Space isn't remote at all. It's only an hour's drive away if your car could go upwards.

— Fred Hoyle

NASA News

Syndicate content
Official National Aeronautics and Space Administration Website
Updated: 14 hours 53 min ago

NASA, Oxford Discover Warmer Uranus Than Once Thought

Thu, 07/17/2025 - 3:21pm

KEY POINTS

  • Jupiter, Saturn, and Neptune each emit more energy than they receive from the Sun, meaning they have comparatively warm interiors.
  • NASA’s Uranus flyby with Voyager 2 in 1986 found the planet colder than expected, which challenged ideas of how planets formed and evolved.
  • However, with advanced computer modeling and a new look at old data, scientists think the planet may actually be warmer than previously expected.

For millennia, astronomers thought Uranus was no more than a distant star. It wasn’t until the late 18th century that Uranus was universally accepted as a planet. To this day, the ringed, blue world subverts scientists’ expectations, but new NASA research helps puzzle out some of the world’s mystique. 

This zoomed-in image of Uranus, captured by the Near-Infrared Camera on NASA’s James Webb Space Telescope on Feb. 6, 2023, reveals stunning views of Uranus’ rings. Credits: NASA, ESA, CSA, STScI

Uranus is unlike any other planet in our solar system. It spins on its side, which means each pole directly faces the Sun for a continuous 42-year “summer.” Uranus also rotates in the opposite direction of all planets except Venus. Data from NASA’s Voyager 2 Uranus flyby in 1986 also suggested the planet is unusually cold inside, challenging scientists to reconsider fundamental theories of how planets formed and evolved throughout our solar system.

“Since Voyager 2’s flyby, everybody has said Uranus has no internal heat,” said Amy Simon, a planetary scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “But it’s been really hard to explain why that is, especially when compared with the other giant planets.”

These Uranus projections came from only one up-close measurement of the planet’s emitted heat made by Voyager 2: “Everything hinges on that one data point,” said Simon. “That is part of the problem.” 

Now, using an advanced computer modeling technique and revisiting decades of data, Simon and a team of scientists have found that Uranus does in fact generate some heat, as they reported on May 16 in the Monthly Notices of the Royal Astronomical Society journal. 

A planet’s internal heat can be calculated by comparing the amount of energy it receives from the Sun to the amount it of energy it releases into space in the form of reflected light and emitted heat. The solar system’s other giant planets — Saturn, Jupiter, and Neptune — emit more heat than they receive, which means the extra heat is coming from inside, much of it left over from the high-energy processes that formed the planets 4.5 billion years ago. The amount of heat a planet exudes could be an indication of its age: the less heat released relative to the heat absorbed from the Sun, the older the planet is.

Uranus stood out from the other planets because it appeared to give off as much heat as it received, implying it had none of its own. This puzzled scientists. Some hypothesized that perhaps the planet is much older than all the others and has cooled off completely. Others proposed that a giant collision — the same one that may have knocked the planet on its side — blasted out all of Uranus’ heat. But none of these hypotheses satisfied scientists, motivating them to solve Uranus’ cold case.

“We thought, ‘Could it really be that there is no internal heat at Uranus?’” said Patrick Irwin, the paper’s lead author and professor of planetary physics at the University of Oxford in England. “We did many calculations to see how much sunshine is reflected by Uranus and we realized that it is actually more reflective than people had estimated.”

The researchers set out to determine Uranus’ full energy budget: how much energy it receives from the Sun compared to how much it reflects as sunlight and how much it emits as heat. To do this, they needed to estimate the total amount of light reflected from the planet at all angles. “You need to see the light that’s scattered off to the sides, not just coming straight back at you,” Simon said.

To get the most accurate estimate of Uranus’ energy budget yet, Oxford researchers developed a computer model that brought together everything known about Uranus’ atmosphere from decades of observations from ground- and space-based telescopes, including NASA’s Hubble Space Telescope and NASA’s Infrared Telescope Facility in Hawaii. The model included information about the planet’s hazes, clouds, and seasonal changes, all of which affect how sunlight is reflected and how heat escapes.

These side-by-side images of Uranus, taken eight years apart by NASA’s Hubble Space Telescope, show seasonal changes in the planet’s reflectivity. The left image shows the planet seven years after its northern spring equinox when the Sun was shining just above its equator. The second photo, taken six years before the planet’s summer solstice, portrays a bright and large northern polar cap. Credit: NASA, ESA, STScI, A. Simon (NASA-GSFC), M. H. Wong (UC Berkeley), J. DePasquale (STScI)

The researchers found that Uranus releases about 15% more energy than it receives from the Sun, a figure that is similar to another recent estimate from a separate study funded in part by NASA that was published July 14 in Geophysical Research Letters. These studies suggest Uranus it has its own heat, though still far less than its neighbor Neptune, which emits more than twice the energy it receives.

“Now we have to understand what that remnant amount of heat at Uranus means, as well as get better measurements of it,” Simon said.

Unraveling Uranus’ past is useful not only for mapping the timeline of when solar system planets formed and migrated to their current orbits, but it also helps scientists better understand many of the planets discovered outside the solar system, called exoplanets, a majority of which are the same size as Uranus.

By Emma Friedman
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Explore More

3 min read Hubble Helps Determine Uranus’ Rotation Rate with Unprecedented Precision

Article


3 months ago

5 min read Hubble Monitors Changing Weather and Seasons at Jupiter and Uranus

Article


2 years ago

8 min read Why Uranus and Neptune Are Different Colors

Neptune and Uranus have much in common yet their appearances are notably different. Astronomers now…



Article


3 years ago

Share

Details

Last Updated

Jul 17, 2025

Editor Lonnie Shekhtman Contact Lonnie Shekhtman lonnie.shekhtman@nasa.gov Location NASA Goddard Space Flight Center

Related Terms
Categories: NASA

NASA’s X-59 Quiet Supersonic Aircraft Begins Taxi Tests

Thu, 07/17/2025 - 3:17pm

2 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

NASA/Jacob Shaw

NASA’s X-59 quiet supersonic research aircraft has officially begun taxi tests, marking the first time this one-of-a-kind experimental aircraft has moved under its own power.

NASA test pilot Nils Larson and the X-59 team, made up of NASA and contractor Lockheed Martin personnel, completed the aircraft’s first low-speed taxi test at U.S. Air Force Plant 42 in Palmdale, California, on July 10, 2025.

The taxiing represents the X-59’s last series of ground tests before first flight. Over the coming weeks, the aircraft will gradually increase its speed, leading up to a high-speed taxi test that will take the aircraft just short of the point where it would take off.

During the low-speed tests, engineers and flight crews monitored how the X-59 handled as it moved across the runway, working to validate critical systems like steering and braking. These checks help ensure the aircraft’s stability and control across a range of conditions, giving pilots and engineers confidence that all systems are functioning as expected.

The X-59 is the centerpiece of NASA’s Quesst mission, which aims to demonstrate quiet supersonic flight by reducing the loud sonic boom to a quieter “thump.” Data gathered from the X-59 will be shared with U.S. and international regulators to inform the establishment of new, data-driven acceptable noise thresholds related to supersonic commercial flight over land.

NASA’s X-59 quiet supersonic research aircraft taxis across the runway during a low-speed taxi test at U.S. Air Force Plant 42 in Palmdale, California, on July 10, 2025. The test marks the start of taxi tests and the last series of ground tests before first flight.NASA/Carla Thomas NASA’s X-59 quiet supersonic research aircraft moves under its own power for the first time at Lockheed Martin’s Skunk Works facility in Palmdale, California, on July 10, 2025. Guided by the aircraft’s crew chief, the event marks the beginning of taxi tests – a key milestone and the final series of ground tests before first flight.NASA/Carla Thomas Share Details Last Updated Jul 17, 2025 Related Terms Explore More 3 min read NASA Glenn Announces 2025 Drop Tower Challenge Winners  Article 1 day ago 5 min read NASA’s SpaceX Crew-11 Mission Gears Up for Space Station Research Article 2 days ago 2 min read X-59 Model Tested in Japanese Supersonic Wind Tunnel Article 6 days ago Keep Exploring Discover More Topics From NASA

Armstrong Flight Research Center

Aeronautics

Quesst

Quesst is NASA's mission to demonstrate how the X-59 can fly supersonic without generating loud sonic booms and then survey…

Integrated Aviation Systems Program

Categories: NASA

NASA to Launch SNIFS, Sun’s Next Trailblazing Spectator

Thu, 07/17/2025 - 2:09pm

4 min read

NASA to Launch SNIFS, Sun’s Next Trailblazing Spectator

July will see the launch of the groundbreaking Solar EruptioN Integral Field Spectrograph mission, or SNIFS. Delivered to space via a Black Brant IX sounding rocket, SNIFS will explore the energy and dynamics of the chromosphere, one of the most complex regions of the Sun’s atmosphere. The SNIFS mission’s launch window at the White Sands Missile Range in New Mexico opens on Friday, July 18. 

