Feed aggregator
Sols 4481-4483: Humber Pie
- Curiosity Home
- Science
- News and Features
- Multimedia
- Mars Missions
- Mars Home
2 min read
Sols 4481-4483: Humber Pie NASA’s Mars rover Curiosity acquired this image using its Front Hazard Avoidance Camera (Front Hazcam) on March 14, 2025 — sol 4480, or Martian day 4,480 of the Mars Science Laboratory mission — at 08:53:19 UTC.NASA/JPL-CaltechWritten by Michelle Minitti, Planetary Geologist at Framework
Earth planning date: Friday, March 14, 2025
The rover successfully arrived at the “Humber Park” outcrop which, on this fine “Pi Day” on Earth, we could convince ourselves looked like a pie with a sandy interior and a rough and rocky crust. We can only hope our instruments are as excited to tuck into this outcrop as the Curiosity team is to eat our pizzas and favorite pies (for me, pumpkin) this afternoon and evening.
MAHLI gets a big serving of rock structures from the Humber Park “crust” with three separate imaging targets. One observation, at the target “Yerba Buena Ridge,” covers structures expressed across the front of the outcrop in the above image. A second target, “Sepulveda Pass,” has intriguing texture that warranted multiple flavors of stereo imaging. The final target, which MAHLI shared with APXS, was “South Fork.” It was the clearest place to put APXS down on the rough bedrock blocks.
ChemCam also feasted on rock chemistry from an array of targets with different textures. “Ridge Route” covered a low-lying bedrock slab with the fine layering we have seen consistently through the sulfate unit, while “Toyon Canyon” covered a lumpier portion of the Humber Park outcrop above Yerba Buena Ridge. The “Mount Lawlor” target was a mix of Ridge Route and Toyon Canyon — layered, but on a high-standing portion of the outcrop that also had some unusual chains of pits. ChemCam added two long distance mosaics on “Gould Mesa” to the menu, which captured a variety of structures on this impressive butte about 100 meters ahead of the rover.
Mastcam focused on covering the whole of Humber Park with a stereo mosaic but also added small mosaics across a trough in the sand and a bedrock block with potential cross bedding at “Rancho Los Feliz.” Because just imaging this side of Humber Park was not enough, Mastcam and Navcam worked closely with the rover drivers to plan a mid-drive mosaic of the other side of the outcrop so we fully capture Humber Park’s “crust.”
Our environmental observations were not just pie in the sky but will help us monitor the chemistry of and the amount of dust in the atmosphere, and record clouds and dust devils crossing above and around us.
Share Details Last Updated Mar 18, 2025 Related Terms Explore More 3 min read Sols 4479-4480: What IS That Lumpy, Bumpy Rock? Article 4 days ago 3 min read Navigating a Slanted River Article 5 days ago 2 min read Sols 4477-4478: Bumping Back to Business Article 6 days ago Keep Exploring Discover More Topics From NASA MarsMars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars ResourcesExplore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover BasicsEach robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science GoalsThe key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
The world's climate is in uncharted territory, warns major report
The world's climate is in uncharted territory, warns major report
Suni Williams and Butch Wilmore Finally Get to Come Home to Earth
After an unexpectedly long mission in orbit, astronauts Suni Williams and Butch Wilmore finally arrived home. Their SpaceX Dragon capsule detached from the International Space Station early Tuesday morning, beginning the de-orbiting process. Nick Hague and Aleksandr Gorbunov are also on board and, following a nail biting descent, finally at 7.58pm EDT today.
Can Any Nearby Supernova Cause a Mass Extinction?
The most dangerous parts of a supernova explosion are the outputs like X-rays and gamma rays. Even though they only share a small fraction of a supernova’s power, they are extremely dangerous.
SpaceX launches 23 Starlink internet satellites to orbit from Florida's Space Coast (video, photos)
Welcome Home! NASA’s SpaceX Crew-9 Back on Earth After Science Mission
NASA’s SpaceX Crew-9 completed the agency’s ninth commercial crew rotation mission to the International Space Station on Tuesday, splashing down safely in a SpaceX Dragon spacecraft off the coast of Tallahassee, Florida, in the Gulf of America.
NASA astronauts Nick Hague, Suni Williams, and Butch Wilmore, and Roscosmos cosmonaut Aleksandr Gorbunov, returned to Earth at 5:57 p.m. EDT. Teams aboard SpaceX recovery vessels retrieved the spacecraft and its crew. After returning to shore, the crew will fly to NASA’s Johnson Space Center in Houston and reunite with their families.
