Oh, would it not be absurd if there was no objective state?
What if the unobserved always waits, insubstantial,
till our eyes give it shape?

— Peter Hammill

Astronomy

Cepheid Variables are the Bedrock of the Cosmic Distance Ladder. Astronomers are Trying to Understand them Better

Universe Today - Fri, 06/28/2024 - 12:18am

One of the most fundamental questions astronomers ask about an object is “What’s its distance?” For very faraway objects, they use classical Cepheid variable stars as “distance rulers”. Astronomers call these pulsating stars “standard candles”. Now there’s a whole team of them precisely clocking their speeds along our line of sight.

What makes a classical Cepheid a “standard candle” in the darkness of the Universe? It’s that pulsation. Not only does a Cepheid grow larger in a regular rhythm, but its brightness changes over predictable periods of time. In the early 1900s, astronomer Henrietta Leavitt studied thousands of these stars. She found something pretty interesting: there’s a strong relationship between a Cepheid’s luminosity and its pulsation period. And that’s a useful relationship.

When you compare a Cepheid’s luminosity to its pulsation period, you can derive the star’s distance. This relationship appears to be true for all known Cepheids. That’s why they’re considered an important part of the cosmic distance ladder. They’re the main benchmark for scaling the huge distances between galaxies and galaxy clusters.

Types of Cepheids

There are different “flavors” of Cepheids. The “classical” ones have pulsation periods ranging from a few days to a few months. They’re all more massive than the Sun and can be up to a hundred thousand times more luminous. Their radii can change pretty drastically during a cycle—some grow by millions of kilometers and then shrink. Type II Cepheids have pulsation periods between 1 and 50 days and are usually very old, low-mass stars. There are other types, including anomalous Cepheids with very short periods. Scientists also know about double-mode Cepheids with “heartbeats” that pulsate in two or more modes.

Some pretty well-known stars are Cepheid variables. For example, Polaris—the well-known “North Star” is one, as is RR Puppis, Delta Cephei, and Eta Aquilae—all visible from Earth. Why these stars pulsate is still being studied but here’s a very basic look at their process. The core of the star produces heat which heats the outer layers. They expand, and then cool. Radiation is escaping, which makes the star appear brighter. The cooler gas contracts under gravity and makes the star look smaller and cooler. Of course, the devil is in the details, which is why astronomers want to know more about the processes these stars undergo.

Polaris A (Pole Star) with its two stellar companions, Polaris Ab and Polaris B. Polaris itself is a Cepheid type variable star. Artists impression. Credit: NASA

However, it turns out Cepheids are not exactly easy to study. For one thing, it’s tough to measure their pulsations and radial velocities accurately. In addition, some have companion stars and the presence of a nearby star complicates any measurements. For another thing, different instruments and measuring methods give slightly different results, which doesn’t help astronomers understand those stars any better.

Precision Measurements of Cepheid Variables

Measuring the intricacies of Cepheid pulsations requires spectroscopic techniques that can measure light from stars and break it down into its component wavelengths. That reveals a lot of data about a star, including its chemical makeup, temperature, and motions in space.

Calibrated Period-luminosity Relationship for Cepheid variables. Courtesy Spitzer Space Telescope/IPAC.

A worldwide consortium of astronomers led by Richard I. Anderson at Switzerland’s École Polytechnique Fédérale de Lausanne (EPFL) is measuring specific properties of classical and other Cepheids using two high-resolution spectrographs. One is called HERMES on La Palma in the northern hemisphere and the other is CORALIE in Chile. They both detected tiny shifts in the light of target Cepheids. Those shifts gave valuable information about the motions of the stars.

“Tracing Cepheid pulsations with high-definition velocimetry gives us insights into the structure of these stars and how they evolve,” he said. “In particular, measurements of the speed at which the stars expand and contract along the line of sight—so-called radial velocities—provide a crucial counterpart to precise brightness measurements from space. However, there has been an urgent need for high-quality radial velocities because they are expensive to collect and because few instruments are capable of collecting them.”

VELOCE is on the Job

The team’s measurement project is called the VELOCE Project—short for VELOcities of CEpheids. It’s 12-year-long collaboration among astronomers and astrophysicists. Anderson began the VELOCE project during his Ph.D work at the University of Geneva, continued it as a postdoc in the US and Germany, and has now completed it at EPFL.

