Feed aggregator
NASA’s Artemis II Orion Service Module Buttoned Up for Launch
Technicians with NASA and Lockheed Martin fitted three spacecraft adapter jettison fairing panels onto the service module of the agency’s Orion’s spacecraft. The operation completed on Wednesday, March 19, 2025, inside the Neil A. Armstrong Operations and Checkout Building at NASA’s Kennedy Space Center in Florida.
The European-built service module is the powerhouse that will propel the spacecraft to the Moon. Its four solar array wings which were installed to its exterior in early March. The latest addition of fairing panels on Orion’s service module will protect the solar array wings, shielding them from the heat, wind, and acoustics of launch and ascent, and also help redistribute the load between Orion and the massive thrust of the SLS (Space Launch System) rocket during liftoff and ascent. Once the spacecraft is above the atmosphere, the three fairing panels will separate from the service module, allowing the wings to unfurl.
In addition to power, the service module will provide propulsion and life support including thermal control, air, and water for the Artemis II test flight, NASA’s first mission with crew under the Artemis campaign that will send NASA astronauts Reid Wiseman, Victor Glover, and Christina Koch, as well as CSA (Canadian Space Agency) astronaut Jeremy Hansen, on a 10-day journey around the Moon.
Through the Artemis campaign, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and to build the foundation for the first crewed missions to Mars – for the benefit of all.
Image credit: NASA/Glenn Benson
NASA’s Artemis II Orion Service Module Buttoned Up for Launch
Technicians with NASA and Lockheed Martin fitted three spacecraft adapter jettison fairing panels onto the service module of the agency’s Orion’s spacecraft. The operation completed on Wednesday, March 19, 2025, inside the Neil A. Armstrong Operations and Checkout Building at NASA’s Kennedy Space Center in Florida.
The European-built service module is the powerhouse that will propel the spacecraft to the Moon. Its four solar array wings which were installed to its exterior in early March. The latest addition of fairing panels on Orion’s service module will protect the solar array wings, shielding them from the heat, wind, and acoustics of launch and ascent, and also help redistribute the load between Orion and the massive thrust of the SLS (Space Launch System) rocket during liftoff and ascent. Once the spacecraft is above the atmosphere, the three fairing panels will separate from the service module, allowing the wings to unfurl.
In addition to power, the service module will provide propulsion and life support including thermal control, air, and water for the Artemis II test flight, NASA’s first mission with crew under the Artemis campaign that will send NASA astronauts Reid Wiseman, Victor Glover, and Christina Koch, as well as CSA (Canadian Space Agency) astronaut Jeremy Hansen, on a 10-day journey around the Moon.
Through the Artemis campaign, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and to build the foundation for the first crewed missions to Mars – for the benefit of all.
Image credit: NASA/Glenn Benson
Can Earth’s Rotation Be a Power Source? Physicists Debate Bold New Idea
Experiments suggest an unusual magnetic material could help harness energy from Earth’s rotation. But not everyone is convinced
NASA to Cover Northrop Grumman’s 21st Cargo Space Station Departure
After delivering more than 8,200 pounds of supplies, scientific investigations, commercial products, hardware, and other cargo to the orbiting laboratory for NASA and its international partners, Northrop Grumman’s uncrewed Cygnus spacecraft is scheduled to depart the International Space Station on Friday, March 28.
Watch NASA’s live coverage of undocking and departure at 6:30 a.m. EDT on NASA+. Learn how to watch NASA content through a variety of platforms, including social media.
This mission was the company’s 21st commercial resupply mission to the space station for NASA.
Flight controllers on the ground will send commands for the space station’s Canadarm2 robotic arm to detach Cygnus from the Unity module’s Earth-facing port, then maneuver the spacecraft into position for release at 6:55 a.m. NASA astronaut Nichole Ayers will monitor Cygnus’ systems upon its departure from the space station.
