of all and inspire the world.”

The agency’s workforce explored new frontiers in 2023, including shattering an American record for longest astronaut spaceflight, announcing the Artemis II crew, launching the Deep Space Optical Communications experiment, partnering on a sustainable flight demonstration later designated as X-66, and celebrating a year of science gathered from the agency’s James Webb Space Telescope. Feats beyond our atmosphere persisted with NASA’s OSIRIS-Rex (Origins, Spectral Interpretation, Resource Identification, and Security – Regolith Explorer) mission – the first U.S. mission to collect an asteroid sample. Insights from the asteroid data will further NASA’s studies on celestial objects, while the agency also continues its pursuit to return astronauts to the Moon as part of the Artemis campaign.

Along with being the 65th anniversary of the agency, 2023 brought new climate data with the launching of the U.S. Greenhouse Gas Center and Earth Information Center, new perspectives on Earth’s surface water through NASA’s SWOT (Surface Water and Ocean Topography) mission, and accrued air quality data from NASA’s TEMPO (Tropospheric Emissions: Monitoring of Pollution) mission.

The Partnership for Public Service began to compile the Best Places to Work rankings in 2003 to analyze federal employee’s viewpoints of leadership, work-life balance, and other factors of their job. A formula is used to evaluate employee responses to a federal survey, dividing submissions into four groups: large, midsize, and small agencies, in addition to their subcomponents.

Read about the Best Places to Work for 2023 online.

To learn more about NASA’s missions, visit:

https://www.nasa.gov/

-end-

Faith McKie / Cheryl Warner
Headquarters, Washington
202-358-1600
faith.d.mckie@nasa.gov / cheryl.m.warner@nasa.gov

Share Details Last Updated May 16, 2024 LocationNASA Headquarters Related Terms
Categories: NASA

NASA, European Space Agency Unite to Land Europe’s Rover on Mars

Thu, 05/16/2024 - 2:54pm
NASA’s Associate Administrator for the Science Mission Directorate Nicky Fox and ESA’s Director of Human and Robotic Exploration Daniel Neuenschwander sign an agreement on the Rosalind Franklin mission at ESA’s headquarters in Paris, France on May 16, 2024.Credits: ESA/Damien Dos Santos

NASA and ESA (European Space Agency) announced Thursday they signed an agreement to expand NASA’s work on the ExoMars Rosalind Franklin rover, an ESA-led mission launching in 2028 that will search for signs of ancient life on the Red Planet.

With this memorandum of understanding, the NASA Launch Services Program will procure a U.S. commercial launch provider for the Rosalind Franklin rover. The agency will also provide heater units and elements of the propulsion system needed to land on Mars. A new instrument on the rover will be the first drill to a depth of up to 6.5 feet (2 meters) deep below the surface to collect ice samples that have been protected from surface radiation and extreme temperatures.

“The Rosalind Franklin rover’s unique drilling capabilities and onboard samples laboratory have outstanding scientific value for humanity’s search for evidence of past life on Mars,” said Nicola Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington. “NASA supports the Rosalind Franklin mission to continue the strong partnership between the United States and Europe to explore the unknown in our solar system and beyond.”

Through an existing, separate partnership with the German Aerospace Center (DLR) and the French space agency CNES (Centre National d’Etudes Spatiales), NASA is contributing key components to the Rosalind Franklin rover’s primary science instrument, the Mars Organic Molecule Analyzer, that will search for the building blocks of life in the soil samples.

NASA has a longstanding partnership with the Department of Energy to use radioisotope power sources on the agency’s space missions and will be partnering again with the Energy Department for the use of lightweight radioisotope heater units for the rover.  

The Rosalind Franklin rover mission complements the Mars Sample Return multi-mission campaign led by both agencies.

