Watch the stars and from them learn. To the Master's honor all must turn, Each in its track, without a sound, Forever tracing Newton's ground

— Albert Einstein

Feed aggregator

Bubbles of gas 75 times larger than our sun spotted on another star

New Scientist Space - Cosmology - Wed, 09/11/2024 - 12:00pm
Gas bubbles on the surface of a star have been observed for the first time in detail outside our solar system, and they are 75 times the size of our sun
Categories: Astronomy

Bubbles of gas 75 times larger than our sun spotted on another star

New Scientist Space - Space Headlines - Wed, 09/11/2024 - 12:00pm
Gas bubbles on the surface of a star have been observed for the first time in detail outside our solar system, and they are 75 times the size of our sun
Categories: Astronomy

A fresh understanding of OCD is opening routes to new treatments

New Scientist Space - Cosmology - Wed, 09/11/2024 - 12:00pm
We're finally pinning down the mechanisms that drive obsessive-compulsive disorder, revealing a complex combination of imbalanced brain networks, the immune system and even gut microbes
Categories: Astronomy

A fresh understanding of OCD is opening routes to new treatments

New Scientist Space - Space Headlines - Wed, 09/11/2024 - 12:00pm
We're finally pinning down the mechanisms that drive obsessive-compulsive disorder, revealing a complex combination of imbalanced brain networks, the immune system and even gut microbes
Categories: Astronomy

9 Phenomena NASA Astronauts Will Encounter at Moon’s South Pole

NASA - Breaking News - Wed, 09/11/2024 - 11:53am
5 Min Read 9 Phenomena NASA Astronauts Will Encounter at Moon’s South Pole

An artist’s rendering of an Artemis astronaut working on the Moon’s surface.

Credits:
NASA

NASA’s Artemis campaign will send the first woman and the first person of color to the Moon’s south polar region, marking humanity’s first return to the lunar surface in more than 50 years.

Here are some out-of-this-world phenomena Artemis astronauts will experience:

1. A Hovering Sun and Giant Shadows This visualization shows the motions of Earth and the Sun as viewed from the South Pole of the Moon.
NASA’s Goddard Space Flight Center

Near the Moon’s South Pole, astronauts will see dramatic shadows that are 25 to 50 times longer than the objects casting them. Why? Because the Sun strikes the surface there at a low angle, hanging just a few degrees above the horizon. As a result, astronauts won’t see the Sun rise and set. Instead, they’ll watch it hover near the horizon as it moves horizontally across the sky.

2. Sticky, Razor-Sharp Dust …

This dust particle came from a lunar regolith sample brought to Earth in 1969 by Apollo 11 astronauts. The particle is about 25 microns across, less than the width of an average human hair. The image was taken with a scanning electron microscope.

The lunar dust, called regolith, that coats the Moon’s surface looks fine and soft like baking powder. But looks can be deceiving. Lunar regolith is formed when meteoroids hit the Moon’s surface, melting and shattering rocks into tiny, sharp pieces. The Moon doesn’t have moving water or wind to smooth out the regolith grains, so they stay sharp and scratchy, posing a risk to astronauts and their equipment.

3. … That’s Charged with Static Electricity

Astronaut Eugene Cernan, commander of Apollo 17, inside the lunar module on the Moon after his second moonwalk of the mission in 1972. His spacesuit and face are covered in lunar dust.

Because the Moon has no atmosphere to speak of, its surface is exposed to plasma and radiation from the Sun. As a result, static electricity builds up on the surface, as it does when you shuffle your feet against a carpeted floor. When you then touch something, you transfer that charge via a small shock. On the Moon, this transfer can short-circuit electronics. Moon dust also can make its way into astronaut living quarters, as the static electricity causes it to easily stick to spacesuits. NASA has developed methods to keep the dust at bay using resistant textiles, filters, and a shield that employs an electric field to remove dust from surfaces.