Cygnus – filled with trash packed by the station crew – will be commanded to deorbit on Sunday, March 30, setting up a re-entry where the spacecraft will safely burn up in Earth’s atmosphere.
The Northrop Grumman spacecraft arrived at the space station Aug. 6, 2024, following launch on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida.
Get breaking news, images, and features from the space station on the station blog, Instagram, Facebook, and X.
Learn more about Cygnus’ mission and the International Space Station at:
-end-
Julian Coltre / Josh Finch
Headquarters, Washington
202-358-1100
julian.n.coltre@nasa.gov / joshua.a.finch@nasa.gov
Sandra Jones
Johnson Space Center, Houston
281-483-5111
sandra.p.jones@nasa.gov
NASA to Cover Northrop Grumman’s 21st Cargo Space Station Departure
After delivering more than 8,200 pounds of supplies, scientific investigations, commercial products, hardware, and other cargo to the orbiting laboratory for NASA and its international partners, Northrop Grumman’s uncrewed Cygnus spacecraft is scheduled to depart the International Space Station on Friday, March 28.
Watch NASA’s live coverage of undocking and departure at 6:30 a.m. EDT on NASA+. Learn how to watch NASA content through a variety of platforms, including social media.
This mission was the company’s 21st commercial resupply mission to the space station for NASA.
Flight controllers on the ground will send commands for the space station’s Canadarm2 robotic arm to detach Cygnus from the Unity module’s Earth-facing port, then maneuver the spacecraft into position for release at 6:55 a.m. NASA astronaut Nichole Ayers will monitor Cygnus’ systems upon its departure from the space station.
Cygnus – filled with trash packed by the station crew – will be commanded to deorbit on Sunday, March 30, setting up a re-entry where the spacecraft will safely burn up in Earth’s atmosphere.
The Northrop Grumman spacecraft arrived at the space station Aug. 6, 2024, following launch on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida.
Get breaking news, images, and features from the space station on the station blog, Instagram, Facebook, and X.
Learn more about Cygnus’ mission and the International Space Station at:
-end-
Julian Coltre / Josh Finch
Headquarters, Washington
202-358-1100
julian.n.coltre@nasa.gov / joshua.a.finch@nasa.gov
Sandra Jones
Johnson Space Center, Houston
281-483-5111
sandra.p.jones@nasa.gov
Bizarre fossil may have been an entirely new type of life
Bizarre fossil may have been an entirely new type of life
Introducing the new ESA's hyper performance computing
The high-performance computing (HPC) environment will be available for scientific research and technological development activities, supporting all ESA programmes as well as the researchers and small- and medium-enterprises from Member States.
Upcoming Marvel Phase 6 movies & TV shows: The Fantastic Four, Avengers: Doomsday & more
Week in images: 17-21 March 2025
Week in images: 17-21 March 2025
Discover our week through the lens
NASA has made the first radio telescope observations on the moon
NASA has made the first radio telescope observations on the moon
Apollo 10, Soyuz capsule among artifacts moving to new space gallery in London
3D Printing: Saving Weight and Space at Launch
Additive manufacturing, also known as 3D printing, is regularly used on the ground to quickly produce a variety of devices. Adapting this process for space could let crew members create tools and parts for maintenance and repair of equipment on the spot, rather than trying to bring along every item that might be needed.
The ability to manufacture things in space is especially important in planning for missions to the Moon and Mars because additional supplies cannot quickly be sent from Earth and cargo capacity is limited.
Research on the International Space Station is helping to develop the capability to address multiple needs using 3D printing.
NASA astronaut Jeanette Epps configures the Metal 3D Printer to produce experimental samples from stainless steel.NASAMetal 3D Printer, a current investigation from ESA (European Space Agency), tests 3D printing of small metal parts in microgravity. Results could improve understanding of the function, performance, and operations of 3D printing in space with metal, as well as the quality, strength, and characteristics of printed parts. This work also could benefit applications on Earth that use metal, such as the automotive, aeronautical, and maritime industries.