“We are thrilled to have Suni, Butch, Nick, and Aleksandr home after their months-long mission conducting vital science, technology demonstrations, and maintenance aboard the International Space Station,” said NASA acting Administrator Janet Petro. “Per President Trump’s direction, NASA and SpaceX worked diligently to pull the schedule a month earlier. This international crew and our teams on the ground embraced the Trump Administration’s challenge of an updated, and somewhat unique, mission plan, to bring our crew home. Through preparation, ingenuity, and dedication, we achieve great things together for the benefit of humanity, pushing the boundaries of what is possible from low Earth orbit to the Moon and Mars.”
Hague and Gorbunov lifted off at 1:17 p.m. Sept. 28, 2024, on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida. The next day, they docked to the forward-facing port of the station’s Harmony module. Williams and Wilmore launched aboard Boeing’s Starliner spacecraft and United Launch Alliance Atlas V rocket on June 5, 2024, from Space Launch Complex 41 as part of the agency’s Boeing Crew Flight Test. The duo arrived at the space station on June 6. In August, NASA announced the uncrewed return of Starliner to Earth and integrated Wilmore and Williams as part of the space station’s Expedition 71/72 for a return on Crew-9. The crew of four undocked at 1:05 a.m. Tuesday to begin the trip home.
Williams and Wilmore traveled 121,347,491 miles during their mission, spent 286 days in space, and completed 4,576 orbits around Earth. Hague and Gorbunov traveled 72,553,920 miles during their mission, spent 171 days in space, and completed 2,736 orbits around Earth. The Crew-9 mission was the first spaceflight for Gorbunov. Hague has logged 374 days in space over his two missions, Williams has logged 608 days in space over her three flights, and Wilmore has logged 464 days in space over his three flights.
Throughout its mission, Crew-9 contributed to a host of science and maintenance activities and technology demonstrations. Williams conducted two spacewalks, joined by Wilmore for one and Hague for another, removing a radio frequency group antenna assembly from the station’s truss, collecting samples from the station’s external surface for analysis, installing patches to cover damaged areas of light filters on an X-ray telescope, and more. Williams now holds the record for total spacewalking time by a female astronaut, with 62 hours and 6 minutes outside of station, and is fourth on the all-time spacewalk duration list.
The American crew members conducted more than 150 unique scientific experiments and technology demonstrations between them, with over 900 hours of research. This research included investigations on plant growth and quality, as well as the potential of stem cell technology to address blood diseases, autoimmune disorders, and cancers. They also tested lighting systems to help astronauts maintain circadian rhythms, loaded the first wooden satellite for deployment, and took samples from the space station’s exterior to study whether microorganisms can survive in space.
The Crew-9 mission was the fourth flight of the Dragon spacecraft named Freedom. It also previously supported NASA’s SpaceX Crew-4, Axiom Mission 2, and Axiom Mission 3. The spacecraft will return to Florida for inspection and processing at SpaceX’s refurbishing facility at Cape Canaveral Space Force Station, where teams will inspect the Dragon, analyze data on its performance, and begin processing for its next flight.
The Crew-9 flight is part of NASA’s Commercial Crew Program, and its return to Earth follows on the heels of NASA’s SpaceX Crew-10 launch, which docked to the station on March 16, beginning another long-duration science expedition.
The goal of NASA’s Commercial Crew Program is safe, reliable, and cost-effective transportation to and from the space station and low Earth orbit. The program provides additional research time and has increased opportunities for discovery aboard humanity’s microgravity testbed for exploration, including helping NASA prepare for human exploration of the Moon and Mars.
Learn more about NASA’s Commercial Crew Program at:
https://www.nasa.gov/commercialcrew
-end-
Amber Jacobson / Joshua Finch
Headquarters, Washington
202-358-1100
amber.c.jacobson@nasa.gov / joshua.a.finch@nasa.gov
Kenna Pell / Sandra Jones
Johnson Space Center, Houston
281-483-5111
kenna.m.pell@nasa.gov / sandra.p.jones@nasa.gov
Steve Siceloff / Stephanie Plucinsky
Kennedy Space Center, Florida
321-867-2468
steven.p.siceloff@nasa.gov / stephanie.n.plucinsky@nasa.gov
Never-'stuck’ Starliner astronauts return to Earth at last with Crew-9 duo in SpaceX Dragon splashdown
After 286 Days in Space, NASA Astronauts Return to Earth with a Splash
NASA astronauts Butch Wilmore and Suni Williams had been “stuck” at the International Space Station since June 6, 2024, after Boeing’s Starliner, the vehicle they rode to get there, ran into multiple hardware problems
The Square Kilometre Array Releases its First Test Image
The Square Kilometre Array (SKA) remains under construction with completion still a few years away. However, engineers recently provided an exciting preview having installed 1,024 of the planned 131,072 antennas and capturing a test image of the sky. The image covers about 25 square degrees and reveals 85 of the brightest known galaxies in the region. Once fully operational, the complete array is expected to detect more than 600,000 galaxies within this same area!