4. A New Sense of Lightness In 1972, Apollo 16 astronaut Charles Duke hammered a core tube into the Moon’s surface until it met a rock and wouldn’t go any farther. Then the hammer flew from his hand. He made four attempts to pick it up by bending down and leaning to reach for it. He gave up and returned to the rover to get tongs to finally pick up the hammer successfully.
NASA’s Johnson Space Center

Artemis moonwalkers will have a bounce to their step as they traverse the lunar surface. This is because gravity won’t pull them down as forcefully as it does on Earth. The Moon is only a quarter of Earth’s size, with six times less gravity. Simple activities, like swinging a rock hammer to chip off samples, will feel different. While a hammer will feel lighter to hold, its inertia won’t change, leading to a strange sensation for astronauts. Lower gravity has perks, too. Astronauts won’t be weighed down by their hefty spacesuits as much as they would be on Earth. Plus, bouncing on the Moon is just plain fun.

5. A Waxing Crescent … Earth?

This animated image features a person holding a stick with a sphere on top that represents the Moon. The person is demonstrating an activity that helps people learn about the phases of the Moon by acting them out. NASA’s Jet Propulsion Laboratory

When Artemis astronauts look at the sky from the Moon, they’ll see their home planet shining back at them. Just like Earthlings see different phases of the Moon throughout a month, astronauts will see an ever-shifting Earth. Earth phases occur opposite to Moon phases: When Earth experiences a new Moon, a full Earth is visible from the Moon.

6. An Itty-Bitty Horizon 

A view from the Apollo 11 spacecraft in July 1969 shows Earth rising above the Moon’s horizon. NASA

Because the Moon is smaller than Earth, its horizon will look shorter and closer. To someone standing on a level Earth surface, the horizon is 3 miles away, but to astronauts on the Moon, it’ll be only 1.5 miles away, making their surroundings seem confined.

7. Out-of-This-World Temperatures

This graphic shows maximum summer and winter temperatures near the lunar South Pole. Purple, blue, and green identify cold regions, while yellow to red signify warmer ones. The graphic incorporates 10 years of data from NASA’s LRO (Lunar Reconnaissance Orbiter), which has been orbiting the Moon since 2009.
NASA/LRO Diviner Seasonal Polar Data

Because sunlight at the Moon’s South Pole skims the surface horizontally, it brushes crater rims, but doesn’t always reach their floors. Some deep craters haven’t seen the light of day for billions of years, so temperatures there can dip to minus 334 F. That’s nearly three times colder than the lowest temperature recorded in Antarctica. At the other extreme, areas in direct sunlight, such as crater rims, can reach temperatures of 130 F.

8. An Inky-Black Sky

To view this video please enable JavaScript, and consider upgrading to a web browser that
supports HTML5 video

An animated view of Earth emerging below the horizon as seen from the Moon’s South Pole. This visual was created using a digital elevation map from LRO’s laser altimeter, LOLA. NASA’s Scientific Visualization Studio

The Moon, unlike Earth, doesn’t have a thick atmosphere to scatter blue light, so the daytime sky is black. Astronauts will see a stark contrast between the dark sky and the bright ground.

9. A Rugged Terrain 

To view this video please enable JavaScript, and consider upgrading to a web browser that
supports HTML5 video

An overhead view of the Moon, beginning with a natural color from a distance and changing to color-coded elevation as the camera comes closer. The visual captures the rugged terrain of the lunar South Pole area. It includes a color key and animated scale bar. This visual was created using a digital elevation map from NASA LRO’s laser altimeter, LOLA. NASA’s Scientific Visualization Studio

Artemis moonwalkers will find a rugged landscape that takes skill to traverse. The Moon has mountains, valleys, and canyons, but its most notable feature for astronauts on the surface may be its millions of craters. Near the South Pole, gaping craters and long shadows will make it difficult for astronauts to navigate. But, with training and special gear, astronauts will be prepared to meet the challenge.

By Avery Truman

NASA’s Goddard Space Flight Center, Greenbelt, Md.

Share

Details

Last Updated

Sep 11, 2024

Related Terms Explore More

23 min read The Next Full Moon is a Partial Lunar Eclipse; a Supermoon; the Corn Moon; and the Harvest Moon

The next full Moon will be Tuesday, September 17, 2024, at 10:35 PM EDT. The…



Article


2 hours ago

5 min read Voyager 1 Team Accomplishes Tricky Thruster Swap

Article


24 hours ago

5 min read NASA’s Hubble, Chandra Find Supermassive Black Hole Duo

Article


2 days ago

Keep Exploring Discover More Topics From NASA

Missions


Humans in Space


Climate Change


Solar System

Categories: NASA

NASA Scientists Re-Create Mars ‘Spiders’ in a Lab for First Time

NASA - Breaking News - Wed, 09/11/2024 - 11:52am

5 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Tests on Earth appear to confirm how the Red Planet’s spider-shaped geologic formations are carved by carbon dioxide.