The chromosphere is located between the Sun’s visible surface, or photosphere, and its outer layer, the corona. The different layers of the Sun’s atmosphere have been researched at length, but many questions persist about the chromosphere. “There’s still a lot of unknowns,” said Phillip Chamberlin, a research scientist at the University of Colorado Boulder and principal investigator for the SNIFS mission.  

The reddish chromosphere is visible on the Sun’s right edge in this view of the Aug. 21, 2017, total solar eclipse from Madras, Oregon.Credit: NASA/Nat Gopalswamy

The chromosphere lies just below the corona, where powerful solar flares and massive coronal mass ejections are observed. These solar eruptions are the main drivers of space weather, the hazardous conditions in near-Earth space that threaten satellites and endanger astronauts. The SNIFS mission aims to learn more about how energy is converted and moves through the chromosphere, where it can ultimately power these massive explosions.  

“To make sure the Earth is safe from space weather, we really would like to be able to model things,” said Vicki Herde, a doctoral graduate of CU Boulder who worked with Chamberlin to develop SNIFS.  

To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video

This footage from NASA’s Solar Dynamics Observatory shows the Sun in the 304-angstrom band of extreme ultraviolet light, which primarily reveals light from the chromosphere. This video, captured on Feb. 22, 2024, shows a solar flare — as seen in the bright flash on the upper left.Credit: NASA/SDO

The SNIFS mission is the first ever solar ultraviolet integral field spectrograph, an advanced technology combining an imager and a spectrograph. Imagers capture photos and videos, which are good for seeing the combined light from a large field of view all at once. Spectrographs dissect light into its various wavelengths, revealing which elements are present in the light source, their temperature, and how they’re moving — but only from a single location at a time. 

The SNIFS mission combines these two technologies into one instrument.  

“It’s the best of both worlds,” said Chamberlin. “You’re pushing the limit of what technology allows us to do.” 

By focusing on specific wavelengths, known as spectral lines, the SNIFS mission will help scientists to learn about the chromosphere. These wavelengths include a spectral line of hydrogen that is the brightest line in the Sun’s ultraviolet (UV) spectrum, and two spectral lines from the elements silicon and oxygen. Together, data from these spectral lines will help reveal how the chromosphere connects with upper atmosphere by tracing how solar material and energy move through it. 

The SNIFS mission will be carried into space by a sounding rocket. These rockets are effective tools for launching and carrying space experiments and offer a valuable opportunity for hands-on experience, particularly for students and early-career researchers.

(From left to right) Vicki Herde, Joseph Wallace, and Gabi Gonzalez, who worked on the SNIFS mission, stand with the sounding rocket containing the rocket payload at the White Sands Missile Range in New Mexico.Credit: courtesy of Phillip Chamberlin

“You can really try some wild things,” Herde said. “It gives the opportunity to allow students to touch the hardware.” 

Chamberlin emphasized how beneficial these types of missions can be for science and engineering students like Herde, or the next generation of space scientists, who “come with a lot of enthusiasm, a lot of new ideas, new techniques,” he said. 

The entirety of the SNIFS mission will likely last up to 15 minutes. After launch, the sounding rocket is expected to take 90 seconds to make it to space and point toward the Sun, seven to eight minutes to perform the experiment on the chromosphere, and three to five minutes to return to Earth’s surface.  

A previous sounding rocket launch from the White Sands Missile Range in New Mexico. This mission carried a copy of the Extreme Ultraviolet Variability Experiment (EVE).
Credit: NASA/University of Colorado Boulder, Laboratory for Atmospheric and Space Physics/James Mason

The rocket will drift around 70 to 80 miles (112 to 128 kilometers) from the launchpad before its return, so mission contributors must ensure it will have a safe place to land. White Sands, a largely empty desert, is ideal. 

Herde, who spent four years working on the rocket, expressed her immense excitement for the launch. “This has been my baby.” 

By Harper Lawson
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Share Details Last Updated Jul 17, 2025 Related Terms Explore More 5 min read NASA, Oxford Discover Warmer Uranus Than Once Thought Article 43 minutes ago 6 min read NASA’s TRACERS Studies Explosive Process in Earth’s Magnetic Shield Article 1 day ago 3 min read NASA Citizen Science and Your Career: Stories of Exoplanet Watch Volunteers

Doing NASA Science brings many rewards. But can taking part in NASA citizen science help…

Article 1 day ago
Keep Exploring Discover More Topics From NASA

Missions

Humans in Space

Climate Change

Solar System

Categories: NASA

Space Station Crew Celebrates Milestone

Thu, 07/17/2025 - 1:34pm
NASA/Jonny Kim

In this June 13, 2025, photo, NASA astronaut Anne McClain shows off a hamburger-shaped cake to celebrate 200 cumulative days in space for JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi since his first spaceflight as an Expedition 48-49 Flight Engineer in 2016.

Onishi and McClain launched to the International Space Station along with NASA astronaut Nichole Ayers and Roscosmos cosmonaut Kirill Peskov on March 14, 2025, as part of the Crew-10 mission. Aboard the orbital laboratory, the Crew-10 members conduct scientific research to prepare for human exploration beyond low Earth orbit and benefit humanity on Earth. McClain and Ayers also performed a spacewalk on May 1, 2025 – McClain’s third and Ayers’ first.

Check out the International Space Station blog to follow the crew’s research and other activities.

Image credit: NASA/Jonny Kim

Categories: NASA

Registration Opens for 2025 NASA International Space Apps Challenge

Thu, 07/17/2025 - 12:38pm

3 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) A team works together on their project during the 2024 NASA Space Apps Challenge event in in Arequipa, Peru. Teams have two days to respond to the challenges and submit their project for the chance to win one of 10 global awards.

Lee esta historia en español aquí

NASA invites innovators of all ages to register for the NASA Space Apps Challenge, held on Oct. 4-5. The 2025 theme is Learn, Launch, Lead, and participants will work alongside a vibrant community of scientists, technologists, and storytellers at more than 450 events worldwide. Participants can expect to learn skills to succeed in STEM fields, launch ideas that transform NASA’s open data into actionable tools, and lead their communities in driving technological innovation.
 
During the NASA Space Apps Challenge, participants in the U.S. and around the world gather at hundreds of in-person and virtual events to address challenges authored by subject matter experts across NASA divisions. These challenges range in complexity and topic, tasking participants with everything from creating machine learning models and leveraging artificial intelligence, to improving access to NASA research, to designing sustainable recycling systems for Mars, and to developing tools to evaluate local air quality here on Earth.
 
Dr. Yoseline Angel Lopez, a former space apps challenge winner and now an assistant research scientist at NASA’s Goddard Spaceflight Center in Greenbelt, Maryland, can attest that the opportunity to Learn, Launch, Lead goes far beyond the hackathon.   
 
“The NASA Space Apps Challenge gave me and my team a meaningful opportunity to apply science to real-world problems and gain validation from NASA scientists and industry experts,” said Angel.
 
In 2021, her team’s winning web-app prototype was adopted by Colombia’s Ministry of Agriculture, connecting smallholder farmers with local buyers. The platform also supported agricultural land-use monitoring using satellite imagery.
 
After the hackathon, project submissions are judged by NASA and space agency experts. Winners are selected for one of 10 global awards.
 
“Participating in the hackathon is exciting on its own. But when your project can lead to greater opportunities and make a difference in your community, that’s a dream come true,” said Angel. She will return to the 2025 hackathon as a NASA subject matter expert and challenge author, giving a Golden Age of innovators the opportunity to make a difference in their communities through the use of data from NASA and 14 space agency partners.
 
This year’s partners include: Bahrain Space Agency; Brazilian Space Agency; CSA (Canadian Space Agency); ESA (European Space Agency); ISRO (Indian Space Research Organisation); Italian Space Agency; JAXA (Japan Aerospace Exploration Agency); Mohammed Bin Rashid Space Centre of the United Arab Emirates; National Space Activities Commission of Argentina;  Paraguayan Space Agency; South African National Space Agency; Spanish Space Agency; Turkish Space Agency; and the UK Space Agency.
 
NASA Space Apps is funded by NASA’s Earth Science Division through a contract with Booz Allen Hamilton, Mindgrub, and SecondMuse.
 
We invite you to register for the 2025 NASA Space Apps Challenge and choose a virtual or in-person event near you at:

https://www.spaceappschallenge.org

Find videos about Space Apps at:

youtube.com/c/NASASpaceAppsChallenge

Social Media

Stay up to date with #SpaceApps by following these accounts:

Facebook logo @spaceappschallenge @SpaceApps Instagram logo @nasa_spaceapps Share Details Last Updated Jul 17, 2025 Related Terms Explore More 6 min read NASA Program Builds Bridge From Military to Civilian Careers for Johnson Team Members Article 14 hours ago 3 min read NASA Citizen Science and Your Career: Stories of Exoplanet Watch Volunteers

Doing NASA Science brings many rewards. But can taking part in NASA citizen science help…

Article 1 day ago
2 min read Ejection Mechanism Design for the SPEED Test Architecture Challenge Article 1 day ago Keep Exploring Discover Related Topics

Missions

Humans in Space

Climate Change

Solar System

Categories: NASA

NASA Program Builds Bridge From Military to Civilian Careers for Johnson Team Members

Thu, 07/17/2025 - 6:00am

Of all the possible entry points to NASA, the agency’s SkillBridge Program has been instrumental in helping servicemembers transition from the military and into civilian careers. Offered in partnership with the Department of Defense (DoD), the program enables individuals to spend their final months of military service working with a NASA office or organization. SkillBridge fellows work anywhere from 90 to 180 days, contributing their unique skillsets to the agency while building their network and knowledge.

