"For the sage, time is only of significance in that within it the steps of becoming can unfold in clearest sequence."

— I Ching

Astronomy

Is This Gamma-Ray Burst a Shredded Star in Disguise?

Sky & Telescope Magazine - 2 hours 52 min ago

Is GRB 191019A a typical burst of gamma rays from a dying star, an anomalously long burst from colliding objects, or something else entirely?

The post Is This Gamma-Ray Burst a Shredded Star in Disguise? appeared first on Sky & Telescope.

Categories: Astronomy

Solar Max is Coming. The Sun Just Released Three X-Class Flares

Universe Today - 4 hours 39 sec ago

The Sun is increasing its intensity on schedule, continuing its approach to solar maximum. In just over a 24-hour period on May 5 and May 6, 2024, the Sun released three X-class solar flares measuring at X1.3, X1.2, and X4.5. Solar flares can impact radio communications and electric power grids here on Earth, and they also pose a risk to spacecraft and astronauts in space.

NASA released an animation that shows the solar flares blasting off the surface of the rotating Sun, below.

NASA’s Solar Dynamics Observatory captured these images of the solar flares — as seen in the bright flashes in the upper right — on May 5 and May 6, 2024. The image shows a subset of extreme ultraviolet light that highlights the extremely hot material in flares and which is colorized in teal. Credit: NASA/SDO

Predicting when solar maximum will occur is not easy and the timing of it can only be confirmed after it happens. But NOAA’s Space Weather Prediction Center (SWPC) currently estimates that solar maximum will likely occur between May 2024 and early 2026. The Sun goes through a cycle of high and low activity approximately every 11 years, driven by the Sun’s magnetic field and indicated by the frequency and intensity of sunspots and other activity on the surface. The SWPC has been working hard to have a better handle on predicting solar cycles and activity. Find out more about that here.  

Solar flares are explosions on the Sun that release powerful bursts of energy and radiation coming from the magnetic energy associated with the sunspots. The more sunspots, the greater potential for flares.

Flares are classified based on a system similar to the Richter scale for earthquakes, which divides solar flares according to their strength. X-class is the most intense category of flares, while the smallest ones are A-class, followed by B, C, M and then X. Each letter represents a 10-fold increase in energy output. So an X is ten times an M and 100 times a C. The number that follows the letter provides more information about its strength. The higher the number, the stronger the flare.

Flares are our solar system’s largest explosive events. They are seen as bright areas on the Sun and can last from minutes to hours. We typically see a solar flare by the photons (or light) it releases, occurring in various wavelengths.

Sometimes, but not always, solar flares can be accompanied by a coronal mass ejection (CME), where giant clouds of particles from the Sun are hurled out into space.  If we’re lucky, these charged particles will provide a stunning show of auroras here on Earth while not impacting power grids or satellites.

Thankfully, missions like the Solar Dynamics Observatory, Solar Orbiter, the Parker Solar Probe are providing amazing views and new details about the Sun, helping astronomers to learn more about the dynamic ball of gas that powers our entire Solar System.

The post Solar Max is Coming. The Sun Just Released Three X-Class Flares appeared first on Universe Today.

Categories: Astronomy

Bird flu has hit US cows but tracking efforts fall woefully short

The strategy for tracking bird flu in US dairy cattle falls worryingly short of what is needed to prevent the outbreak from widening and potentially spreading to humans
Categories: Astronomy

Bird flu has hit US cows but tracking efforts fall woefully short

New Scientist Space - Cosmology - 4 hours 34 min ago
The strategy for tracking bird flu in US dairy cattle falls worryingly short of what is needed to prevent the outbreak from widening and potentially spreading to humans
Categories: Astronomy

'Warp drives' may actually be possible someday, new study suggests

Space.com - 5 hours 33 min ago
A new study provides some theoretical underpinning to sci-fi warp drives, suggesting that the superfast propulsion tech may not forever elude humanity.
Categories: Astronomy

Implantable heart pump could let children wait for transplants at home

New Scientist Space - Cosmology - 6 hours 34 min ago
An implantable heart pump could help children with heart failure awaiting transplants forego bulky devices that require long hospital stays
Categories: Astronomy

Implantable heart pump could let children wait for transplants at home

An implantable heart pump could help children with heart failure awaiting transplants forego bulky devices that require long hospital stays
Categories: Astronomy

Rocket issue pushes 1st astronaut launch of Boeing's Starliner capsule to May 10

Space.com - 6 hours 35 min ago
The historic first crewed launch of Boeing's new Starliner astronaut taxi has been pushed to no earlier than Friday (May 10), due to an issue with the vehicle's rocket ride.
Categories: Astronomy

