“...all the past is but a beginning of a beginning, and that all that is and has been is but the twilight of dawn.”

— H.G. Wells
1902

Feed aggregator

Where Does Gold Come From? NASA Data Has Clues

NASA News - Tue, 04/29/2025 - 8:48am
This artist’s concept depicts a magnetar – a type of neutron star with a strong magnetic field – losing material into space. Shown as thin green lines, the magnetic field lines influence the movement of charged material around the magnetar. NASA/JPL-Caltech

Since the big bang, the early universe had hydrogen, helium, and a scant amount of lithium. Later, some heavier elements, including iron, were forged in stars. But one of the biggest mysteries in astrophysics is: How did the first elements heavier than iron, such as gold, get created and distributed throughout the universe?

“It’s a pretty fundamental question in terms of the origin of complex matter in the universe,” said Anirudh Patel, a doctoral student at Columbia University in New York. “It’s a fun puzzle that hasn’t actually been solved.”

Patel led a study using 20-year-old archival data from NASA and ESA telescopes that finds evidence for a surprising source of a large amount of these heavy elements: flares from highly magnetized neutron stars, called magnetars. The study is published in The Astrophysical Journal Letters.

Study authors estimate that magnetar giant flares could contribute up to 10% of the total abundance of elements heavier than iron in the galaxy. Since magnetars existed relatively early in the history of the universe, the first gold could have been made this way.

“It’s answering one of the questions of the century and solving a mystery using archival data that had been nearly forgotten,” said Eric Burns, study co-author and astrophysicist at Louisiana State University in Baton Rouge.

How could gold be made at a magnetar?

Neutron stars are the collapsed cores of stars that have exploded. They are so dense that one teaspoon of neutron star material, on Earth, would weigh as much as a billion tons. A magnetar is a neutron star with an extremely powerful magnetic field.

On rare occasions, magnetars release an enormous amount of high-energy radiation when they undergo “starquakes,” which, like earthquakes, fracture the neutron star’s crust. Starquakes may also be associated with powerful bursts of radiation called magnetar giant flares, which can even affect Earth’s atmosphere. Only three magnetar giant flares have been observed in the Milky Way and the nearby Large Magellanic Cloud, and seven outside.

Patel and colleagues, including his advisor Brian Metzger, professor at Columbia University and senior research scientist at the Flatiron Institute in New York, have been thinking about how radiation from giant flares could correspond to heavy elements forming there. This would happen through a “rapid process” of neutrons forging lighter atomic nuclei into heavier ones.   

Protons define the element’s identity on the periodic table: hydrogen has one proton, helium has two, lithium has three, and so on. Atoms also have neutrons which do not affect identity, but do add mass. Sometimes when an atom captures an extra neutron the atom becomes unstable and a nuclear decay process happens that converts a neutron into a proton, moving the atom forward on the periodic table. This is how, for example, a gold atom could take on an extra neutron and then transform into mercury. 

In the unique environment of a disrupted neutron star, in which the density of neutrons is extremely high, something even stranger happens: single atoms can rapidly capture so many neutrons that they undergo multiple decays, leading to the creation of a much heavier element like uranium.

When astronomers observed the collision of two neutron stars in 2017 using NASA telescopes and the Laser Interferometer Gravitational wave Observatory (LIGO), and numerous telescopes on the ground and in space that followed up the initial discovery, they confirmed that this event could have created gold, platinum, and other heavy elements. But neutron star mergers happen too late in the universe’s history to explain the earliest gold and other heavy elements. Recent research by co-authors of the new study — Jakub Cehula of Charles University in Prague, Todd Thompson of The Ohio State University, and Metzger — has found that magnetar flares can heat and eject neutron star crustal material at high speeds, making them a potential source.

A rupture in the crust of a highly magnetized neutron star, shown here in an artist’s rendering, can trigger high-energy eruptions. Credit: NASA’s Goddard Space Flight Center/S. Wiessinger New clues in old data

At first, Metzger and colleagues thought that the signature from the creation and distribution of heavy elements at a magnetar would appear in the visible and ultraviolet light, and published their predictions. But Burns in Louisiana wondered if there could be a gamma-ray signal bright enough to be detected, too. He asked Metzger and Patel to check, and they found that there could be such a signature.