The Johnson Space Center in Houston hosted NASA’s first SkillBridge fellow in 2019, paving the way for dozens of others to follow. SkillBridge participants are not guaranteed a job offer at the end of their fellowship, but many have gone on to accept full-time positions with NASA. About 25 of those former fellows currently work at Johnson, filling roles as varied as their military experiences.

Miguel Shears during his military service (left) and his SkillBridge fellowship at Johnson Space Center.Images courtesy of Miguel Shears

Miguel Shears retired from the Marine Corps in November 2023. He ended his 30 years of service as the administration, academics, and operations chief for the Marine Corps University in Quantico, Virginia, where he was also an adjunct professor. Shears completed a SkillBridge fellowship with FOD in the summer and fall of 2023, supporting the instructional systems design team. He was hired as a full-time employee upon his military retirement and currently serves as an instructional systems designer for the Instructor Training Module, Mentorship Module, and Spaceflight Academy. He conducts training needs analysis for FOD, as well.

Ever Zavala as a flight test engineer in the U.S. Air Force (left) and as a capsule communicator in the Mission Control Center at Johnson Space Center.Images courtesy of Ever Zavala

Ever Zavala was very familiar with Johnson before becoming a SkillBridge fellow. He spent the last three of his nearly 24-year Air Force career serving as the deputy director of the DoD Human Spaceflight Payloads Office at Johnson. His team oversaw the development, integration, launch, and operation of payloads hosting DoD experiments on small satellites and the International Space Station. He also became a certified capsule communicator, or capcom, in December 2022, and was the lead capcom for SpaceX’s 28th commercial resupply services mission to the orbiting laboratory.

Zavala’s SkillBridge fellowship was in Johnson’s Astronaut Office, where he worked as a capcom, capcom instructor, and an integration engineer supporting the Extravehicular Activity and Human Surface Mobility Program. He was involved in developing a training needs analysis and agency simulators for the human landing system, among other projects.

He officially joined the center team as a full-time contractor in August 2024. He is currently a flight operations safety officer within the Flight Operations Directorate (FOD) and continues to serve as a part-time capcom.

Carl Johnson with his wife during his first visit to Johnson Space Center (left) and completing some electrical work as part of his SkillBridge fellowship. Images courtesy of Carl Johnson

Carl Johnson thanks his wife for helping him find a path to NASA. While she was a Pathways intern — and his girlfriend at the time — she gave him a tour of the center that inspired him to join the agency when he was ready to leave the Army. She helped connect him to one of the center’s SkillBridge coordinators and the rest is history.

Johnson was selected for a SkillBridge fellowship in the Dynamic System Test Branch. From February to June 2023, he supported development of the lunar terrain vehicle ground test unit and contributed to the Active Response Gravity Offload System (ARGOS), which simulates reduced gravity for astronaut training.

Johnson officially joined the center team as an electrical engineer in the Engineering Directorate’s Software, Robotics, and Simulation Division in September 2023. He is currently developing a new ARGOS spacewalk simulator and training as an operator and test director for another ARGOS system. 

Johnson holds an electrical engineering degree from the United States Military Academy. He was on active duty in the Army for 10 years and concluded his military career as an instructor and small group leader for the Engineer Captains Career Course. In that role, he was responsible for instructing, mentoring, and preparing the next generation of engineer captains.

Kevin Quinn during his Navy service.Image courtesy of Kevin Quinn

Kevin Quinn served in the Navy for 22 years. His last role was maintenance senior chief with Air Test and Evaluation Squadron 31, known as “the Dust Devils.” Quinn managed the operations and maintenance of 33 aircraft, ensuring their readiness for complex missions and contributing to developmental flight tests and search and rescue missions. He applied that experience to his SkillBridge fellowship in quality assurance at Ellington Field in 2024. Quinn worked to enhance flight safety and astronaut training across various aircraft, including the T-38, WB-57, and the Super Guppy. He has continued contributing to those projects since being hired as a full-time quality assurance employee in 2025.

Andrew Ulat during his Air Force career. Image courtesy of Andrew Ulat

Andrew Ulat retired from the Air Force after serving for 21 years as an intercontinental ballistic missile launch control officer and strategic operations advisor. His last role in the military was as a director of staff at the Air Command and Staff College at Maxwell Air Force Base in Montgomery, Alabama. There he served as a graduate-level instructor teaching international security concepts to mid-level officers and civilian counterparts from all branches of the military and various federal agencies. 

Ulat started his SkillBridge fellowship as an integration engineer in Johnson’s X-Lab, supporting avionics, power, and software integration for the Gateway lunar space station. Ulat transitioned directly from his fellowship into a similar full-time position at Johnson in May 2024.

Ariel Vargas receives a commendation during his Army service (left) and in his official NASA portrait.

Ariel Vargas transitioned to NASA after serving for five years in the Army. His last role in the military was as a signal officer, which involved leading teams managing secure communications and network operations in dynamic and mission-critical environments in the Middle East and the United States.

Vargas completed his SkillBridge fellowship in November 2023, supporting Johnson’s Office of the Chief Information Officer (OCIO). During his fellowship, he led a center-wide wireless augmentation project that modernized Johnson’s connectivity.

He became a full-time civil servant in May 2024 and currently serves as the business operations and partnerships lead within OCIO, supporting a digital transformation initiative. In this role, he leads efforts to streamline internal business operations, manage strategic partnerships, and drive cross-functional collaboration.

My time in the military taught me the value of service, leadership, and adaptability—qualities that I now apply daily in support of NASA’s mission,” Vargas said. “I’m proud to be part of the Johnson team and hope my story can inspire other service members considering the SkillBridge pathway.”

Explore More 3 min read Registration Opens for 2025 NASA International Space Apps Challenge Article 7 hours ago 3 min read Melissa Harris: Shaping NASA’s Vision for a Future in Low Earth Orbit Article 3 days ago 5 min read Protected: Glenn Extreme Environments Rig (GEER) Article 3 days ago
Categories: NASA

NASA Invites Media to Marshall’s 65th Anniversary Celebration July 19

Wed, 07/16/2025 - 5:23pm

2 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA

NASA’s Marshall Space Flight Center will host astronauts for a media opportunity as the center celebrates its 65th anniversary during a free, community event on Saturday, July 19, from noon to 5 p.m. CDT at The Orion Amphitheater in Huntsville, Alabama.

Marshall, along with its partners and collaborators, will fill the amphitheater with space exhibits, music, food vendors, and hands-on activities for all ages. The summer celebration will mark 65 years of innovation and exploration, not only for Marshall, but for Huntsville and other North Alabama communities.

The event will kick off with a program at 12:30 p.m. led by Joseph Pelfrey, director of NASA Marshall, and will include a presentation from some of the Expedition 72 crew members who recently returned from their mission after dedicating more than 1,000 combined hours to scientific research and technology demonstrations aboard the International Space Station. The crew will share their experiences in space with the community.

The official portrait of the International Space Station’s Expedition 72 crew. At the top (from left) are Roscosmos cosmonaut and Flight Engineer Alexey Ovchinin, NASA astronaut and space station Commander Suni Williams, and NASA astronaut and Flight Engineer Butch Wilmore. In the middle row are Roscosmos cosmonaut and Flight Engineer Ivan Vagner and NASA astronaut and Flight Engineer Don Pettit. In the bottom row are Roscosmos cosmonaut and Flight Engineer Aleksandr Gorbunov and NASA astronaut and Flight Engineer Nick Hague. NASA/Bill Stafford and Robert Markowitz

Media are invited to attend the event and participate in a news conference with the astronauts after the presentation but must confirm their attendance by 4:30 p.m., Thursday, July 17, to Lance D. Davis – lance.d.davis@nasa.gov – in Marshall’s Office of Communications.

Media should arrive at the front entrance of The Orion Amphitheater by 11:45 a.m., Saturday, July 19, to be escorted by the Office of Communications.

Founded July 1, 1960, in Huntsville, Marshall has shaped or supported nearly every facet of the nation’s ongoing mission of space exploration and discovery, solving the most complex, technical flight challenges, and contributing to science to improve life and protect resources around the world.

Learn more about Marshall’s 65th anniversary celebration at:

https://www.nasa.gov/marshall65/

Lance D. Davis
Marshall Space Flight Center, Huntsville, Ala. 
256-640-9065 
lance.d.davis@nasa.gov

Share Details Last Updated Jul 16, 2025 EditorBeth RidgewayLocationMarshall Space Flight Center Related Terms
Categories: NASA

Summer Triangle Corner: Vega

Wed, 07/16/2025 - 5:22pm

3 min read

Summer Triangle Corner: Vega

If you live in the Northern Hemisphere and look up during July evenings, you’ll see the brilliant star Vega shining overhead. Did you know that Vega is one of the most studied stars in our skies? As one of the brightest summer stars, Vega has fascinated astronomers for thousands of years.