Boeing Starliner 1st astronaut flight: Live updates

Space.com - Mon, 05/06/2024 - 9:17pm
Boeing will launch its first-ever Starliner astronaut mission for NASA as early as this evening (May 6).
Categories: Astronomy

Boeing Starliner's historic 1st astronaut launch delayed by Atlas V rocket issue

Space.com - Mon, 05/06/2024 - 9:15pm
An issue with ULA's Atlas V rocket scrubbed the historic 1st crewed launch attempt of Boeing's Starliner capsule on May 6. May 10 is the earliest possible launch date now.
Categories: Astronomy

New Evidence for Our Solar System’s Ghost: Planet Nine

Universe Today - Mon, 05/06/2024 - 9:10pm

Does another undetected planet languish in our Solar System’s distant reaches? Does it follow a distant orbit around the Sun in the murky realm of comets and other icy objects? For some researchers, the answer is “almost certainly.”

The case for Planet Nine (P9) goes back at least as far as 2016. In that year, astronomers Mike Brown and Konstantin Batygin published evidence pointing to its existence. Along with colleagues, they’ve published other work supporting P9 since then.

There’s lots of evidence for the existence of P9, but none of it has reached the threshold of definitive proof. The main evidence concerns the orbits of Extreme Trans-Neptunian Objects (ETNOs). They exhibit a peculiar clustering that indicates a massive object. P9 might be shepherding these objects along on their orbits.

This orbital diagram shows Planet Nine (lime green colour, labelled “P9”) and several extreme trans-Neptunian objects. Each background square is 100 AU across. Image Credit: By Tomruen – Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=68955415

The names Brown and Batygin, both Caltech astronomers, come up often in regard to P9. Now, they’ve published another paper along with colleagues Alessandro Morbidelli and David Nesvorny, presenting more evidence supporting P9.

It’s titled “Generation of Low-Inclination, Neptune-Crossing TNOs by Planet Nine.” It’s published in The Astrophysical Journal Letters.

“The solar system’s distant reaches exhibit a wealth of anomalous dynamical structure, hinting at the presence of a yet-undetected, massive trans-Neptunian body—Planet Nine (P9),” the authors write. “Previous analyses have shown how orbital evolution induced by this object can explain the origins of a broad assortment of exotic orbits.”

To dig deeper into the issue, Batygin, Brown, Morbidelli, and Nesvorny examined Trans-Neptunian Objects (TNOs) with more conventional orbits. They carried out N-body simulations of these objects that included everything from the tug of giant planets and the Galactic Tide to passing stars.

29 objects in the Minor Planet Database have well-characterized orbits with a > 100 au, inclinations < 40°, and q (perihelia) < 30 au. Of those 29, 17 have well-quantified orbits. The researchers focused their simulations on these 17.

This figure from the research shows the 17 planets, their orbits, their perihelions, semi-major axes, and their inclinations. Image Credit: Batygin et al. 2024.

The researchers’ goal was to analyze these objects’ origins and determine if they could be used as a probe for P9. To accomplish this, they conducted two separate sets of simulations. One set with P9 in the Solar System and one set without.

The simulations began at t=300 million years, meaning 300 million years into the Solar System’s existence. At that time, “intrinsic dynamical evolution in the outer solar system is still in its infancy,” the authors explain, while enough time has passed for the Solar System’s birth cluster of stars to disperse and for the giant planets to have largely concluded their migrations. They ended up with about 2000 objects, or particles, in the simulation with perihelia greater than 30 au and semimajor axes between 100 and 5000 au. This ruled out all Neptune-crossing objects from the simulation’s starting conditions. “Importantly, this choice of initial conditions is inherently linked with the assumed orbit of P9,” they point out.

The figure below shows the evolution of some of the 2,000 objects in the simulations.

These panels show the evolution of selected particles within the calculations that attain nearly planar (i < 40°) Neptune-crossing orbits within the final 500 Myr of the integration. “Collectively, these examples indicate that P9-facilitated dynamics can naturally produce objects similar to those depicted in Figure 1” (the previous figure), the researchers explain. The top, middle, and bottom panels depict the time series of the semimajor axis, perihelion distance, and inclination, respectively. The rate of chaotic diffusion greatly increases when particles attain Neptune-crossing trajectories. Image Credit: Batygin et al. 2024.

These are interesting results, but the researchers point out that they in no way prove the existence of P9. These orbits could be generated by other things like the Galactic Tide. In their next step, they examined their perihelion distribution.