Spider-shaped features called araneiform terrain are found in the southern hemisphere of Mars, carved into the landscape by carbon dioxide gas. This 2009 image taken by NASA’s Mars Reconnaissance Orbiter shows several of these distinctive formations within an area three-quarters of a mile (1.2 kilometers) wide. NASA/JPL-Caltech/University of Arizona Dark splotches seen in this example of araneiform terrain captured by NASA’s Mars Reconnaissance Orbiter in 2018 are believed to be soil ejected from the surface by carbon dioxide gas plumes. A set of experiments at JPL has sought to re-create these spider-like formations in a lab. NASA/JPL-Caltech/University of Arizona

Since discovering them in 2003 via images from orbiters, scientists have marveled at spider-like shapes sprawled across the southern hemisphere of Mars. No one is entirely sure how these geologic features are created. Each branched formation can stretch more than a half-mile (1 kilometer) from end to end and include hundreds of spindly “legs.” Called araneiform terrain, these features are often found in clusters, giving the surface a wrinkled appearance.

The leading theory is that the spiders are created by processes involving carbon dioxide ice, which doesn’t occur naturally on Earth. Thanks to experiments detailed in a new paper published in The Planetary Science Journal, scientists have, for the first time, re-created those formation processes in simulated Martian temperatures and air pressure.

Here’s a look inside of JPL’s DUSTIE, a wine barrel-size chamber used to simulate the temperatures and air pressure of other planets – in this case, the carbon dioxide ice found on Mars’ south pole. Experiments conducted in the chamber confirmed how Martian formations known as “spiders” are created.NASA/JPL-Caltech

“The spiders are strange, beautiful geologic features in their own right,” said Lauren Mc Keown of NASA’s Jet Propulsion Laboratory in Southern California. “These experiments will help tune our models for how they form.”

The study confirms several formation processes described by what’s called the Kieffer model: Sunlight heats the soil when it shines through transparent slabs of carbon dioxide ice that built up on the Martian surface each winter. Being darker than the ice above it, the soil absorbs the heat and causes the ice closest to it to turn directly into carbon dioxide gas — without turning to liquid first — in a process called sublimation (the same process that sends clouds of “smoke” billowing up from dry ice). As the gas builds in pressure, the Martian ice cracks, allowing the gas to escape. As it seeps upward, the gas takes with it a stream of dark dust and sand from the soil that lands on the surface of the ice.

When winter turns to spring and the remaining ice sublimates, according to the theory, the spiderlike scars from those small eruptions are what’s left behind.

These formations similar to the Red Planet’s “spiders” appeared within Martian soil simulant during experiments in JPL’s DUSTIE chamber. Carbon dioxide ice frozen within the simulant was warmed by a heater below, turning it back into gas that eventually cracked through the frozen top layer and formed a plume.NASA/JPL-Caltech Re-Creating Mars in the Lab

For Mc Keown and her co-authors, the hardest part of conducting these experiments was re-creating conditions found on the Martian polar surface: extremely low air pressure and temperatures as low as minus 301 degrees Fahrenheit (minus 185 degrees Celsius). To do that, Mc Keown used a liquid-nitrogen-cooled test chamber at JPL, the Dirty Under-vacuum Simulation Testbed for Icy Environments, or DUSTIE.

“I love DUSTIE. It’s historic,” Mc Keown said, noting that the wine barrel-size chamber was used to test a prototype of a rasping tool designed for NASA’s Mars Phoenix lander. The tool was used to break water ice, which the spacecraft scooped up and analyzed near the planet’s north pole.