“At some point, we said, ‘OK, we should ask the observers if they had seen any,’” Metzger said.

Burns looked up the gamma ray data from the last giant flare that has been observed, which was in December 2004. He realized that while scientists had explained the beginning of the outburst, they had also identified a smaller signal from the magnetar, in data from ESA (European Space Agency)’s INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL), a recently retired mission with NASA contributions. “It was noted at the time, but nobody had any conception of what it could be,” Burns said.

Metzger remembers that Burns thought he and Patel were “pulling his leg” because the prediction from their team’s model so closely matched the mystery signal in the 2004 data. In other words, the gamma ray signal detected over 20 years ago corresponded to what it should look like when heavy elements are created and then distributed in a magnetar giant flare.

Patel was so excited, “I wasn’t thinking about anything else for the next week or two. It was the only thing on my mind,” he said.

Researchers supported their conclusion using data from two NASA heliophysics missions: the retired RHESSI (Reuven Ramaty High Energy Solar Spectroscopic Imager) and the ongoing NASA’s Wind satellite, which had also observed the magnetar giant flare. Other collaborators on the new study included Jared Goldberg at the Flatiron Institute.

Next steps in the magnetar gold rush

NASA’s forthcoming COSI (Compton Spectrometer and Imager) mission can follow up on these results. A wide-field gamma ray telescope, COSI is expected to launch in 2027 and will study energetic phenomena in the cosmos, such as magnetar giant flares. COSI will be able to identify individual elements created in these events, providing a new advancement in understanding the origin of the elements. It is one of many telescopes that can work together to look for “transient” changes across the universe.

Researchers will also follow up on other archival data to see if other secrets are hiding in observations of other magnetar giant flares.

“It very cool to think about how some of the stuff in my phone or my laptop was forged in this extreme explosion of the course of our galaxy’s history,” Patel said.

Media Contact

Elizabeth Landau
Headquarters, Washington
202-358-0845
elandau@nasa.gov

Categories: NASA

If HPV Infection Increases Heart Disease Risk, Can Vaccination Lower It?

Scientific American.com - Tue, 04/29/2025 - 7:00am

A vaccine that blocks infection with the human papillomavirus has helped to lower cervical cancer rates. Researchers want to find out if the shot also prevents heart attacks

Categories: Astronomy

Biomass launched to count forest carbon

ESO Top News - Tue, 04/29/2025 - 6:30am

ESA’s groundbreaking Biomass satellite, designed to provide unprecedented insights into the world’s forests and their crucial role in Earth’s carbon cycle, has been launched. The satellite lifted off aboard a Vega-C rocket from Europe’s Spaceport in Kourou, French Guiana, on 29 April at 11:15 CEST (06:15 local time).

Categories: Astronomy

In the Starlight: Jason Phillips’ Unexpected Path to Johnson Procurement

NASA News - Tue, 04/29/2025 - 6:00am

Sometimes an unexpected turn in a carefully planned career path leads to surprising opportunities for growth and exciting new experiences. For Jason Phillips, that turn steered toward NASA’s Johnson Space Center in Houston.

Official portrait of Jason Phillips.NASA/Bill Stafford

Phillips joined the U.S. Air Force in 1994 and planned to serve for at least 20 years, but in 2010—while preparing for a third deployment after 14 years of service—he found himself facing a medical separation from the military. “In a very short amount of time I had to figure out next steps for a career and lifestyle that no longer involved being an active duty servicemember,” he said.

Thanks to a special hiring authority obtained by Peterson Air Force Base’s Office of Procurement, Phillips was able to transition to the civil service and apply his experience as an Air Force contracting officer to a new role. Phillips returned home to Houston and shifted from a Defense Department job to NASA as a contract specialist, spending his first 10 years at Johnson supporting all aspects of the Center Operations Directorate. He was then tasked with the challenge of serving as a lead contracting officer within Johnson’s procurement office for the International Space Station Program.  