Vega is the brightest star in the small Greek constellation of Lyra, the harp. It’s also one of the three points of the large “Summer Triangle” asterism, making Vega one of the easiest stars to find for novice stargazers. Ancient humans from 14,000 years ago likely knew Vega for another reason: it was the Earth’s northern pole star! Compare Vega’s current position with that of the current north star, Polaris, and you can see how much the direction of Earth’s axis changes over thousands of years. This slow movement of axial rotation is called precession, and in 12,000 years, Vega will return to the northern pole star position.

A map of the asterism known as the Summer Triangle. This asterism is made up of three stars: Vega in the Lyra constellation, Altair in the Aquila constellation, and Deneb in the Cygnus constellation.Stellarium Web

Bright Vega has been observed closely since the beginning of modern astronomy and even helped to set the standard for the current magnitude scale used to categorize the brightness of stars. Polaris and Vega have something else in common, besides being once and future pole stars: their brightness varies over time, making them variable stars. Variable stars’ light can change for many different reasons. Dust, smaller stars, or even planets may block the light we see from the star. Or the star itself might be unstable with active sunspots, expansions, or eruptions changing its brightness. Most stars are so far away that we only record the change in light, and can’t see their surface.

Astronomers have discovered what appears to be a large asteroid belt around the bright star Vega, as illustrated here at left in brown. The ring of warm, rocky debris was detected using NASA’s Spitzer Space Telescope, and the European Space Agency’s Herschel Space Observatory, in which NASA plays an important role.NASA/JPL-Caltech

NASA’s TESS satellite has ultra-sensitive light sensors primed to look for the tiny dimming of starlight caused by transits of extrasolar planets. Their sensitivity also allowed TESS to observe much smaller pulsations in a certain type of variable star’s light than previously observed. These observations of Delta Scuti variable stars will help astronomers model their complex interiors and make sense of their distinct, seemingly chaotic pulsations. This is a major contribution towards the field of astroseismology: the study of stellar interiors via observations of how sound waves “sing” as they travel through stars. The findings may help settle the debate over what kind of variable star Vega is. Find more details on this research, including a sonification demo that lets you “hear” the heartbeat of one of these stars, at: bit.ly/DeltaScutiTESS
 
In 2024, the James Webb Space Telescope revisited the Vega system to reveal a 100-billion-mile-wide disk of dust around this star. While the debris disk is confirmed, there is no evidence of planets as of today.

Originally posted by Dave Prosper: June 2020
Last Updated by Kat Troche: July 2025

Categories: NASA

NASA to Preview Advanced US-India Radar Mission Ahead of Launch

Wed, 07/16/2025 - 3:57pm
A collaboration between NASA and the Indian Space Research Organisation, NISAR will use synthetic aperture radar to monitor nearly all the planet’s land- and ice-covered surfaces twice every 12 days.Credit: NASA

NASA will host a news conference at 12 p.m. EDT Monday, July 21, to discuss the upcoming NISAR (NASA-ISRO Synthetic Aperture Radar) mission.

The Earth-observing satellite, a first-of-its-kind collaboration between NASA and ISRO (Indian Space Research Organisation), carries an advanced radar system that will help protect communities by providing a dynamic, three-dimensional view of Earth in unprecedented detail and detecting the movement of land and ice surfaces down to the centimeter.

The NISAR mission will lift off from ISRO’s Satish Dhawan Space Centre in Sriharikota, on India’s southeastern coast. Launch is targeted for no earlier than late July.

NASA’s Jet Propulsion Laboratory in Southern California will stream the briefing live on its X, Facebook, and YouTube channels. Learn how to watch NASA content through a variety of platforms, including social media.

Participants in the news conference include:

  • Nicky Fox, associate administrator, Science Mission Directorate, NASA Headquarters
  • Karen St. Germain, director, Earth Science Division, NASA Headquarters
  • Wendy Edelstein, deputy project manager, NISAR, NASA JPL
  • Paul Rosen, project scientist, NISAR, NASA JPL

To ask questions by phone, members of the media must RSVP no later than two hours before the start of the event to: rexana.v.vizza@jpl.nasa.gov. NASA’s media accreditation policy is available online. Questions can be asked on social media during the briefing using #AskNISAR.

With its two radar instruments — an S-band system provided by ISRO and an L-band system provided by NASA — NISAR will use a technique known as synthetic aperture radar (SAR) to scan nearly all the planet’s land and ice surfaces twice every 12 days. Each system’s signal is sensitive to different sizes of features on Earth’s surface, and each specializes in measuring different attributes, such as moisture content, surface roughness, and motion.

These capabilities will help scientists better understand processes involved in natural hazards and catastrophic events, such as earthquakes, volcanic eruptions, land subsidence, and landslides.

Additionally, NISAR’s cloud penetrating ability will aid urgent responses to communities during weather disasters such as hurricanes, storm surge, and flooding. The detailed maps the mission creates also will provide information on both gradual and sudden changes occurring on Earth’s land and ice surfaces.

Managed by Caltech for NASA, JPL leads the U.S. component of the NISAR project and provided the L-band SAR. NASA JPL also provided the radar reflector antenna, the deployable boom, a high-rate communication subsystem for science data, GPS receivers, a solid-state recorder, and payload data subsystem. NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the Near Space Network, which will receive NISAR’s L-band data.

Multiple ISRO centers have contributed to NISAR. The Space Applications Centre is providing the mission’s S-band SAR. The U R Rao Satellite Centre provided the spacecraft bus. The rocket is from Vikram Sarabhai Space Centre, launch services are through Satish Dhawan Space Centre, and satellite mission operations are by the ISRO Telemetry Tracking and Command Network. The National Remote Sensing Centre is responsible for S-band data reception, operational products generation, and dissemination.

To learn more about NISAR, visit:

https://nisar.jpl.nasa.gov

-end-

Karen Fox / Elizabeth Vlock
Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / elizabeth.a.vlock@nasa.gov

Andrew Wang / Scott Hulme
Jet Propulsion Laboratory, Pasadena, Calif.
626-379-6874 / 818-653-9131
andrew.wang@jpl.nasa.gov / scott.d.hulme@jpl.nasa.gov

Share Details Last Updated Jul 16, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
Categories: NASA

NASA’s Chandra Finds Baby Exoplanet is Shrinking

Wed, 07/16/2025 - 3:06pm
X-ray: NASA/CXC/RIT/A. Varga et al.; Illustration: NASA/CXC/SAO/M. Weiss; Image Processing: NASA/CXC/SAO/N. Wolk

A baby planet is shrinking from the size of Jupiter with a thick atmosphere to a small, barren world, according to a new study from NASA’s Chandra X-ray Observatory.

This transformation is happening as the host star unleashes a barrage of X-rays that is tearing the young planet’s atmosphere away at an enormous rate.

The planet, named TOI 1227 b, is in an orbit around a red dwarf star about 330 light-years from Earth. TOI 1227 b orbits very close to its star — less than a fifth the distance that Mercury orbits the Sun. The new study shows this planet outside our solar system, or exoplanet, is a “baby” at a mere 8 million years old. By comparison, the Earth is about 5 billion years old, or nearly a thousand times older. That makes it the second youngest planet ever to be observed passing in front of its host star (also called a transit). Previously the planet had been estimated by others to be about 11 million years old.

A research team found that X-rays from its star are blasting TOI 1227 b and tearing away its atmosphere at such a rate that the planet will entirely lose it in about a billion years. At that point the planet will have lost a total mass equal to about two Earth masses, down from about 17 times the mass of Earth now.

“It’s almost unfathomable to imagine what is happening to this planet,” said Attila Varga, a Ph.D. student at the Rochester Institute of Technology (RIT) in New York, who led the study. “The planet’s atmosphere simply cannot withstand the high X-ray dose it’s receiving from its star.”

It is probably impossible for life to exist on TOI 1227 b, either now or in the future. The planet is too close to its star to fit into any definition of a ‘habitable zone,’ a term astronomers use to determine if planets around other stars could sustain liquid water on their surface.

The star that hosts TOI 1227 b, which is called TOI 1227, is only about a tenth the mass of the Sun and is much cooler and fainter in optical light. In X-rays, however, TOI 1227 is brighter than the Sun and is subjecting this planet, in its very close orbit, to a withering assault. The mass of TOI 1227 b, while not well understood, is likely similar to that of Neptune, but its diameter is three times larger than Neptune’s (making it similar in size to Jupiter).

“A crucial part of understanding planets outside our solar system is to account for high-energy radiation like X-rays that they’re receiving,” said co-author Joel Kastner, also of RIT. “We think this planet is puffed up, or inflated, in large part as a result of the ongoing assault of X-rays from the star.”

The team used new Chandra data to measure the amount of X-rays from the star that are striking the planet. Using computer models of the effects of these X-rays, they concluded the X-rays will have a transformative effect, rapidly stripping away the planet’s atmosphere. They estimate that the planet is losing a mass equivalent to a full Earth’s atmosphere about every 200 years.