Printing with plastic NASA Astronaut Butch Wilmore holds a ratchet wrench created with the 3D Printing in Zero-G printer.NASA3D Printing in Zero-G sent the first 3D printer, developed by NASA’s Marshall Space Flight Center and Redwire (formerly Made in Space), to the space station in 2014. The printer used a process that feeds a continuous thread of plastic through a heated extruder and onto a tray layer by layer to create an object. The investigation produced more than a dozen parts, including a ratchet wrench, showing that researchers could send a design from the ground to the system on the station more than 200 miles above.
Comparing the parts made in space with those made on the ground showed that microgravity had no significant effect on the process.
Redwire then developed the Additive Manufacturing Facility (AMF), sent to the station in 2015. Researchers evaluated its mechanical performance and found improvements in tension strength and flexibility compared to the earlier demonstration, helping to further the technology for this type of manufacturing on Earth and in space.
In 2015 and 2016, Portable On Board 3D Printer tested an automated printer developed by the Italian Space Agency to produce plastic objects in space. The investigation provided insight into how the material behaves in microgravity, which could support development of European additive manufacturing technology for use in space.
Printing with other materials NASA astronaut Anne McClain installs the Refabricator in Feb. 2019.NASAAnother approach is recycling plastic – for example, turning a used 3D-printed wrench into a spoon and creating items from the plastic bags and packing foam needed to send supplies to space. This technology could help reduce the amount of raw material at launch and cut down on the volume of waste that must be disposed of on long journeys. The Refabricator, a machine created by Tethers Unlimited Inc, tested this approach and successfully manufactured its first object. Some issues occurred in the bonding process, likely caused by microgravity, but assessment of the material could help determine whether there are limits to how many times plastic can be re-used. Ultimately, researchers plan to create a database of parts that can be manufactured using the space station’s capabilities.
The Redwire Regolith Print facility before launch to the space station.Redwire SpaceRedwire Regolith Print (RRP) tested another kind of feedstock for 3D manufacturing in orbit, a simulated version of regolith, the dust present on the surface of the Moon and other planetary bodies. Results could lead to development of technology for using regolith to construct habitats and other structures rather than bringing raw materials from Earth.
The space station also has hosted studies of a form of 3D printing called biological printing or bioprinting. This process uses living cells, proteins, and nutrients as raw materials to potentially produce human tissues for treating injury and disease, which could benefit future crews and patients on Earth.
Other manufacturing techniques tested on the orbiting lab include producing optical fibers and growing crystals for synthesizing pharmaceuticals and fabricating semiconductors.
Get your monthly sci-fi hit with our Watch This Space entertainment newsletter
Classrooms decorated like woodlands seem to slow myopia progression
Classrooms decorated like woodlands seem to slow myopia progression
Movie Math Reveals the Formula for a Hollywood Blockbuster
Most movies follow one of six emotional arcs. Which one sells the most tickets?
Andrea Patassa | Astronaut Reserve Member, Test Pilot, Spiderman? | ESA Explores #11
Meet Andrea Patassa—test pilot, aviator, passionate outdoor adventurer, and Member of ESA’s Astronaut Reserve.
In this miniseries, we take you on a journey through the ESA Astronaut Reserve, diving into the first part of their Astronaut Reserve Training (ART) at the European Astronaut Centre (EAC) near Cologne, Germany. Our “ARTists” are immersing themselves in everything from ESA and the International Space Station programme to the European space industry and institutions. They’re gaining hands-on experience in technical skills like spacecraft systems and robotics, alongside human behaviour, scientific lessons, scuba diving, and survival training.
ESA’s Astronaut Reserve Training programme is all about building Europe’s next generation of space explorers—preparing them for the opportunities of future missions in Earth orbit and beyond.
This interview was recorded in November 2024.
You can also listen to this episode on all major podcast platforms.
Keep exploring with ESA Explores!