Phillips currently leads a team of highly skilled acquisition professionals who support a variety of contracts that sustain the International Space Station’s operations, maximize science conducted aboard the orbiting laboratory, and pave the way for a seamless transition to commercial low Earth orbit destinations. He oversees the team’s daily work, which includes strategic planning and acquisition of contracts valued at more than $21 billion. Specifically, the team handles NASA’s Cargo Resupply Services contracts, a cooperative agreement with the Center for the Advancement of Science in Space, and the Research, Engineering & Mission Integration Services-2 contract.

Jason Phillips (left) and Johnson Office of Procurement colleagues attend a National Contract Management Association conference at the Gilruth Center in 2016. NASA/James Blair

 “I am responsible for providing high-quality procurement products, services, and support to ensure that executive and technical customer needs are met and exceeded while maintaining compliance with applicable statutes, regulations, and guidelines,” he said. That work has included modifying the program’s original acquisition strategy to minimize delays, target cost savings, and emphasize critical infrastructure and services such as the Environmental Control and Life Support Systems aboard the space station.

Phillips enjoys seeing the direct impact of his work. “This career field almost always allows me to see the fruits of my labor, whether I am procuring office supplies and equipment or managing construction projects,” he said, noting that the remodeling of Johnson’s building 20 was his first project at the center. He is also proud to have supported the career progression of fellow procurement professionals and technical staff. “It’s a nod to those who came before me and provided me with their leadership and technical knowledge of procurement.”

Jason Phillips received an Individual Contribution Award for continuous support in Johnson’s Office of Procurement from NASA Assistant Administrator for Procurement Karla Jackson in 2022.NASA/Robert Markowitz

Phillips said that staying humble and accountable is key to finding mission-focused solutions that benefit everyone. He also cautioned against making assumptions. “The people around you are very willing to offer thoughts and insights into a solution to your problem,” he said. “There is so much knowledge to be gained by listening.”

He encourages the Artemis Generation to seek opportunities to expand their technical knowledge and grow professionally. “Help yourself so that you may help others.”

Explore More 2 min read NASA Gathers Experts to Discuss Emerging Technologies in Astrophysics Article 10 mins ago 2 min read How Are We Made of Star Stuff? We Asked a NASA Expert: Episode 58 Article 20 hours ago 5 min read NASA 3D Wind Measuring Laser Aims to Improve Forecasts from Air, Space Article 21 hours ago
Categories: NASA

See a wafer-thin crescent moon leapfrog Jupiter this week

Space.com - Tue, 04/29/2025 - 6:00am
The crescent moon will seemingly jump over the planet Jupiter between the nights of April 29 and April 30.
Categories: Astronomy

ESA’s Biomass mission launches on Vega-C

ESO Top News - Tue, 04/29/2025 - 5:30am
Video: 00:02:01

ESA’s state-of-the-art Biomass satellite has launched aboard a Vega-C rocket from Europe’s Spaceport in French Guiana. The rocket lifted off on 29 April 2025 at 11:15 CEST (06:15 local time).

In orbit, this latest Earth Explorer mission will provide vital insights into the health and dynamics of the world’s forests, revealing how they are changing over time and, critically, enhancing our understanding of their role in the global carbon cycle. It is the first satellite to carry a fully polarimetric P-band synthetic aperture radar for interferometric imaging. Thanks to the long wavelength of P-band, around 70 cm, the radar signal can slice through the whole forest layer to measure the ‘biomass’, meaning the woody trunks, branches and stems, which is where trees store most of their carbon.

Vega-C is the evolution of the Vega family of rockets and delivers increased performance, greater payload volume and improved competitiveness.

Access the related broadcast quality video material.