Astronomers Used Meteorites to Create a Geological Map of the Main Asteroid Belt
More than one million asteroids larger than 1 km exist in the main asteroid belt (MAB) between Mars and Jupiter. Their roots are in a much smaller number of larger asteroids that broke apart because of collisions, and the MAB is populated with debris fields from these collisions. Researchers have created a geological map of the MAB by tracking meteorites that fell to Earth and determining which of these debris fields they originated in.
Watch the sun set over the moon in epic video from private Blue Ghost lunar lander
JWST Cycle 4 Spotlight, Part 3: Supermassive Black Holes and Cosmic Noon
Welcome back to our five-part examination of Webb's Cycle 4 General Observations program. In the first and second installments, we examined how some of Webb's 8,500 hours of prime observing time this cycle will be dedicated to exoplanet characterization and the study of galaxies that existed at "Cosmic Dawn" - ca. less than 1 billion years after the Big Bang.
NASA Science Continues After Firefly’s First Moon Mission Concludes
After landing on the Moon with NASA science and technology demonstrations March 2, Firefly Aerospace’s Blue Ghost Mission 1 concluded its mission March 16. Analysis of data returned to Earth from the NASA instruments continues, benefitting future lunar missions.
As part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign, Firefly’s Blue Ghost lunar lander delivered 10 NASA science and technology instruments to the Mare Crisium basin on the near side of the Moon. During the mission, Blue Ghost captured several images and videos, including imaging a total solar eclipse and a sunset from the surface of the Moon. The mission lasted for about 14 days, or the equivalent of one lunar day, and multiple hours into the lunar night before coming to an end.
“Firefly’s Blue Ghost Mission 1 marks the longest surface duration commercial mission on the Moon to date, collecting extraordinary science data that will benefit humanity for decades to come,” said Nicky Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington. “With NASA’s CLPS initiative, American companies are now at the forefront of an emerging lunar economy that lights the way for the agency’s exploration goals on the Moon and beyond.”
All 10 NASA payloads successfully activated, collected data, and performed operations on the Moon. Throughout the mission, Blue Ghost transmitted 119 gigabytes of data back to Earth, including 51 gigabytes of science and technology data. In addition, all payloads were afforded additional opportunities to conduct science and gather more data for analysis, including during the eclipse and lunar sunset.
“Operating on the Moon is complex; carrying 10 payloads, more than has ever flown on a CLPS delivery before, makes the mission that much more impressive,” said Joel Kearns, deputy associate administrator for exploration, Science Mission Directorate, NASA Headquarters. “Teams are eagerly analyzing their data, and we are extremely excited for the expected scientific findings that will be gained from this mission.”
Among other achievements, many of the NASA instruments performed first-of-their-kind science and technology demonstrations, including:
- The Lunar Instrumentation for Subsurface Thermal Exploration with Rapidity is now the deepest robotic planetary subsurface thermal probe, drilling up to 3 feet and providing a first-of-its kind demonstration of robotic thermal measurements at varying depths.
- The Lunar GNSS Receiver Experiment acquired and tracked Global Navigation Satellite Systems (GNSS) signals, from satellite networks such as GPS and Galileo, for the first time enroute to and on the Moon’s surface. The LuGRE payload’s record-breaking success indicates that GNSS signals could complement other navigation methods and be used to support future Artemis missions. It also acts as a stepping stone to future navigation systems on Mars.
- The Radiation Tolerant Computer successfully operated in transit through Earth’s Van Allen belts, as well as on the lunar surface into the lunar night, verifying solutions to mitigate radiation effects on computers that could make future missions safer for equipment and more cost effective.
- The Electrodynamic Dust Shield successfully lifted and removed lunar soil, or regolith, from surfaces using electrodynamic forces, demonstrating a promising solution for dust mitigation on future lunar and interplanetary surface operations.
- The Lunar Magnetotelluric Sounder successfully deployed five sensors to study the Moon’s interior by measuring electric and magnetic fields. The instrument allows scientists to characterize the interior of the Moon to depths up to 700 miles, or more than half the distance to the Moon’s center.
- The Lunar Environment heliospheric X-ray Imager captured a series of X-ray images to study the interaction of the solar wind and Earth’s magnetic field, providing insights into how space weather and other cosmic forces surrounding Earth affect the planet.