For more information on NASA’s research on Mars, visit:

https://science.nasa.gov/mars

-end-

Katherine Rohloff
Headquarters, Washington
202-358-1600
katherine.a.rohloff@nasa.gov

Share Details Last Updated May 16, 2024 LocationNASA Headquarters Related Terms
Categories: NASA

How NASA Tracked the Most Intense Solar Storm in Decades

Thu, 05/16/2024 - 2:01pm
5 Min Read How NASA Tracked the Most Intense Solar Storm in Decades

NASA’s Solar Dynamics Observatory captured these images of the solar flare on May 14, 2024 — as seen in the bright flash on the right side. These images show a subset of extreme ultraviolet light that highlights the extremely hot material in flares and which is colorized in royal blue and gold. This flare shows ongoing activity from the same region active during the storm.

Credits:
NASA/SDO

May 2024 has already proven to be a particularly stormy month for our Sun. During the first full week of May, a barrage of large solar flares and coronal mass ejections (CMEs) launched clouds of charged particles and magnetic fields toward Earth, creating the strongest solar storm to reach Earth in two decades — and possibly one of the strongest displays of auroras on record in the past 500 years.

We’ll be studying this event for years. It will help us test the limits of our models and understanding of solar storms.

Teresa Nieves-Chinchilla

Acting Director of NASA’s Moon to Mars (M2M) Space Weather Analysis Office

“We’ll be studying this event for years,” said Teresa Nieves-Chinchilla, acting director of NASA’s Moon to Mars (M2M) Space Weather Analysis Office. “It will help us test the limits of our models and understanding of solar storms.”

From May 3 through May 9, 2024, NASA’s Solar Dynamics Observatory observed 82 notable solar flares. The flares came mainly from two active regions on the Sun called AR 13663 and AR 13664. This video highlights all flares classified at M5 or higher with nine categorized as X-class solar flares.
NASA’s Goddard Space Flight Center

The first signs of the solar storm started late on May 7 with two strong solar flares. From May 7 – 11, multiple strong solar flares and at least seven CMEs stormed toward Earth. Eight of the flares in this period were the most powerful type, known as X-class, with the strongest peaking with a rating of X5.8. (Since then, the same solar region has released many more large flares, including an X8.7 flare — the most powerful flare seen this solar cycle — on May 14.)

On May 14, 2024, the Sun emitted a strong solar flare. This solar flare is the largest of Solar Cycle 25 and is classified as an X8.7 flare.
NASA’s Goddard Space Flight Center

Traveling at speeds up to 3 million mph, the CMEs bunched up in waves that reached Earth starting May 10, creating a long-lasting geomagnetic storm that reached a rating of G5 — the highest level on the geomagnetic storm scale, and one that hasn’t been seen since 2003.

“The CMEs all arrived largely at once, and the conditions were just right to create a really historic storm,” said Elizabeth MacDonald, NASA heliophysics citizen science lead and a space scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

When the storm reached Earth, it created brilliant auroras seen around the globe. Auroras were even visible at unusually low latitudes, including the southern U.S. and northern India. The strongest auroras were seen the night of May 10, and they continued to illuminate night skies throughout the weekend. Thousands of reports submitted to the NASA-funded Aurorasaurus citizen science site are helping scientists study the event to learn more about auroras.

“Cameras — even standard cell phone cameras — are much more sensitive to the colors of the aurora than they were in the past,” MacDonald said. “By collecting photos from around the world, we have a huge opportunity to learn more about auroras through citizen science.”

A coronal aurora appeared over southwestern British Columbia on May 10, 2024. NASA/Mara Johnson-Groh

By one measure of geomagnetic storm strength, called the disturbance storm time index which dates back to 1957, this storm was similar to historic storms in 1958 and 2003. And with reports of auroras visible to as low as 26 degrees magnetic latitude, this recent storm may compete with some of the lowest-latitude aurora sightings on record over the past five centuries, though scientists are still assessing this ranking.

“It’s a little hard to gauge storms over time because our technology is always changing,” said Delores Knipp, a research professor in the Smead Aerospace Engineering Science Department and a senior research associate at the NCAR High Altitude Observatory, in Boulder, Colorado. “Aurora visibility is not the perfect measure, but it allows us to compare over centuries.”