Categories: Astronomy

40-year-old spy satellite photos are helping find forgotten land mines in Cambodia

Space.com - Tue, 04/29/2025 - 5:00am
Long-forgotten mine fields in Cambodia are being revealed in decades-old, recently declassified images from U.S. military satellites.
Categories: Astronomy

Brand-new Falcon 9 rocket sends 23 Starlink satellites to orbit on SpaceX's 2nd launch of the day (video)

Space.com - Mon, 04/28/2025 - 11:42pm
SpaceX sent another batch of Starlink satellites to orbit tonight (April 28), its second liftoff of the day.
Categories: Astronomy

What Amazon’s Project Kuiper versus SpaceX’s Starlink Satellite Mega Constellation Wars Mean for Earth

Scientific American.com - Mon, 04/28/2025 - 7:30pm

Amazon has launched its first operational Project Kuiper satellites in its attempt to compete with SpaceX’s Starlink—but experts remain concerned about space debris and astronomy

Categories: Astronomy

Amazon launches 27 satellites to begin building huge 'Project Kuiper' internet constellation (video)

Space.com - Mon, 04/28/2025 - 7:10pm
A United Launch Alliance Atlas V rocket launched the first big batch of satellites for Amazon's Project Kuiper broadband constellation to low Earth orbit today (April 28).
Categories: Astronomy

Vega-C rocket launches European forest-monitoring 'Biomass' satellite to orbit (video)

Space.com - Mon, 04/28/2025 - 6:00pm
The European Space Agency's Biomass forest-monitoring satellite headed toward orbit early Tuesday morning (April 29) on the fourth-ever launch of the Vega-C rocket.
Categories: Astronomy

US plans massive health database to study autism – will it work?

New Scientist Space - Space Headlines - Mon, 04/28/2025 - 5:48pm
The US government’s proposal for a vast health database to study autism could improve our understanding of the condition – but there is a risk it could do more harm than good
Categories: Astronomy

US plans massive health database to study autism – will it work?

New Scientist Space - Cosmology - Mon, 04/28/2025 - 5:48pm
The US government’s proposal for a vast health database to study autism could improve our understanding of the condition – but there is a risk it could do more harm than good
Categories: Astronomy

Pine Barrens ablaze as seen from orbit | Space photo of the day for April 28, 2025

Space.com - Mon, 04/28/2025 - 5:23pm
Satellite imagery reveals scope of damage from one of the largest fires New Jersey has seen in decades.
Categories: Astronomy

SpaceX Falcon 9 rocket launches 1st of 2 planned Starlink launches in 2 days, lands booster at sea (video)

Space.com - Mon, 04/28/2025 - 5:02pm
A SpaceX Falcon 9 rocket lifted off from Vandenberg Space Force Base.
Categories: Astronomy

'I didn't look too good because I didn't feel too good': NASA astronaut Don Pettit explains why he seemed so unwell after landing (video)

Space.com - Mon, 04/28/2025 - 5:00pm
Seventy-year-old NASA astronaut Don Pettit looked pretty peaked shortly after returning to Earth from the ISS this month. And he was pretty peaked — he'd just thrown up on the Kazakh steppe.
Categories: Astronomy

NASA Moon Observing Instrument to Get Another Shot at Lunar Ops

NASA News - Mon, 04/28/2025 - 4:00pm
The Mass Spectrometer Observing Lunar Operations (MSolo) for NASA’s Volatile Investigating Polar Exploration Rover (VIPER) mission is prepared for packing inside a laboratory in the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida on Feb. 21, 2023. MSolo is a commercial off-the-shelf mass spectrometer modified to work in space and it will help analyze the chemical makeup of landing sites on the Moon, as well as study water on the lunar surface.NASA/Kim Shiflett

A NASA-developed technology that recently proved its capabilities in the harsh environment of space will soon head back to the Moon to search for gases trapped under the lunar surface thanks to a new Cooperative Research and Development Agreement between NASA and commercial company Magna Petra Corp.

The Mass Spectrometer Observing Lunar Operations (MSOLO) successfully demonstrated the full range of its hardware in lunar conditions during the Intuitive Machines 2 mission earlier this year. Under the new agreement, a second MSOLO, mounted on a commercial rover, will launch to the Moon no earlier than 2026. Once on the lunar surface, it will measure low molecular weight volatiles in hopes of inferring the presence of rare isotopes, such as Helium-3, which is theorized to exist, trapped in the regolith, or lunar dust, of the Moon.