This figure from the research shows the perihelion distance for particles in a simulation with P9 (left) and without P9 (right.) The P9-free simulation shows a “rapid decline in perihelion distribution with decreasing q, as Neptune’s orbit forms a veritable dynamical barrier,” the researchers explain. Image Credit: Batygin et al. 2024.

“Accounting for observational biases, our results reveal that the orbital architecture of this group of objects aligns closely with the predictions of the P9-inclusive model,” the authors write. “In stark contrast, the P9-free scenario is statistically rejected at a ~5? confidence level.”

The authors point out that something other than P9 could be causing the orbital unruliness. The star was born in a cluster, and cluster dynamics could’ve set these objects on their unusual orbits before the cluster dispersed. A number of Earth-mass rogue planets could also be responsible, influencing the outer Solar System’s architecture for a few hundred million years before being removed somehow.

However, the authors chose their 17 TNOs for a reason. “Due to their low inclinations and perihelia, these objects experience rapid orbital chaos and have short dynamical lifetimes,” the authors write. That means that whatever is driving these objects into these orbits is ongoing and not a relic from the past.

An important result of this work is that it results in falsifiable predictions. And we may not have to wait long for the results to be tested. “Excitingly, the dynamics described here, along with all other lines of evidence for P9, will soon face a rigorous test with the operational commencement of the VRO (Vera Rubin Observatory),” the authors write.

A drone’s view of the Rubin Observatory under construction in 2023. The 8.4-meter is getting closer to completion and first light in 2025. The Observatory could provide answers to many outstanding issues, like the existence of Planet Nine. Image Credit: Rubin Observatory/NSF/AURA/A. Pizarro D

If P9 is real, what is it? It could be the core of a giant planet ejected during the Solar System’s early days. It could be a rogue planet that drifted through interstellar space until being caught up in our Solar System’s gravitational milieu. Or it could be a planet that formed on a distant orbit, and a passing star shepherded it into its eccentric orbit. If astronomers can confirm P9’s existence, the next question will be, ‘what is it?’

If you’re interested at all in how science operates, the case of P9 is very instructive. Eureka moments are few and far between in modern astronomy. Evidence mounts incrementally, accompanied by discussion and counterpoint. Objections are raised and inconsistencies pointed out, then methods are refined and thinking advances. What began as one over-arching question is broken down into smaller, more easily-answered ones.

But the big question dominates for now and likely will for a while longer: Is there a Planet Nine?

Stay tuned.

The post New Evidence for Our Solar System’s Ghost: Planet Nine appeared first on Universe Today.

Categories: Astronomy

'Sparkly' narwhal toy trades sea for space as Boeing Starliner zero-g indicator

Space.com - Mon, 05/06/2024 - 8:19pm
What has one horn, two crewmates and shares a name with its ride into orbit? "Calypso," the plush sequined narwhal that is flying on the crew flight test of "Calypso," Boeing's CST-100 Starliner.
Categories: Astronomy

<p><a href="https://apod.nasa.gov/apod

APOD - Mon, 05/06/2024 - 8:00pm

What happens to a star that goes near a black hole?


Categories: Astronomy, NASA

3 ATs

APOD - Mon, 05/06/2024 - 8:00pm

Despite their resemblance to


Categories: Astronomy, NASA

Temperatures on Exoplanet WASP 43b

APOD - Mon, 05/06/2024 - 8:00pm

Temperatures on Exoplanet WASP 43b


Categories: Astronomy, NASA

M100: A Grand Design Spiral Galaxy

APOD - Mon, 05/06/2024 - 8:00pm

Majestic on a truly cosmic scale, M100 is appropriately known as a


Categories: Astronomy, NASA

<p><a href="https://apod.nasa.gov/apod

APOD - Mon, 05/06/2024 - 8:00pm


Categories: Astronomy, NASA

<p><a href="https://apod.nasa.gov/apod

APOD - Mon, 05/06/2024 - 8:00pm

The star system GK Per is known to be associated


Categories: Astronomy, NASA

<p><a href="https://apod.nasa.gov/apod

APOD - Mon, 05/06/2024 - 8:00pm

This is how the Sun disappeared from the daytime sky last month.


Categories: Astronomy, NASA

NASA Takes Six Advanced Tech Concepts to Phase II

Universe Today - Mon, 05/06/2024 - 5:37pm

It’s that time again. NIAC (NASA Innovative Advanced Concepts) has announced six concepts that will receive funding and proceed to the second phase of development. This is always an interesting look at the technologies and missions that could come to fruition in the future.