“The future for this baby planet doesn’t look great,” said co-author Alexander Binks of the Eberhard Karls University of Tübingen in Germany. “From here, TOI 1227 b may shrink to about a tenth of its current size and will lose more than 10 percent of its weight.”

The researchers used different sets of data to estimate the age of TOI 1227 b. One method exploits measurements of how TOI 1227 b’s host star moves through space compared to nearby populations of stars with known ages. A second method compared the brightness and surface temperature of the star with theoretical models of evolving stars.

Of all the exoplanets astronomers have found with ages less than 50 million years, TOI 1227 b stands out for having the longest year and the host planet with the lowest mass.

A paper describing these results has been accepted publication in The Astrophysical Journal, and a preprint is available here.

NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.

Read more from NASA’s Chandra X-ray Observatory

Learn more about the Chandra X-ray Observatory and its mission here:

https://www.nasa.gov/chandra

https://chandra.si.edu

Visual Description

This release features an artist’s illustration of a Jupiter-sized planet closely orbiting a faint red star. An inset image, showing the star in X-ray light from Chandra, is superimposed on top of the illustration at our upper left corner.

At our upper right, the red star is illustrated as a ball made of intense fire. The planet, slightly smaller than the star, is shown at our lower left. Powerful X-rays from the star are tearing away the atmosphere of the planet, causing wisps of material to flow away from the planet’s surface in the opposite direction from the star. This gives the planet a slight resemblance to a comet, complete with a tail.

X-ray data from Chandra, presented in the inset image, shows the star as a small purple orb on a black background. Astronomers used the Chandra data to measure the amount of X-rays striking the planet from the star. They estimate that the planet is losing a mass equivalent to a full Earth’s atmosphere about every 200 years, causing it to ultimately shrink from the size of Jupiter down to a small, barren world.

News Media Contact

Megan Watzke
Chandra X-ray Center
Cambridge, Mass.
617-496-7998
mwatzke@cfa.harvard.edu

Corinne Beckinger
Marshall Space Flight Center, Huntsville, Alabama
256-544-0034
corinne.m.beckinger@nasa.gov

Share Details Last Updated Jul 17, 2025 EditorLee MohonContactCorinne M. Beckingercorinne.m.beckinger@nasa.gov Related Terms Explore More 5 min read NASA, Oxford Discover Warmer Uranus Than Once Thought

KEY POINTS For millennia, astronomers thought Uranus was no more than a distant star. It…

Article 4 hours ago
4 min read NASA to Launch SNIFS, Sun’s Next Trailblazing Spectator

July will see the launch of the groundbreaking Solar EruptioN Integral Field Spectrograph mission, or…

Article 5 hours ago
3 min read NASA Citizen Science and Your Career: Stories of Exoplanet Watch Volunteers

Doing NASA Science brings many rewards. But can taking part in NASA citizen science help…

Article 1 day ago
Categories: NASA

NASA Software Catalog Puts Agency Solutions at Innovators’ Fingertips

Wed, 07/16/2025 - 12:36pm
Andy Burroughs (left) and Paul Friz in the roles of air taxi pilots running through air taxi integration simulations focusing on urban air space at NASA’s Langley Research in Hampton, Virginia on Sept. 25, 2024.Credit: NASA

NASA’s latest open Software Catalog, released Wednesday, offers more than 1,200 downloadable codes developed by agency engineers that could enable faster solutions to energize the space economy and stimulate American ingenuity. The catalog is part of NASA’s effort to place advanced technologies, including agency software, into the hands of businesses, researchers, and entrepreneurs to foster economic growth and innovation.

Agency developers will provide more information about the Software Catalog, the only repository of its kind in the federal government, during NASA’s summer software webinar series beginning Tuesday, July 22.

“NASA has droves of talented experts creating software to automate elements of agency missions,” said Dan Lockney, program executive, Technology Transfer at NASA Headquarters in Washington. “The resulting efficiency benefits humankind, and its public value increases exponentially when the agency provides access to those software programs for companies, enabling them to save time and money, improve commercial offerings, and build their businesses.”

The four webinars accompanying this year’s NASA Software Catalog feature developers of popular programs for mission planning, systems design, propulsion analysis, and more, each consisting of a presentation followed by a live question-and-answer session.

Programs offered in NASA’s 2025-2026 Software Catalog are grouped into 15 categories that may be useful for organizations working with spacecraft and aircraft. For example, the Vehicle Management category includes a tool for designing satellite constellations and a software library for minimizing public safety risks around expendable launch vehicles. The Aeronautics section includes several programs that are widely used by industry for creating, modifying, and analyzing aircraft designs.

Although the categories have specific themes, the codes are meant to be useful to various innovators. Companies can use aircraft programs NASA wrote to design cars, trucks, and countless other products. The catalog’s Business Systems and Project Management section includes software for estimating project costs, building and assessing complex schedules, and uncovering root causes of mishaps. Other popular programs support 3D rendering for simulation and virtual reality, bring hyper-accuracy to GPS tracking, and analyze electrical power system architectures.

NASA released its first Software Catalog more than a decade ago in 2013, and since then, the agency’s annual rate of software downloads has skyrocketed, reaching up to 5,722 downloads in a single year.

The Software Catalog is a product of NASA’s Technology Transfer program, managed by the agency’s Space Technology Mission Directorate. NASA routinely makes improvements to the Software Catalog website, ensuring the process is fast and easy. Access restrictions apply to some software that may be limited to use by U.S. citizens or for U.S. government purposes only.

View and learn more about NASA’s Software Catalog by visiting:

https://software.nasa.gov

-end-

Jasmine Hopkins
Headquarters, Washington
321-432-4624
jasmine.s.hopkins@nasa.gov   

Share Details Last Updated Jul 16, 2025 LocationNASA Headquarters Related Terms
Categories: NASA

Aurora Australis

Wed, 07/16/2025 - 11:55am
NASA/Nichole Ayers

The aurora australis arcs above a partly cloudy Indian Ocean in this photograph from the International Space Station as it orbited 269 miles above in between Australia and Antarctica on June 12, 2025.

Astronauts aboard the space station take photos using handheld digital cameras, usually through windows in the station’s cupola, for Crew Earth Observations. Crew members have produced hundreds of thousands of images of the Moon and Earth’s land, oceans, and atmosphere.

Image credit: NASA/Nichole Ayers

Categories: NASA

NASA’s TRACERS Studies Explosive Process in Earth’s Magnetic Shield

Wed, 07/16/2025 - 11:41am
6 Min Read NASA’s TRACERS Studies Explosive Process in Earth’s Magnetic Shield

High above us, particles from the Sun hurtle toward Earth, colliding with the upper atmosphere and creating powerful explosions in a murky process called magnetic reconnection. A single magnetic reconnection event can release as much energy as the entire United States uses in a day.

NASA’s new TRACERS (Tandem Reconnection and Cusp Electrodynamics Reconnaissance Satellites) mission will study magnetic reconnection, answering key questions about how it shapes the impacts of the Sun and space weather on our daily lives.

NASA’s TRACERS mission, or the Tandem Reconnection and Cusp Electrodynamics Reconnaissance Satellites, will fly in low Earth orbit through the polar cusps, funnel-shaped holes in the magnetic field, to study magnetic reconnection and its effects in Earth’s atmosphere. Download full video. Credit: NASA’s Goddard Space Flight Center/Lacey Young

The TRACERS spacecraft are slated to launch no earlier than late July 2025 aboard a SpaceX Falcon 9 rocket from Space Launch Complex 4 East at Vandenberg Space Force Base in California. The two TRACERS spacecraft will orbit Earth to study how the solar wind — a continuous outpouring of electrically charged particles from the Sun — interacts with Earth’s magnetic shield, the magnetosphere.

What Is Magnetic Reconnection?

As solar wind flows out from the Sun, it carries the Sun’s embedded magnetic field out across the solar system. Reaching speeds over one million miles per hour, this soup of charged particles and magnetic field plows into planets in its path.

“Earth’s magnetosphere acts as a protective bubble that deflects the brunt of the solar wind’s force. You can think of it as a bar magnet that’s rotating and floating around in space,” said John Dorelli, TRACERS mission science lead at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “As the solar wind collides with Earth’s magnetic field, this interaction builds up energy that can cause the magnetic field lines to snap and explosively fling away nearby particles at high speeds — this is magnetic reconnection.”

Openings in Earth’s magnetic field at the North and South Poles, called polar cusps, act as funnels allowing charged particles to stream down towards Earth and collide with atmospheric gases. These phenomena are pieces of the space weather system that is in constant motion around our planet — whose impacts range from breathtaking auroras to disruption of communications systems and power grids. In May 2024, Earth experienced the strongest geomagnetic storm in more than 20 years, which affected high-voltage power lines and transformers, forced trans-Atlantic flights to change course, and caused GPS-guided tractors to veer off-course.

How Will TRACERS Study Magnetic Reconnection?