“This new mission opportunity will help us determine what volatiles are present in the lunar surface, while also providing scientific insight for Magna Petra’s goals,” said Roberto Aguilar Ayala, research physicist at NASA’s Kennedy Space Center in Florida. “Learning more about the lunar volatiles and their isotopes supports NASA’s goal of sustaining long-term human space exploration. We will need to extract resources locally to enhance the capabilities of our astronauts to further exploration opportunities on the lunar surface.”

The MSOLO instrument will be integrated on a commercial rover, selected by Magna Petra. The rover will allow MSOLO to gather the data needed for researchers to understand which low-molecular weight gases reside within the Moon’s surface.

NASA will work with the partner to integrate MSOLO so that it will function properly with the rover, and the partner will analyze and share data in real time with NASA to understand the location of these volatiles on the Moon and their ability to be extracted in the future.

Magna Petra hopes to understand the presence of Helium-3 isotope within the Moon’s surface, with the ultimate goal of collecting it and bringing it back to Earth for use in a variety of industries, including energy production through nuclear fusion, quantum computing, health care, and specialized laboratory equipment.

The MSOLO instrument began as a commercial off-the-shelf mass spectrometer designed to analyze volatiles used in the manufacturing of semi-conductors, which helped keep NASA’s development costs down. NASA modified the device to withstand the rigors of spaceflight and the Moon’s harsh conditions. On its first journey to the Moon, MSOLO was part of the Polar Resources Ice Mining Experiment 1.

Signed on April 2, the reimbursable agreement is the first of its kind established at NASA Kennedy. Under the agreement, Magna Petra will reimburse NASA for costs such as supporting MSOLO integration and testing with the rover, pre-mission preparation and mission operations of the instruments, and expertise in system engineering, avionics, and software.

“This innovative agreement promises to provide valuable data to both partners,” said Jonathan Baker, chief of Spaceport Development at NASA Kennedy. “This approach demonstrates NASA’s commitment to finding unique ways to work with commercial industry to help advance technology in a fiscally responsible way and enabling innovation for the benefit of humankind.”

Throughout the mission, NASA will retain ownership of MSOLO. Once the mission is complete, the instrument will no longer have access to power and communications and will remain on the surface of the Moon. The valuable data gathered during the mission will be submitted to the Planetary Data System for public dissemination.

Categories: NASA

NASA Moon Observing Instrument to Get Another Shot at Lunar Ops

NASA - Breaking News - Mon, 04/28/2025 - 4:00pm
The Mass Spectrometer Observing Lunar Operations (MSolo) for NASA’s Volatile Investigating Polar Exploration Rover (VIPER) mission is prepared for packing inside a laboratory in the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida on Feb. 21, 2023. MSolo is a commercial off-the-shelf mass spectrometer modified to work in space and it will help analyze the chemical makeup of landing sites on the Moon, as well as study water on the lunar surface.NASA/Kim Shiflett

A NASA-developed technology that recently proved its capabilities in the harsh environment of space will soon head back to the Moon to search for gases trapped under the lunar surface thanks to a new Cooperative Research and Development Agreement between NASA and commercial company Magna Petra Corp.

The Mass Spectrometer Observing Lunar Operations (MSOLO) successfully demonstrated the full range of its hardware in lunar conditions during the Intuitive Machines 2 mission earlier this year. Under the new agreement, a second MSOLO, mounted on a commercial rover, will launch to the Moon no earlier than 2026. Once on the lunar surface, it will measure low molecular weight volatiles in hopes of inferring the presence of rare isotopes, such as Helium-3, which is theorized to exist, trapped in the regolith, or lunar dust, of the Moon.

“This new mission opportunity will help us determine what volatiles are present in the lunar surface, while also providing scientific insight for Magna Petra’s goals,” said Roberto Aguilar Ayala, research physicist at NASA’s Kennedy Space Center in Florida. “Learning more about the lunar volatiles and their isotopes supports NASA’s goal of sustaining long-term human space exploration. We will need to extract resources locally to enhance the capabilities of our astronauts to further exploration opportunities on the lunar surface.”

The MSOLO instrument will be integrated on a commercial rover, selected by Magna Petra. The rover will allow MSOLO to gather the data needed for researchers to understand which low-molecular weight gases reside within the Moon’s surface.