The six chosen ones will each receive $600,000 in funding to pursue the ideas for the next two years. NASA expects each team to use the two years to address both technical and budgetary hurdles for their concepts. When this second phase comes to an end, some of the concepts could advance to the third stage.

“These diverse, science fiction-like concepts represent a fantastic class of Phase II studies,” said John Nelson, NIAC program executive at NASA Headquarters in Washington. “Our NIAC fellows never cease to amaze and inspire, and this class definitely gives NASA a lot to think about in terms of what’s possible in the future.”

Here they are.

Fluidic Telescope (FLUTE): Enabling the Next Generation of Large Space Observatories

Telescopes are built around mirrors and lenses, whether they’re ground-based or space-based. The JWST’s large mirror is 6.5 meters in diameter but had to be folded up to fit inside the rocket that launched it and then unfolded in space. That’s a tricky engineering feat. Engineers are building larger and larger ground-based telescopes, too, and they’re equally tricky to design and build. Could FLUTE change this?

FLUTE envisions lenses made of fluid, and the FLUTE team’s concept describes a space telescope with a primary mirror 50 meters (164 ft.) in diameter. Creating glass lenses for a telescope this large isn’t realistic. “Using current technologies, scaling up space telescopes to apertures larger than approximately 33 feet (10 meters) in diameter does not appear economically viable,” the FLUTE website states.

But in the microgravity of space, fluids behave in an intriguing way. Surface tension holds liquids together at their surfaces. We can see this on Earth, where some insects use surface tension to glide along the surfaces of ponds and other bodies of water. Also, on Earth, surface tension holds small drops of water together. But in space, away from Earth’s dominating gravity, surface tension is much more effective. There, water maintains the most energy efficient shape there is: a sphere.

Another force governs water: adhesion. Adhesion causes liquids to cling to surfaces. In the microgravity of space, adhesion can bind liquid to a circular, ring-like frame. Then, due to surface tension, the liquid will naturally adopt a spherical shape. If the liquid can be made to bulge inward rather than outward, and if the liquid is reflective enough, it creates a telescope mirror.

The FLUTE team would like to make optical components in space. The liquid would stay in the liquid state and form an extremely smooth light-collecting surface. As a bonus, FLUTE would also self-repair after any micrometeorite strike.

The FLUTE study is led by Edward Balaban from NASA’s Ames Research Center in California’s Silicon Valley. The FLUTE team has already done some tests on the ISS and on zero-g flights.

FLUTE researchers experience microgravity aboard Zero Gravity Corporation’s G-FORCE ONE aircraft while operating an experiment payload during a series of parabolic flights. Image Credits: Zero Gravity Corporation/Steve Boxall

Pulsed Plasma Rocket (PPR): Shielded, Fast Transits for Humans to Mars

It takes too long to get to Mars. It’s a six-month journey each way, plus time spent on the surface. All that time in microgravity, exposure to radiation, and other challenges make the trip very difficult for astronauts. PPR aims to fix that.

PPR isn’t a launch vehicle for escaping Earth’s gravity well. It would be launched on a heavy lift vehicle like SLS and then sent on its way.

PPR was originally derived from the Pulsed Fission Fusion concept. But it’s more affordable, and also smaller and simpler. PPR might generate 100,000 N of thrust with a specific impulse (Isp) of 5,000 seconds. Those are good numbers. PPR could reduce the travel time to Mars to two months.

It has other benefits as well. It could propel larger spacecraft to Mars on trips longer than two months, carrying more cargo and also provide heavier shielding against cosmic rays. “The PPR enables a whole new era in space exploration,” the team writes.

PPR is basically a fusion system ignited by fission. It’s similar to a thermonuclear weapon. But rather than a run-away explosion, the combined energy is directed through a magnetic nozzle to produce thrust.

In phase two, the PPR team intends to optimize the engine design to produce more specific impulse, perform proof-of-concept experiments for major components, and design a shielded ship for human missions to Mars.

This study is led by Brianna Clements with Howe Industries in Scottsdale, Arizona.

The Great Observatory for Long Wavelengths (GO-LoW)

One of modern astronomy’s last frontiers is the low-frequency radio sky. Earth’s ionosphere blocks our ground-based telescopes from seeing it. And space-based telescopes can’t see it either. It’s because the wavelengths are so long, in the meter to the kilometre scale. Only extremely massive telescopes could see these waves clearly.

GO-LoW is a potential solution. It’s a space-based array of thousands of identical Small-Sats arranged as an interferometer. It would sit at an Earth-Sun Lagrange point and observe exoplanet and stellar magnetic fields. Exoplanet magnetic fields emit radio waves between 100 kHz and 15 MHz. The GO-LoW team says their interferometer could perform the first survey of exoplanetary magnetic fields within 5 parsecs (16 light years.) Magnetic fields tell scientists a lot about an exoplanet, its evolution, and its processes.