To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video

This video shows Martian soil simulant erupting in a plume during a JPL lab experiment that was designed to replicate the process believed to form Martian features called “spiders.” When a researcher who had tried for years to re-create these conditions spotted this plume, she was ecstatic. NASA/JPL-Caltech

For this experiment, the researchers chilled Martian soil simulant in a container submerged within a liquid nitrogen bath. They placed it in the DUSTIE chamber, where the air pressure was reduced to be similar to that of Mars’ southern hemisphere. Carbon dioxide gas then flowed into the chamber and condensed from gas to ice over the course of three to five hours. It took many tries before Mc Keown found just the right conditions for the ice to become thick and translucent enough for the experiments to work.

Once they got ice with the right properties, they placed a heater inside the chamber below the simulant to warm it up and crack the ice. Mc Keown was ecstatic when she finally saw a plume of carbon dioxide gas erupting from within the powdery simulant.

“It was late on a Friday evening and the lab manager burst in after hearing me shrieking,” said Mc Keown, who had been working to make a plume like this for five years. “She thought there had been an accident.”

The dark plumes opened holes in the simulant as they streamed out, spewing simulant for as long as 10 minutes before all the pressurized gas was expelled.

The experiments included a surprise that wasn’t reflected in the Kieffer model: Ice formed between the grains of the simulant, then cracked it open. This alternative process might explain why spiders have a more “cracked” appearance. Whether this happens or not seems dependent on the size of soil grains and how embedded water ice is underground.

“It’s one of those details that show that nature is a little messier than the textbook image,” said Serina Diniega of JPL, a co-author of the paper.

What’s Next for Plume Testing

Now that the conditions have been found for plumes to form, the next step is to try the same experiments with simulated sunlight from above, rather than using a heater below. That could help scientists narrow down the range of conditions under which the plumes and ejection of soil might occur.

There are still many questions about the spiders that can’t be answered in a lab. Why have they formed in some places on Mars but not others? Since they appear to result from seasonal changes that are still occurring, why don’t they seem to be growing in number or size over time? It’s possible that they’re left over from long ago, when the climate was different on Mars— and could therefore provide a unique window into the planet’s past.

For the time being, lab experiments will be as close to the spiders as scientists can get. Both the Curiosity and Perseverance rovers are exploring the Red Planet far from the southern hemisphere, which is where these formations appear (and where no spacecraft has ever landed). The Phoenix mission, which landed in the northern hemisphere, lasted only a few months before succumbing to the intense polar cold and limited sunlight.

News Media Contacts

Andrew Good
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-2433
andrew.c.good@jpl.nasa.gov

Karen Fox / Molly Wasser
Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov

2024-122

Share Details Last Updated Sep 11, 2024 Related Terms Explore More 5 min read NASA JPL Scientists, Engineers Collaborate With Artists for Exhibition Article 2 days ago 6 min read NASA’s Hubble, MAVEN Help Solve the Mystery of Mars’ Escaping Water

Mars was once a very wet planet as is evident in its surface geological features.…

Article 6 days ago
5 min read NASA JPL Developing Underwater Robots to Venture Deep Below Polar Ice Article 2 weeks ago Keep Exploring Discover Related Topics

Missions

Humans in Space

Climate Change

Solar System

Categories: NASA

Inspiration Among the Stars: How Johnson’s Workforce Found Their Place in Space

NASA - Breaking News - Wed, 09/11/2024 - 11:42am

For some people, working for NASA is a lifelong dream. For others, it is an interesting and perhaps unexpected opportunity that comes up at just the right time and place.

Everything from family ties and influential teachers to witnessing human spaceflight history and enjoying sci-fi entertainment has helped bring people of all backgrounds together at NASA’s Johnson Space Center in Houston. Several of them recently shared their inspiration to join the NASA team.

***

“As a kid, I always had my head up looking at the stars. I loved astronomy and seeing videos of humans walking on the Moon fascinated me! I wanted to be the first female to walk on the Moon. When Star Wars came out, I wanted to build my own R2-D2 that could explore the galaxies. I was curious how things worked (so I could build a robot) and a cousin told me about engineering. That was the name for what I wanted to do! So, I went to the High School for Engineering Professions in Houston. The guidance counselor there told me about an opportunity to apply for a summer internship with NASA as a junior. I got in and I’ve worked with NASA as much as I could since I was 16 years old – internships and full-time positions. I may not get the chance to be an astronaut and walk on the Moon, but I know I will play a role in helping achieve that dream for another female and a person of color!”