NASA will work with the partner to integrate MSOLO so that it will function properly with the rover, and the partner will analyze and share data in real time with NASA to understand the location of these volatiles on the Moon and their ability to be extracted in the future.

Magna Petra hopes to understand the presence of Helium-3 isotope within the Moon’s surface, with the ultimate goal of collecting it and bringing it back to Earth for use in a variety of industries, including energy production through nuclear fusion, quantum computing, health care, and specialized laboratory equipment.

The MSOLO instrument began as a commercial off-the-shelf mass spectrometer designed to analyze volatiles used in the manufacturing of semi-conductors, which helped keep NASA’s development costs down. NASA modified the device to withstand the rigors of spaceflight and the Moon’s harsh conditions. On its first journey to the Moon, MSOLO was part of the Polar Resources Ice Mining Experiment 1.

Signed on April 2, the reimbursable agreement is the first of its kind established at NASA Kennedy. Under the agreement, Magna Petra will reimburse NASA for costs such as supporting MSOLO integration and testing with the rover, pre-mission preparation and mission operations of the instruments, and expertise in system engineering, avionics, and software.

“This innovative agreement promises to provide valuable data to both partners,” said Jonathan Baker, chief of Spaceport Development at NASA Kennedy. “This approach demonstrates NASA’s commitment to finding unique ways to work with commercial industry to help advance technology in a fiscally responsible way and enabling innovation for the benefit of humankind.”

Throughout the mission, NASA will retain ownership of MSOLO. Once the mission is complete, the instrument will no longer have access to power and communications and will remain on the surface of the Moon. The valuable data gathered during the mission will be submitted to the Planetary Data System for public dissemination.

Categories: NASA

China's Shenzhou 20 astronauts take control of Tiangong space station (video)

Space.com - Mon, 04/28/2025 - 4:00pm
China's outgoing Shenzhou 19 crew have handed over the reins of the Tiangong space station to a new set of astronauts.
Categories: Astronomy

How Are We Made of Star Stuff? We Asked a NASA Expert: Episode 58

NASA News - Mon, 04/28/2025 - 3:51pm

2 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) https://youtu.be/63uNNcCpxHI

How are we made of star stuff?

Well, the important thing to understand about this question is that it’s not an analogy, it’s literally true.

The elements in our bodies, the elements that make up our bones, the trees we see outside, the other planets in the solar system, other stars in the galaxy. These were all part of stars that existed well before our Sun and Earth and solar system were even formed.

The universe existed for billions of years before we did. And all of these elements that you see on the periodic table, you see carbon and oxygen and silicon and iron, the common elements throughout the universe, were all put there by previous generations of stars that either blew off winds like the Sun blows off a solar wind, or exploded in supernova explosions and thrust their elements throughout the universe.

These are the same things that we can trace with modern telescopes, like the Hubble Telescope and the James Webb Space Telescope, the Chandra X-ray Observatory. These are all elements that we can map out in the universe with these observatories and trace back to the same things that form us and the elemental abundances that we see in stars now are the same things that we see in the Earth’s crust, we see in asteroids. And so we know that these are the same elements that were once part of these stars.

So the question of, “How are we made of star stuff?”, in the words of Carl Sagan, “The cosmos is within us. We are made of star stuff. We are a way for the universe to know itself.”

[END VIDEO TRANSCRIPT]

Full Episode List

Full YouTube Playlist

Share Details Last Updated Apr 28, 2025 Related Terms Explore More 2 min read NASA Gathers Experts to Discuss Emerging Technologies in Astrophysics Article 10 mins ago 3 min read Help Classify Galaxies Seen by NASA’s James Webb Space Telescope!

NASA needs your help identifying the shapes of thousands of galaxies in images taken by…

Article 2 hours ago
6 min read Where Does Gold Come From? NASA Data Has Clues

Since the big bang, the early universe had hydrogen, helium, and a scant amount of…

Article 3 hours ago
Keep Exploring Discover Related Topics

Missions

Humans in Space

Climate Change

Solar System

Categories: NASA