The TRACERS mission’s twin satellites, each a bit larger than a washing machine, will fly in tandem, one behind the other, in a relatively low orbit about 360 miles above Earth. Traveling over 16,000 mph, each satellite hosts a suite of instruments to measure different aspects of extremely hot, ionized gas called plasma and how it interacts with Earth’s magnetosphere.

An artist’s concept of the twin TRACERS satellites in orbit above Earth. NASA’s Goddard Space Flight Center

The satellites will focus where Earth’s magnetic field dips down to the ground at the North polar cusp. By placing the twin TRACERS satellites in a Sun-synchronous orbit, they always pass through Earth’s dayside polar cusp, studying thousands of reconnection events at these concentrated areas.

This will build a step-by-step picture of how magnetic reconnection changes over time and from Earth’s dayside to its nightside.

NASA’s TRICE-2 mission also studied magnetic reconnection near Earth, but with a pair of sounding rockets launched into the northern polar cusp over the Norwegian Sea in 2018.

“The TRICE mission took great data. It took a snapshot of the Earth system in one state. It proved that these instruments could make this kind of measurement and achieve this kind of science,” said David Miles, TRACERS principal investigator at the University of Iowa. “But the system’s more complicated than that. The TRACERS mission demonstrates how you can use multi-spacecraft technology to get a picture of how things are moving and evolving.”

The TRACERS mission demonstrates how you can use multi-spacecraft technology to get a picture of how things are moving and evolving.

DAVID MILES

TRACERS principal investigator, University of Iowa

Because previous missions could only take one measurement of an event per launch, too many changes in the region prevented forming a full picture. Following each other closely in orbit, the twin TRACERS satellites will provide multiple snapshots of the same area in rapid succession, spaced as closely as 10 seconds apart from each other, reaching a record-breaking 3,000 measurements in one year. These snapshots will build a picture of how the whole Earth system behaves in reaction to space weather, allowing scientists to better understand how to predict space weather in the magnetosphere.

Working Across Missions in Solar Harmony

The TRACERS mission will collaborate with other NASA heliophysics missions, which are strategically placed near Earth and across the solar system. At the Sun, NASA’s Parker Solar Probe closely observes our closest star, including magnetic reconnection there and its role in heating and accelerating the solar wind that drives the reconnection events investigated by TRACERS.

Data from recently launched NASA missions, EZIE (Electrojet Zeeman Imaging Explorer), studying electrical currents at Earth’s nightside, and PUNCH (Polarimeter to Unify the Corona and Heliosphere) studying the solar wind and interactions in Earth’s atmosphere, can be combined with observations from TRACERS. With research from these missions, scientists will be able to get a more complete understanding of how and when Earth’s protective magnetic shield can suddenly connect with solar wind, allowing the Sun’s material into Earth’s system.

“The TRACERS mission will be an important addition to NASA’s heliophysics fleet.” said Reinhard Friedel, TRACERS program scientist at NASA Headquarters in Washington. “The missions in the fleet working together increase understanding of our closest star to improve our ability to understand, predict, and prepare for space weather impacts on humans and technology in space.”

The TRACERS mission is led by David Miles at the University of Iowa with support from the Southwest Research Institute in San Antonio, Texas. NASA’s Heliophysics Explorers Program Office at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the mission for the agency’s Heliophysics Division at NASA Headquarters in Washington. The University of Iowa, Southwest Research Institute, University of California, Los Angeles, and the University of California, Berkeley, all lead instruments on TRACERS that study changes in the magnetic field and electric field. NASA’s Launch Services Program, based at the agency’s Kennedy Space Center in Florida, manages the VADR (Venture-class Acquisition of Dedicated and Rideshare) contract.

by Desiree Apodaca
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Header Image:
An artist’s concept of the TRACERS mission, which will help research magnetic reconnection and its effects in Earth’s atmosphere.
Credits: Andy Kale

Share

Details

Last Updated

Jul 16, 2025

Related Terms Explore More

4 min read Linking Satellite Data and Community Knowledge to Advance Alaskan Snow Science

Article


2 days ago

2 min read Hubble Snaps Galaxy Cluster’s Portrait

Article


5 days ago

7 min read NASA’s Parker Solar Probe Snaps Closest-Ever Images to Sun

On its record-breaking pass by the Sun late last year, NASA’s Parker Solar Probe captured…



Article


6 days ago

Keep Exploring Discover More Topics From NASA

Missions


Humans in Space


Climate Change


Solar System

Categories: NASA

NASA Sees Key Progress on Starlab Commercial Space Station

Wed, 07/16/2025 - 11:00am
An artist’s concept of the Starlab commercial space station.Starlab

As NASA continues its transition toward a commercial low Earth orbit marketplace, an agency-supported commercial space station, Starlab, recently completed five development and design milestones. Starlab’s planned design consists of a service module and a habitat that will be launched to orbit on a single flight.

The milestones, part of a NASA Space Act Agreement awarded in 2021, focused on reviews of Starlab’s preliminary design and safety, as well as spacecraft mockup and procurement plans. Each milestone provides NASA insight into the company’s development progress.

“As we work toward the future of low Earth orbit, these milestones demonstrate Starlab’s dedication to building a commercial space station that can support human life and advance scientific research,” said Angela Hart, program manager for NASA’s Commercial Low Earth Orbit Development Program at the agency’s Johnson Space Center in Houston. “Both the insight shared by Starlab and the expertise shared by NASA are critical to future mission success.”

Starlab recently completed a preliminary design and safety review of its station’s architecture and systems. The company now will begin detailed design and hardware development, culminating in a critical design review later this year. Critical design reviews are an important step in a station’s development, assessing design maturity before proceeding with fabrication and assembly.

An artist’s concept of the Starlab commercial space station.Starlab

Starlab also has begun construction of a full-scale, high-fidelity mockup of the station. The mockup, which will be housed in the Space Vehicle Mockup Facility at NASA Johnson, will be used for human-in-the-loop testing, during which participants perform day-in-the-life walkthroughs and evaluate the interior design, crew training, procedure development, hardware checks, and in-flight issue resolution.

In addition, Starlab completed reviews of the system design architecture, procurement plan, and Northrop Grumman Cygnus spacecraft docking system design. In 2023, Northrop Grumman teamed up with Starlab to provide cargo logistics services and engineering consultation to support the commercial space station. These reviews included design configuration updates of solar arrays, docking ports, crew quarters, and more.

NASA supports the design and development of multiple commercial space stations through funded and unfunded agreements. Following the design and development phase, NASA plans to procure services from one or more companies as part of its strategy to become one of many customers for low Earth orbit stations.

Learn more about commercial space stations at:

www.nasa.gov/commercialspacestations

Keep Exploring Discover More Topics

Commercial Space Stations

Low Earth Orbit Economy

Commercial Space

Humans In Space

Categories: NASA

NASA Citizen Science and Your Career: Stories of Exoplanet Watch Volunteers

Wed, 07/16/2025 - 10:08am

3 min read

NASA Citizen Science and Your Career: Stories of Exoplanet Watch Volunteers

Doing NASA Science brings many rewards. But can taking part in NASA citizen science help your career? To find out, we asked participants in NASA’s Exoplanet Watch project about their experiences. In this project, amateur astronomers work together with professionals to track planets around other stars.

First, we heard from professional software programmers. Right away, one of them told us about getting a new job through connections made in the project.

“I decided to create the exoplanet plugin, [for citizen science] since it was quite a lot of manual work to check which transits were available for your location. The exoplanet plugin and its users got me in contact with the Stellar group… Through this group, I got into contact with a company called OurSky and started working for them… the point is, I created a couple of plugins for free and eventually got a job at an awesome company.”

Another participant talked about honing their skills and growing their confidence through Exoplanet Watch.

“There were a few years when I wasn’t actively coding. However, Exoplanet Watch rekindled that spark…. Participating in Exoplanet Watch even gave me the confidence to prepare again for a technical interview at Meta—despite having been thoroughly defeated the first time I tried.”

Teachers and teaching faculty told us how Exoplanet Watch gives them the ability to better convey what scientific research is all about – and how the project motivates students! 

Exoplanet Watch makes it easy for undergraduate students to gain experience in data science and Python, which are absolutely necessary for graduate school and many industry jobs.

Experience with this collaborative work is a vital piece of the workforce development of our students who are seeking advanced STEM-related careers or ongoing education in STEM (Science, Technology, Engineering, & Mathematics) fields after graduation… Exoplanet Watch, in this way, is directly training NASA’s STEM workforce of tomorrow by allowing CUNY (The City University of New York) students to achieve the science goals that would otherwise be much more difficult without its resources.”

One aspiring academic shared how her participation on the science team side of the project has given her research and mentorship experience that strengthens her resume. 

“I ended up joining the EpW team to contribute my expertise in stellar variability… My involvement with Exoplanet Watch has provided me with invaluable experience in mentoring a broad range of astronomy enthusiasts and working in a collaborative environment with people from around the world. … Being able to train others, interact in a team environment, and work independently are all critical skills in any work environment, but these specific experiences have also been incredibly valuable towards building my portfolio as I search for faculty positions around the USA.”