MacDonald encourages people to continue submitting aurora reports to Aurorasaurus.org, noting that even non-sightings are valuable for helping scientists understand the extent of the event.

Leading up to the storm, the National Oceanic and Atmospheric Administration’s Space Weather Prediction Center, which is responsible for forecasting solar storm impacts, sent notifications to operators of power grids and commercial satellites to help them mitigate potential impacts.

Warnings helped many NASA missions brace for the storm, with some spacecraft preemptively powering down certain instruments or systems to avoid issues. NASA’s ICESat-2 — which studies polar ice sheets — entered safe mode, likely because of increased drag due to the storm.  

Looking Forward

Better data on how solar events influence Earth’s upper atmosphere is crucial to understanding space weather’s impact on satellites, crewed missions, and Earth- and space-based infrastructure. To date, only a few limited direct measurements exist in this region. But more are coming. Future missions, such as NASA’s Geospace Dynamics Constellation (GDC) and Dynamical Neutral Atmosphere-Ionosphere Coupling (DYNAMIC), will be able to see and measure exactly how Earth’s atmosphere responds to the energy influxes that occur during solar storms like this one. Such measurements will also be valuable as NASA sends astronauts to the Moon with the Artemis missions and, later, to Mars.

NASA’s Solar Dynamics Observatory (SDO) captured this image of an X5.8 solar flare peaking at 9:23 p.m. EDT on May 10, 2024. The image shows a subset of extreme ultraviolet light that highlights the extremely hot material in flares. NASA SDO

The solar region responsible for the recent stormy weather is now turning around the backside of the Sun, where its impacts can’t reach Earth. However, that doesn’t mean the storm is over. NASA’s Solar TErrestrial RElations Observatory (STEREO), currently located at about 12 degrees ahead of Earth in its orbit, will continue watching the active region an additional day after it is no longer visible from Earth.

“The active region is just starting to come into view of Mars,” said Jamie Favors, director for the NASA Space Weather Program at NASA Headquarters in Washington. “We’re already starting to capture some data at Mars, so this story only continues.”

By Mara Johnson-Groh
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Media Contact:
Sarah Frazier
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Share

Details

Last Updated

May 16, 2024

Editor Abbey Interrante Location NASA Goddard Space Flight Center

Related Terms Explore More

5 min read Multiple Spacecraft Tell the Story of One Giant Solar Storm

Article


2 months ago

11 min read How Scientists Around the World Track the Solar Cycle

Every morning, astronomer Steve Padilla takes a short walk from his home to the base…



Article


4 years ago

4 min read NASA Announces Monthly Themes to Celebrate the Heliophysics Big Year

This October, NASA is launching the Heliophysics Big Year ­– a global celebration of solar…



Article


9 months ago

Keep Exploring Discover More Topics From NASA

Missions


Humans in Space


Climate Change


Solar System

Categories: NASA

FY2024 TEAM II NOFO Announcement

Thu, 05/16/2024 - 1:46pm

2 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Next Gen STEM’s Teams Engaging Affiliated Museums and Informal Institutions (TEAM II) program is pleased to announce an upcoming FY2024 Notice of Funding Opportunity (NOFO) that will expand the current program from a two-tier to a three-tier system by adding a mid-level funding tier. The NOFO is expected to be released in the third quarter of FY2024 (April-June). The new mid-level funding tier was created in response to feedback from the informal education community.

The new “STEM Innovator” tier will fund awards of approximately $250,000. In addition, the highest tier award will be designated the “National Connector” award and fund initiatives up to $900,000.  The “Community Anchor” tier will continue to offer awards up to $50,000. The Community Anchor tier opportunity will be offered each fiscal year, and the STEM Innovator and National Connector tiers will be offered in alternating years. The FY2024 NOFO will include the Community Anchor and STEM Innovator tiers and the FY2025 NOFO will focus on the Community Anchor and National Connector tiers. By adding the mid-level tier, NASA and Next Gen STEM aim to broaden the number and type of awards made to Informal Education Institutions for creating innovative, NASA-inspired programming for K-12 students and their families.

Categories: NASA