- The Next Generation Lunar Retroreflector successfully reflected and returned laser light from two Lunar Laser Ranging Observatories, returning measurements allowing scientists to precisely measure the Moon’s shape and distance from Earth, expanding our understanding of the Moon’s inner structure.
- The Stereo Cameras for Lunar Plume-Surface Studies instrument captured about 9,000 images during the spacecraft’s lunar descent and touchdown on the Moon, providing insights into the effects engine plumes have on the surface. The payload also operated during the lunar sunset and into the lunar night.
- The Lunar PlanetVac was deployed on the lander’s surface access arm and successfully collected, transferred, and sorted lunar soil using pressurized nitrogen gas, demonstrating a low-cost, low-mass solution for future robotic sample collection.
- The Regolith Adherence Characterization instrument examined how lunar regolith sticks to a range of materials exposed to the Moon’s environment, which can help test, improve, and protect spacecraft, spacesuits, and habitats from abrasive lunar dust or regolith.
The data captured will benefit humanity in many ways, providing insights into how space weather and other cosmic forces may impact Earth. Establishing an improved awareness of the lunar environment ahead of future crewed missions will help plan for long-duration surface operations under Artemis.
To date, five vendors have been awarded 11 lunar deliveries under CLPS and are sending more than 50 instruments to various locations on the Moon, including the lunar South Pole and far side.
Learn more about NASA’s CLPS initiative at:
-end-
Alise Fisher
Headquarters, Washington
202-617-4977
alise.m.fisher@nasa.gov
Natalia Riusech / Nilufar Ramji
Johnson Space Center, Houston
281-483-5111
nataila.s.riusech@nasa.gov / nilufar.ramji@nasa.gov
Antonia Jaramillo
Kennedy Space Center, Florida
321-501-8425
antonia.jaramillobotero@nasa.gov
NASA, USGS, Industry Explore Off-World Resource Development
NASA and the U.S. Geological Survey (USGS) welcomed a community of government, industry, and international partners to explore current technology needs around natural resources – both on Earth and “off world.” During a workshop held in February at NASA’s Ames Research Center in California’s Silicon Valley, participants discussed technologies that will improve the ability to detect, assess, and develop resources, such as critical minerals and water ice to be found on our Moon, other planets and their moons, and asteroids.
More than 300 attendees, taking part in person and virtually, worked to define the elements needed to find and map resources beyond Earth to support the growing space economy. These include sensors to image the subsurface of planetary bodies, new platforms for cost-effective operations, and technologies that enable new concepts of operation for these systems.
Scientific studies and measurements of off-world sites will be key to detecting and characterizing resources of interest, creating an important synergy with technology goals and helping to answer fundamental science questions as well.
The workshop was the third in a series called Planetary Subsurface Exploration for Science and Resources. By leveraging the expertise gained from decades of resource exploration on this planet and that of the space technology and space mission communities, NASA and USGS aim to spark collaboration across industry, government, and academia to develop new concepts and technologies.
Participants in the NASA-USGS off-world resources workshop take part in a panel review of technology opportunities, Feb. 13, 2025, at NASA’s Ames Research Center. The panelists were Dave Alfano, chief of the Intelligent Systems Division at NASA’s Ames Research Center in California’s Silicon Valley (left); Rob Mueller, a senior technologist and principal investigator in the Exploration Research and Technology Programs Directorate at NASA’s Kennedy Space Center in Florida; Christine Stewart, CEO at Austmine Limited in Australia; Gerald Sanders, in-situ resource utilization system capability lead for NASA’s Space Technology Mission Directorate based at NASA’s Johnson Space Center in Houston; and Jonathon Ralston, Integrated Mining Research Team lead at Australia’s Commonwealth Scientific and Industrial Research Organisation. NASA/Brandon Torres NavarreteBest-Yet ‘Baby Pictures’ of the Universe Unveiled
The final results from the Atacama Cosmology Telescope offer the sharpest, most sensitive view of the early cosmos that anyone has ever seen
Watch how SpaceX makes 15,000 Starlink satellite internet kits a day (video)
Dust Obscures Our View of the Cosmos. Now it's Mapped Out in the Milky Way
We see the Universe through a glass darkly, or more accurately, through a dusty window. Interstellar dust is scattered throughout the Milky Way, which limits our view depending on where we look. In some directions, the effects of dust are small, but in other regions the view is so dusty it's called the Zone of Avoidance. Dust biases our view of the heavens, but fortunately a new study has created a detailed map of cosmic dust so we can better account for it.
We Finally Know the Mass of Brand New Neutron Stars
When massive stars explode as supernovae, they can leave behind neutron stars. Other than black holes, these are the densest objects we know of. However, their masses are difficult to determine. New research is making headway.