According to Ph.D student Giordano Viviani, the data from the project are already enabling new discoveries about Cepheids. “The wonderful precision and long-term stability of the measurements have enabled interesting new insights into how Cepheids pulsate,” Viviani said. “The pulsations lead to changes in the line-of-sight velocity of up to 70 km/s, or about 250,000 km/h. We have measured these variations with a typical precision of 130 km/h (37 m/s), and in some cases as good as 7 km/h (2 m/s), which is roughly the speed of a fast walking human.”

Uncovering New Details about these Pulsating Stars

The VELOCE project’s precision measurements also revealed some strange facts about these stars. For example, there’s an interesting phenomenon called the Hertzsprung Progression. It describes double-peaked bumps in a Cepheid’s pulsations. Astronomers aren’t quite sure yet why these bumps occur. But, they could give some insight into the structure of Cepheid variables, particularly the so-called “classical” ones.

Other Cepheids show very complex variability, and changes in their radial velocities are not always consistent with predicted periods, according to postdoctoral researcher Henryka Netzel. “This suggests that there are more intricate processes occurring within these stars, such as interactions between different layers of the star, or additional (non-radial) pulsation signals that may present an opportunity to determine the structure of Cepheid stars by asteroseismology,” Netzel said.

As part of their study, the team also measured 77 Cepheids that are part of binary systems. One in three Cepheids “lives” in a binary system, and often those unseen companions are detectable by velocity measurements. Characterizing the different “flavors” of Cepheids and the intricacies of their pulsations has larger implications than determining their radial velocities and bumps in their periods, according to Anderson. “Understanding the nature and physics of Cepheids is important because they tell us about how stars evolve in general, and because we rely on them for determining distances and the expansion rate of the Universe,” Anderson said, noting that VELOCE is also providing a valuable “cross-check” with Gaia measurements. It’s on track to conduct a large-scale survey of Cepheid radial velocity measurements.

Cross-checking with Gaia

Additionally, VELOCE provides the best available cross-checks for similar, but less precise, measurements from the ESA mission Gaia. That spacecraft is on track to conduct the largest survey of Cepheid radial velocity measurements. Data from that mission provides a growing three-dimensional map of millions of stars in the Milky Way and beyond. It not only charts their positions but also their motions (including radial velocity), as well as temperatures and compositions. Combined with high-precision data from VELOCE about Cepheids, astronomers should soon be able to get a handle on stellar and galactic evolutionary history.

For More Information

High-precision Measurements Challenge the Understanding of Cepheids
VELOcities of CEpheids (VELOCE)

The post Cepheid Variables are the Bedrock of the Cosmic Distance Ladder. Astronomers are Trying to Understand them Better appeared first on Universe Today.

Categories: Astronomy

Hubble's NGC 1546

APOD - Thu, 06/27/2024 - 8:00pm

Hubble's NGC 1546


Categories: Astronomy, NASA

Family Files Claim against NASA after Space Junk Crashes into Florida Home

Scientific American.com - Thu, 06/27/2024 - 6:20pm

Florida family files claim against NASA to compensate them after space debris crashed through their home in March

Categories: Astronomy

NASA is flying planes low over the US to make maps of air pollution sources

Space.com - Thu, 06/27/2024 - 6:00pm
NASA is flying aircraft low over the US in order to learn where, exactly, greenhouse gases are coming from. The results should help the agency fight causes of human-driven climate change.
Categories: Astronomy

Tour the famous 'Pillars of Creation' with gorgeous new 3D views from Hubble and JWST (video)

Space.com - Thu, 06/27/2024 - 5:00pm
Data from the Hubble and James Webb space telescopes combine to create an awe-inspiring visualization of the Pillars of Creation.
Categories: Astronomy

Watch 2 tiny satellites deploy from the ISS in dazzling time-lapse video

Space.com - Thu, 06/27/2024 - 4:00pm
Two small satellites were recently ejected from the International Space Station to begin scientific experiments in low Earth orbit, and their leap into freedom was caught on camera.
Categories: Astronomy

SpaceX Wins $843-Million NASA Contract to Destroy the International Space Station

Scientific American.com - Thu, 06/27/2024 - 3:30pm

The world will be watching—literally—as SpaceX tackles possibly what might be its highest-stakes endeavor to date: safely destroying the beloved International Space Station

Categories: Astronomy

Trilobites preserved in incredible detail by Pompeii-style eruption

New Scientist Space - Space Headlines - Thu, 06/27/2024 - 3:00pm
Trilobites are one of the most common fossils we know, but normally only their hard exoskeleton is preserved. Now, researchers have discovered a site that was buried by a Pompeii-style volcanic eruption, leaving the arthropods outlined in exquisite detail
Categories: Astronomy