– Alicia Baker, engineering project manager for Portable Life Support System test support, JSC Engineering, Technology, and Science (JETS) Contract

Alicia Baker in a spacesuit test chamber at Johnson Space Center.NASA/David DeHoyos

“My dad was an aerospace engineer with Lockheed Martin. I went to take your kid to work day and got to stand in front of a booster engine. I’ve wanted to work in the space industry ever since. I almost didn’t enter the field after getting my aerospace degree, but I was fortunate to take an Intro to Human Spaceflight class during my last quarter of college. Without that class and the professor (who had worked at Johnson) I wouldn’t be here today. I’m so glad my path led me here. Johnson is such a great place to be, and I can look back and tell little Margaret that we did it!”

– Margaret Kennedy, aerospace systems engineer, Engineering Directorate Crew and Thermal Systems Division

Margaret Kennedy and her dad visited Space Center Houston when she started her job at NASA’s Johnson Space Center in October 2019.Image courtesy of Margaret Kennedy

“In first grade, my teacher organized a ‘Space Week’ in which we learned about outer space. Her sons – who were studying engineering in college – came and launched model rockets for us. I knew from that point on that I wanted to work at NASA when I grew up.”

– Krista Farrell, International Space Station attitude determination and control officer and motion control systems instructor; Boeing Starliner guidance, navigation, and control instructor

Krista Farrell (center) stands with members of the Expedition 71 crew. From left: NASA astronauts Jeannette Epps, Matt Dominick, and Mike Barratt; Roscosmos cosmonaut Alexander Grebenkin; and NASA astronaut Tracy C. Dyson. NASA/Josh Valcarcel

“I didn’t think I would ever work for NASA. But multiple professors in college encouraged me to challenge myself and do some space research. I realized that it was something that I was very passionate about. Thanks to my research work for the Europa Clipper as an undergraduate student, I got my first internship at NASA and subsequently an offer to join the Pathways Program. Now I am part of a small group of engineers that solve entry, descent, and landing problems for multiple missions on Earth, the Moon, and Mars.”

– Sergio Sandoval, guidance engineer, Engineering Directorate Flight Mechanics and Trajectory Design Branch

Sergio Sandoval helps staff a NASA table during a Johnson Space Center community engagement event.Image courtesy of Sergio Sandoval

“Dad would take me to the viewing room of the original Mission Operations Control Room (MOCR) during the Apollo era. He was one of the people supporting MOCR in the Staff Support Room. I have worked at Johnson for 27 years [as a contractor] for Lockheed Martin, Hamilton Sundstrand, and Jacobs Technology.”

– David Fanelli, software engineer, Energy Systems Test Area

“In early 1969, when I was a boy, my uncle visited the Johnson Space Center and brought back astronaut and mission photos of the recently completed Apollo 8 lunar orbiting mission. Those photos, coupled with a Saturn V rocket model I assembled, and the Time Life records and books about the Apollo space program my parents purchased for me, sparked my imagination. I knew I wanted to work for NASA one day. It wasn’t until many years later that that dream became a reality, when I joined NASA’s co-op program for college students during my second attempt to become an aeronautical engineer. After I graduated college, I began working full time as a civil servant engineer at Johnson.”

– David Fletcher, NASA lead, Gateway-Ready Avionics Integration Lab

David Fletcher (center) with his daughters Jessica (left) and Erica (right). Image courtesy of David Fletcher

“I remember watching Star Trek and Star Wars as a kid with my dad. I found some of his college notes in a box one day and thought the small, neat print on graph paper pads was really pretty. He went to the University of Texas at Austin to study astrophysics and engineering, but he never got to finish. Fast forward to 2022 and I find myself in Houston for an unknown amount of time, so I decided to go out and make some friends. I met a woman at a Geeky Game Night, and I learned that she was a food scientist at NASA! After talking some more, she told me to send her my resume. Later that week I received a call to set up an interview. I’m still in awe of how that one chance connection led me to my childhood dream of working at NASA.”