There are no guarantees, of course. What you get out of NASA citizen science depends on what you put in. But there is certainly magic to be found in the Exoplanet Watch project.  As one student said:

“Help will always be found at Hogwarts, to those who need it.” Exoplanet Watch was definitely Hogwarts for me in my career as an astronomer!”

For more information about NASA and your career, check out NASA’s Surprisingly STEM series highlighting exciting and unexpected jobs at NASA, or come to NASA Career Day, a virtual event for students and educators. Participants must register by September 4, 2025. The interactive platform will be open from September 15-19, with live panels and events taking place on September 18.

Exoplanet Watch volunteer Bryan Martin

Credit: Bryan Martin

Share

Details

Last Updated

Jul 16, 2025

Related Terms Explore More

2 min read Hubble Snaps Galaxy Cluster’s Portrait

Article


5 days ago

8 min read NASA’s Webb Scratches Beyond Surface of Cat’s Paw for 3rd Anniversary

Article


6 days ago

2 min read Polar Tourists Give Positive Reviews to NASA Citizen Science in Antarctica

Article


1 week ago

Categories: NASA

Ejection Mechanism Design for the SPEED Test Architecture Challenge

Wed, 07/16/2025 - 9:45am

The The Stratospheric Projectile Entry Experiment on Dynamics (SPEED), a two-stage stratospheric drop test architecture, is currently under development to bridge the state-of-the-art gap that many NASA flagship missions require to reduce system risk and enable more optimized designs via margin reduction. To do this, a two-stage vehicle will drop from a high-altitude balloon and use the first stage (an LV-Haack cone aeroshell) to accelerate the sub-scale test model to supersonic conditions. The onboard avionics will then release the test model into freestream flow at the proper altitude in Earth’s atmosphere for dynamic Mach scaling to the full-scale flight trajectory. SPEED leverages low-cost methods of manufacturing such as 3D printing and laser/water-jet cutting to enable 8 or more two-stage vehicles to be dropped in a single test, making the science-to-dollar density much higher than any current ground-test facility NASA has at its disposal. The goal is to develop a robust ejection system that can reliably introduce the test models into supersonic flow with a tight variance on initial condition perturbation. The separation system must be capable of handling a range of initial angle-of-attacks, keep the test model secure in the first stage during take-off and descent, and eject the test model in such a way that it does not linger behind the first stage and be affected by the resulting wake. As current ejection system designs are conceptual, complex, and untested, NASA is looking for alternative ideas that can be incorporated into the design of their next iteration of SPEED flight vehicles to increase system reliability. We are challenging the public to design innovative concepts for a separation mechanism that can be used to assess NASA and commercial reentry vehicle stability.

Award: $7,000 in total prizes

Open Date: July 14, 2025

Close Date: September 8, 2025

For more information, visit: https://grabcad.com/challenges/ejection-mechanism-design-for-the-speed-test-architecture

Categories: NASA

NASA Funds Early Career Employee Research

Wed, 07/16/2025 - 8:06am
Sylvie Crowell Credit: NASA 

Sylvie Crowell, a materials researcher at NASA’s Glenn Research Center in Cleveland, has received a NASA Early Career Initiative (ECI) award for a research proposal titled “Lunar Dust Reduction through Electrostatic Adhesion Mitigation (L-DREAM).” The research focuses on developing a passive lunar dust mitigation coating for solar cells and thermal control surfaces. 

Operated under the NASA Space Technology Mission Directorate, the award will fund Crowell’s research in fiscal year 2026, beginning Oct. 1, 2025.  

NASA’s ECI is a unique opportunity for the best and brightest of NASA’s early career researchers to lead hands-on technology development projects. The initiative aims to invigorate NASA’s technological base and best practices by partnering early career NASA leaders with external innovators. 

Return to Newsletter
Categories: NASA

NASA Glenn Experts Join Baseball Fans in Omaha

Wed, 07/16/2025 - 8:06am

NASA Glenn Research Center’s Heather Brown, left, and NASA Flight Director Brandon Lloyd greet visitors before they enter NASA’s Journey to Tomorrow traveling exhibit on Friday, June 13, 2025, during an event in Omaha, Nebraska. Credit: NASA/Shauntina Lilly 

Thousands of baseball fans travel across the country annually to watch teams compete in Omaha, Nebraska, during the NCAA Men’s College World Series in June. This year, NASA’s Glenn Research Center in Cleveland swung for the fences to celebrate the city’s Diamond Anniversary of hosting the event and to highlight the intersections of sports and STEM.  

NASA Glenn Research Center’s astronaut mascot greets visitors at the Kiewit Luminarium in Omaha, Nebraska, on Thursday, June 12, 2025, during an event at the RiverFront celebrating the city’s Diamond Anniversary hosting the NCAA Men’s College World Series. Credit: NASA/Shauntina Lilly 

As part of a larger outreach program across the region, NASA Glenn, the only NASA center in the Midwest, continues to meet audiences where they are to make space relatable to all.  

“We brought NASA to Omaha during the College World Series to connect with a broader audience through one of the country’s most celebrated sporting events,” said NASA Glenn Public Engagement Specialist Heather Brown, who led the event. “Our goal was to spark curiosity, inspire the next generation, and demonstrate how science and exploration intersect with everyday passions — like baseball.” 

Guests enjoy exploring science through an interactive kiosk in NASA Glenn Research Center’s Journey to Tomorrow traveling exhibit on Friday, June 13, 2025, during an event in Omaha, Nebraska. Credit: NASA/Shauntina Lilly 

Situated next to the Kiewit Luminarium on the Lewis and Clark Landing of Omaha’s RiverFront, NASA Glenn engaged fans with Artemis-themed displays, interactive kiosks, a Space Launch System inflatable rocket, and the 53-foot Journey to Tomorrow traveling exhibit. In addition, Omaha-born NASA Flight Director Brandon Lloyd greeted visitors and participated in an event at the Branched Oak Observatory, where a large crowd of space enthusiasts asked questions and learned more about NASA’s missions.  

“This was an incredible opportunity to tell NASA’s story and showcase our work in a setting that was already energized and ready to engage,” Brown said. 

Back to Newsletter
Categories: NASA

One Survey by NASA’s Roman Could Unveil 100,000 Cosmic Explosions

Tue, 07/15/2025 - 9:49am

Scientists predict one of the major surveys by NASA’s upcoming Nancy Grace Roman Space Telescope may reveal around 100,000 celestial blasts, ranging from exploding stars to feeding black holes. Roman may even find evidence of some of the universe’s first stars, which are thought to completely self-destruct without leaving any remnant behind.

This simulation showcases the dynamic universe as NASA’s Nancy Grace Roman Space Telescope could see it over the course of its five-year primary mission. The video sparkles with synthetic supernovae from observations of the OpenUniverse simulated universe taken every five days (similar to the expected cadence of Roman’s High-Latitude Time-Domain Survey, which OpenUniverse simulates in its entirety). On top of the static sky of stars in the Milky Way and other galaxies, more than a million exploding stars flare into visibility and then slowly fade away. To highlight the dynamic physics happening and for visibility at this scale, the true brightness of each transient event has been magnified by a factor of 10,000 and no background light has been added to the simulated images. The video begins with Roman’s full field of view, which represents a single pointing of Roman’s camera, and then zooms into one square.Credit: NASA’s Goddard Space Flight Center and M. Troxel

Cosmic explosions offer clues to some of the biggest mysteries of the universe. One is the nature of dark energy, the mysterious pressure thought to be accelerating the universe’s expansion.

“Whether you want to explore dark energy, dying stars, galactic powerhouses, or probably even entirely new things we’ve never seen before, this survey will be a gold mine,” said Benjamin Rose, an assistant professor at Baylor University in Waco, Texas, who led a study about the results. The paper is published in The Astrophysical Journal.

Called the High-Latitude Time-Domain Survey, this observation program will scan the same large region of the cosmos every five days for two years. Scientists will stitch these observations together to create movies that uncover all sorts of cosmic fireworks.

Chief among them are exploding stars. The survey is largely geared toward finding a special class of supernova called type Ia. These stellar cataclysms allow scientists to measure cosmic distances and trace the universe’s expansion because they peak at about the same intrinsic brightness. Figuring out how fast the universe has ballooned during different cosmic epochs offers clues to dark energy.

This infographic describes the High-Latitude Time-Domain Survey that will be conducted by NASA’s Nancy Grace Roman Space Telescope. The survey’s main component will cover over 18 square degrees — a region of sky as large as 90 full moons — and see supernovae that occurred up to about 8 billion years ago. Smaller areas within the survey will pierce even farther, potentially back to when the universe was around a billion years old. The survey will be split between the northern and southern hemispheres, located in regions of the sky that will be continuously visible to Roman. The bulk of the survey will consist of 30-hour observations every five days for two years in the middle of Roman’s five-year primary mission.Credit: NASA’s Goddard Space Flight Center

In the new study, scientists simulated Roman’s entire High-Latitude Time-Domain Survey. The results suggest Roman could see around 27,000 type Ia supernovae—about 10 times more than all previous surveys combined.