Trilobites preserved in incredible detail by Pompeii-style eruption

New Scientist Space - Cosmology - Thu, 06/27/2024 - 3:00pm
Trilobites are one of the most common fossils we know, but normally only their hard exoskeleton is preserved. Now, researchers have discovered a site that was buried by a Pompeii-style volcanic eruption, leaving the arthropods outlined in exquisite detail
Categories: Astronomy

Missing Milky Way black holes are bad news for this dark matter theory

Space.com - Thu, 06/27/2024 - 3:00pm
After 20 years watching stars in the Large Magellanic Cloud for hints of a phenomenon predicted by Einstein, scientists throw doubt on the connection between ancient black holes and dark matter.
Categories: Astronomy

Everything we know about the 'Borderlands' movie: Release date, plot, cast & more

Space.com - Thu, 06/27/2024 - 2:00pm
Adventure and loot await on Pandora, the most dangerous planet in the galaxy. Here’s everything we know about the Borderlands movie
Categories: Astronomy

How Delicate Comb Jellies Withstand Ocean Depths But Melt Away on Land

Scientific American.com - Thu, 06/27/2024 - 2:00pm

Scientists finally know how a gelatinous deep-sea creature keeps its cells from paralysis under pressure

Categories: Astronomy

The Supreme Court’s Idaho Decision Lets Me Keep Saving Lives

Scientific American.com - Thu, 06/27/2024 - 2:00pm

In its decision in Idaho v. U.S. the Supreme Court has decided to uphold the ability of emergency medicine providers like me to use abortion to stabilize or save a life

Categories: Astronomy

Hubble Captures Infant Stars Transforming a Nebula

NASA Image of the Day - Thu, 06/27/2024 - 1:15pm
Named RCW 7, the nebula is located just over 5300 light-years from Earth in the constellation Puppis. Nebulae are areas of space that are rich in the raw material needed to form new stars. Under the influence of gravity, parts of these molecular clouds collapse until they coalesce into protostars, surrounded by spinning discs of leftover gas and dust. In the case of RCW 7, the protostars forming here are particularly massive, giving off strongly ionising radiation and fierce stellar winds that have transformed it into what is known as a H II region. The ultraviolet radiation from the massive protostars excites the hydrogen, causing it to emit light and giving this nebula its soft pinkish glow. Here Hubble is studying a particular massive protostellar binary named IRAS 07299-1651, still in its glowing cocoon of gas in the curling clouds towards the top of the nebula. To expose this star and its siblings, this image was captured using the Wide Field Camera 3 in near-infrared light. The massive protostars here are brightest in ultraviolet light, but they emit plenty of infrared light which can pass through much of the gas and dust around them and be seen by Hubble.
Categories: Astronomy, NASA

The moon on Earth: Astrobotic unveils 'proving ground' for future lunar missions

Space.com - Thu, 06/27/2024 - 1:00pm
Pittsburgh-based company Astrobotic has unveiled a lunar testing ground to help prepare for a range of coming moon missions.
Categories: Astronomy

Supreme Court Allows Emergency Abortions in Idaho—For Now

Scientific American.com - Thu, 06/27/2024 - 12:15pm

A Supreme Court decision allows emergency abortion care despite a state ban in Idaho while the case works its way through lower courts

Categories: Astronomy

The last woolly mammoths on Earth died from bad luck, not inbreeding

New Scientist Space - Cosmology - Thu, 06/27/2024 - 12:00pm
A genetic study of woolly mammoths found on an isolated Arctic island shows they reached a stable population that lasted millennia, so were probably wiped out by a random event rather than inbreeding
Categories: Astronomy

The last woolly mammoths on Earth died from bad luck, not inbreeding

New Scientist Space - Space Headlines - Thu, 06/27/2024 - 12:00pm
A genetic study of woolly mammoths found on an isolated Arctic island shows they reached a stable population that lasted millennia, so were probably wiped out by a random event rather than inbreeding
Categories: Astronomy

Skeletons reveal ancient Egyptian scribes had bad posture at work

New Scientist Space - Cosmology - Thu, 06/27/2024 - 12:00pm
The skeletons of ancient Egyptian scribes reveal the health toll of sitting on the floor while performing administrative tasks like writing
Categories: Astronomy

Skeletons reveal ancient Egyptian scribes had bad posture at work

New Scientist Space - Space Headlines - Thu, 06/27/2024 - 12:00pm
The skeletons of ancient Egyptian scribes reveal the health toll of sitting on the floor while performing administrative tasks like writing
Categories: Astronomy