– Kristin Dillon, document/IT specialist, Space Food Systems Laboratory

“I grew up in a small agricultural village in India. My first introduction to spaceflight was reading Russian cosmonauts’ translated accounts of the Apollo-Soyuz Test Project as a young girl. I am still not sure whether my father picked that book for me on a whim or with a grand dream for his daughter, but it certainly had me hooked. However, I found my true calling to make human spaceflight safer and more efficient after witnessing the Columbia mishap. India, at the time, did not have a human spaceflight program. Thus started a 20-year-long grand adventure of seeking opportunities, pursuing them, immigrating to the United States, and finding my path to NASA, which culminated in a Pathways internship at Johnson.”

– Poonampreet Kaur Josan, three-time Pathways intern, currently supporting the Human Health and Performance Directorate Habitability and Human Factors Branch

Categories: NASA

How SpaceX built a new spacesuit for Polaris Dawn's private spacewalk (video)

Space.com - Wed, 09/11/2024 - 11:39am
SpaceX has given us a detailed look at their stylish and innovative new extravehicular activity suit ahead of it being worn during the Polaris Dawn mission's first-ever private spacewalk.
Categories: Astronomy

Meet the NASA science flying on SpaceX's Polaris Dawn private astronaut mission

Space.com - Wed, 09/11/2024 - 11:00am
SpaceX's historic Polaris Dawn private astronaut mission carried a variety of NASA experiments to orbit. Here's a quick look at the research and its goals.
Categories: Astronomy

Lego is 'Over the Moon' with new spaceship kit made in collaboration with Pharrell Williams

Space.com - Wed, 09/11/2024 - 10:00am
It's unlike any Lego space shuttle we've had before, but the upcoming 'Over the Moon' set is certainly eye catching.
Categories: Astronomy

What's behind the Martian methane mystery?

Space.com - Wed, 09/11/2024 - 9:00am
The cause of mysterious methane spikes on Mars may be a strange form of alien life — or it may just be interesting chemistry. Either way, something odd is happening on the Red Planet.
Categories: Astronomy

How Retinol Cosmetics Change Skin at a Chemical Level

Scientific American.com - Wed, 09/11/2024 - 8:00am

Experts explain the differences between popular retinol products and the way they trigger molecular changes deep in the skin

Categories: Astronomy

Mystery of dwarf planet Ceres' origin may finally be solved, thanks to retired NASA spacecraft

Space.com - Wed, 09/11/2024 - 8:00am
Was Ceres born in the main asteroid belt, or did it migrate there from the outer solar system? The answer is buried in data from NASA's Dawn spacecraft.
Categories: Astronomy

PFAS in Pesticides Could Pose a Greater Multigenerational Threat Than DDT

Scientific American.com - Wed, 09/11/2024 - 7:00am

A looming and poorly regulated PFAS threat comes from these chemicals’ common use in pesticides on farms nationwide

Categories: Astronomy

Huge new volcano has burst through the surface of Jupiter’s moon Io

New Scientist Space - Cosmology - Wed, 09/11/2024 - 6:51am
In between two spacecraft visiting Jupiter’s moon Io, a volcano spreading material over hundreds of kilometres has appeared
Categories: Astronomy

Huge new volcano has burst through the surface of Jupiter’s moon Io

New Scientist Space - Space Headlines - Wed, 09/11/2024 - 6:51am
In between two spacecraft visiting Jupiter’s moon Io, a volcano spreading material over hundreds of kilometres has appeared
Categories: Astronomy

Mars Missions May Be Blocked by Kidney Stones

Scientific American.com - Wed, 09/11/2024 - 6:45am

Astronauts may have the guts for space travel—but not the kidneys

Categories: Astronomy

Watch a Russian Soyuz rocket launch 3 astronauts to the ISS today

Space.com - Wed, 09/11/2024 - 6:00am
A Russian Soyuz rocket will launch three astronauts toward the International Space Station today (Sept. 11), and you can watch the action live.
Categories: Astronomy

Fish size themselves up in a mirror to decide if they can win a fight

New Scientist Space - Cosmology - Wed, 09/11/2024 - 6:00am
Cleaner wrasse use their reflection to build a mental image of their body size, which they use to compare themselves to rivals before picking a fight
Categories: Astronomy

Fish size themselves up in a mirror to decide if they can win a fight

New Scientist Space - Space Headlines - Wed, 09/11/2024 - 6:00am
Cleaner wrasse use their reflection to build a mental image of their body size, which they use to compare themselves to rivals before picking a fight
Categories: Astronomy