Beyond dramatically increasing our total sample of these supernovae, Roman will push the boundaries of how far back in time we can see them. While most of those detected so far occurred within approximately the last 8 billion years, Roman is expected to see vast numbers of them earlier in the universe’s history, including more than a thousand that exploded more than 10 billion years ago and potentially dozens from as far back as 11.5 billion years. That means Roman will almost certainly set a new record for the farthest type Ia supernova while profoundly expanding our view of the early universe and filling in a critical gap in our understanding of how the cosmos has evolved over time.

“Filling these data gaps could also fill in gaps in our understanding of dark energy,” Rose said. “Evidence is mounting that dark energy has changed over time, and Roman will help us understand that change by exploring cosmic history in ways other telescopes can’t.”

But type Ia supernovae will be hidden among a much bigger sample of exploding stars Roman will see once it begins science operations in 2027. The team estimates Roman will also spot about 60,000 core-collapse supernovae, which occur when a massive star runs out of fuel and collapses under its own weight.

That’s different from type Ia supernovae, which originate from binary star systems that contain at least one white dwarf — the small, hot core remnant of a Sun-like star — siphoning material from a companion star. Core-collapse supernovae aren’t as useful for dark energy studies as type Ias are, but their signals look similar from halfway across the cosmos.

“By seeing the way an object’s light changes over time and splitting it into spectra — individual colors with patterns that reveal information about the object that emitted the light—we can distinguish between all the different types of flashes Roman will see,” said Rebekah Hounsell, an assistant research scientist at the University of Maryland-Baltimore County working at NASA’s Goddard Space Flight Center in Greenbelt, Maryland and a co-author of the study.

“With the dataset we’ve created, scientists can train machine-learning algorithms to distinguish between different types of objects and sift through Roman’s downpour of data to find them,” Hounsell added. “While searching for type Ia supernovae, Roman is going to collect a lot of cosmic ‘bycatch’—other phenomena that aren’t useful to some scientists, but will be invaluable to others.”

Hidden Gems

Thanks to Roman’s large, deep view of space, scientists say the survey should also unearth extremely rare and elusive phenomena, including even scarcer stellar explosions and disintegrating stars.

Upon close approach to a black hole, intense gravity can shred a star in a so-called tidal disruption event. The stellar crumbs heat up as they swirl around the black hole, creating a glow astronomers can see from across vast stretches of space-time. Scientists think Roman’s survey will unveil 40 tidal disruption events, offering a chance to learn more about black hole physics.

The team also estimates Roman will find about 90 superluminous supernovae, which can be 100 times brighter than a typical supernova. They pack a punch, but scientists aren’t completely sure why. Finding more of them will help astronomers weigh different theories.

Even rarer and more powerful, Roman could also detect several kilonovae. These blasts occur when two neutron stars — extremely dense cores leftover from stars that exploded as supernovae — collide. To date, there has been only one definitive kilonova detection. The team estimates Roman could spot five more.

This artist’s concept visualizes a kilonova – an explosion that happens when two neutron stars or a neutron star and a black hole collide and merge. When these collisions happen, a fraction of the resulting debris is ejected as jets, which move near the speed of light. The remaining debris produces hot, glowing, neutron-rich clouds that forge heavy elements, like gold and platinum. Researchers will mine data from NASA’s Nancy Grace Roman Space Telescope, which will survey the same areas of the sky every few days, to identify kilonovae. Roman’s extensive data will help astronomers better identify how often these events occur, how much energy they give off, and how near or far they are.Credit: NASA, ESA, J. Olmsted (STScI)

That would help astronomers learn much more about these mysterious events, potentially including their fate. As of now, scientists are unsure whether kilonovae result in a single neutron star, a black hole, or something else entirely.

Roman may even spot the detonations of some of the first stars that formed in the universe. These nuclear furnaces were giants, up to hundreds of times more massive than our Sun, and unsullied by heavy elements that hadn’t yet formed.

They were so massive that scientists think they exploded differently than modern massive stars do. Instead of reaching the point where a heavy star today would collapse, intense gamma rays inside the first stars may have turned into matter-antimatter pairs (electrons and positrons). That would drain the pressure holding the stars up until they collapsed, self-destructing in explosions so powerful they’re thought to leave nothing behind.

So far, astronomers have found about half a dozen candidates of these “pair-instability” supernovae, but none have been confirmed.

“I think Roman will make the first confirmed detection of a pair-instability supernova,” Rose said — in fact the study suggests Roman will find more than 10. “They’re incredibly far away and very rare, so you need a telescope that can survey a lot of the sky at a deep exposure level in near-infrared light, and that’s Roman.”

A future rendition of the simulation could include even more types of cosmic flashes, such as variable stars and active galaxies. Other telescopes may follow up on the rare phenomena and objects Roman discovers to view them in different wavelengths of light to study them in more detail.

“Roman’s going to find a whole bunch of weird and wonderful things out in space, including some we haven’t even thought of yet,” Hounsell said. “We’re definitely expecting the unexpected.”

For more information about the Roman Space Telescope visit www.nasa.gov/roman.

The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory in Southern California; Caltech/IPAC in Pasadena, California; the Space Telescope Science Institute in Baltimore; and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems Inc. in Boulder, Colorado; L3Harris Technologies in Rochester, New York; and Teledyne Scientific & Imaging in Thousand Oaks, California.

By Ashley Balzer
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Share Details Last Updated Jul 15, 2025 EditorAshley BalzerContactAshley Balzerashley.m.balzer@nasa.gov Related Terms Explore More 6 min read NASA’s Roman Mission Shares Detailed Plans to Scour Skies Article 3 months ago 6 min read New Simulated Universe Previews Panoramas From NASA’s Roman Telescope Article 6 months ago 3 min read NASA’s Roman Space Telescope Team Installs Observatory’s Solar Panels Article 5 days ago
Categories: NASA

Fourth NASA-Enabled Private Flight to Space Station Completes Safely

Tue, 07/15/2025 - 9:08am
The Axiom Mission 4 crew launched on June 25, 2025, aboard a SpaceX Dragon spacecraft to the International Space Station from NASA’s Kennedy Space Center in Florida. From left to right: Tibor Kapu of Hungary, ISRO (Indian Space Research Organization) astronaut Shubhanshu Shukla, former NASA astronaut Peggy Whitson, and ESA (European Space Agency) astronaut Sławosz Uznański-Wiśniewski of Poland (Credit: Axiom Space).

The NASA-supported fourth private astronaut mission to the International Space Station, Axiom Mission 4, completed its flight as part of the agency’s efforts to demonstrate demand and build operational knowledge for future commercial space stations.

The four-person crew safely returned to Earth, splashing down off the coast of California at 5:31 a.m. EDT on Tuesday, aboard a SpaceX Dragon spacecraft. Teams aboard SpaceX recovery vessels retrieved the spacecraft and astronauts. 

Peggy Whitson, former NASA astronaut and director of human spaceflight at Axiom Space, ISRO (Indian Space Research Organization) astronaut Shubhanshu Shukla, and ESA (European Space Agency) project astronaut Sławosz Uznański-Wiśniewski of Poland, and Hungarian to Orbit (HUNOR) astronaut Tibor Kapu of Hungary, completed about two and a half weeks in space.

The Axiom Mission 4 crew launched at 2:31 a.m. on June 25, on a Falcon 9 rocket from NASA’s Kennedy Space Center in Florida. Approximately 28 hours later, Dragon docked to the space-facing port of the space station’s Harmony module. The astronauts undocked at 7:15 a.m. on July 14, to begin the trip home.

The crew conducted microgravity research, educational outreach, and commercial activities. The spacecraft will return to Florida for inspection and processing at SpaceX’s refurbishing facilities. Throughout their mission, the astronauts conducted about 60 science experiments, and returned science, including NASA cargo, back to Earth.

A collaboration between NASA and ISRO allowed Axiom Mission 4 to deliver on a commitment highlighted by President Trump and Indian Prime Minister Narendra Modi to send the first ISRO astronaut to the station. The space agencies participated in five joint science investigations and two in-orbit science, technology, engineering, and mathematics demonstrations. NASA and ISRO have a long-standing relationship built on a shared vision to advance scientific knowledge and expand space collaboration.

The private mission also carried the first astronauts from Poland and Hungary to stay aboard the space station.

The International Space Station is a springboard for developing a low Earth orbit economy. NASA’s goal is to achieve a strong economy off the Earth where the agency can purchase services as one of many customers to meet its science and research objectives in microgravity. NASA’s commercial strategy for low Earth orbit provides the government with reliable and safe services at a lower cost, enabling the agency to focus on Artemis missions to the Moon in preparation for Mars while also continuing to use low Earth orbit as a training and proving ground for those deep space missions.

Learn more about NASA’s commercial space strategy at:

https://www.nasa.gov/commercial-space

News Media Contacts:
Claire O’Shea 
Headquarters, Washington 
202-358-1100 
claire.a.o’shea@nasa.gov

Anna Schneider 
Johnson Space Center, Houston 
281-483-5111 
anna.c.schneider@nasa.gov

Facebook logo @NASA @NASA Instagram logo @NASA Linkedin logo @NASA
Categories: NASA