GO-LoW is a Great Observatory concept to open the last unexplored window of the electromagnetic (EM) spectrum. The Earth’s ionosphere becomes opaque at approximately 10m wavelengths, so GO-LoW will join Great Observatories like HST and JWST in space to access this spectral window. Image Credits: NASA/GO-LoW

While there’s no doubt that large telescopes like the JWST are powerful and effective, they’re extremely complex and expensive. And if something goes wrong with a critical component, the mission could end.

GO-LoW takes a different approach. By using thousands of individual satellites, the system is more resilient. GO-LoW would have a hybrid constellation. Some of the satellites would be smaller and simpler satellites called “listener nodes” (LN,) while a smaller number of them would be “communication and computation” nodes (CCNs). They would collect data from the LNs, process it, and beam it back to Earth.

The GO-LoW says it would only take a few heavy launches to place an entire 100,000 satellite constellation in space.

The technology for the SmallSats already exists. The challenge the GO-LoW team will address with their phase two funding is developing a system that will harness everything together effectively. “The coordination of all these physical elements, data products, and communications systems is novel and challenging, especially at scale,” they write.

GO-LoW is led by Mary Knapp with MIT in Cambridge, Massachusetts.

Radioisotope Thermoradiative Cell Power Generator

It’s sort of like solar power in reverse.

The RTCPG is a power source for spacecraft visiting the outer planets. They promise smaller, more efficient power generation for smaller science and exploration missions that can’t carry a solar power system or nuclear power system. Both those systems are bulky, and solar power is limited the further away from the sun a spacecraft goes.

The thermoradiative cell (TRC) uses radioisotopes to create heat as an MMRTG does. But the TRC uses the heat to generate infrared light which generates electricity. In initial testing, the system generated 4.5 times more power from the same amount of PU-238.

Much of phase two’s work will involve materials. “Metal-semiconductor contacts capable of surviving the required elevated temperatures will be investigated,” the team explains. The team developed a special cryostat testing apparatus in phase one.

“Building on our results from Phase I, we believe there is much more potential to unlock here,” the team writes.

This power generation concept study is from Stephen Polly at the Rochester Institute of Technology in New York.

FLOAT: Flexible Levitation on a Track

What if Artemis is enormously successful? How will astronauts move their equipment around the lunar surface efficiently?

If the team behind FLOAT has their way, they’ll build the Moon’s first railway. Sort of. This artist’s concept shows a possible future mission depicting the lunar surface with planet Earth on the horizon. Image Credit: Ethan Schaler

FLOAT would provide autonomous transportation for payloads on the Moon. “A durable, long-life robotic transport system will be critical to the daily operations of a sustainable lunar base in the 2030’s,” the FLOAT team writes.

The heart of FLOAT is a three-layer flexible track that’s unrolled into position without major construction. It consists of three layers: a graphite layer, a flex-circuit layer, and a solar panel layer.

The graphite layer allows robots to use diamagnetic levitation to float over the track. The flex-circuit layer supplies the thrust that moves them, and the thin-film solar panel layer generates electricity for a lunar base when it’s in sunlight.

The system can be used to move regolith around for in-situ resource utilization and to transport payloads around a lunar base, for example, from landing zones to habitats.

“Individual FLOAT robots will be able to transport payloads of varying shape/size (>30 kg/m^2) at useful speeds (>0.5m/s), and a large-scale FLOAT system will be capable of moving up to 100,000s kg of regolith/payload multiple kilometres per day,” the FLOAT team explains.

With their phase two funding, the FLOAT team intends to design, build, and test scaled-down versions of FLOAT robots and track. Then, they’ll test their system in a lunar analog testbed. They’ll also test environmental effects on the system and how they alter the system’s performance and longevity.

Ethan Schaler leads FLOAT at NASA’s Jet Propulsion Laboratory in Southern California.

SCOPE: ScienceCraft for Outer Planet Exploration

Some of the most intriguing planets and moons in the Solar System are well beyond Jupiter. But exploring them is challenging. Extremely long travel times, restrictive mission windows, and large expenses limit our exploration. But SCOPE aims to address these limitations.

Typically, a spacecraft carries a propulsion and power system along with its instruments and communication systems. NASA’s Juno mission to Jupiter, for example, carries a chemical rocket engine for propulsion, 50 square meters of solar panels, and 10 science instruments. The solar panels alone weigh 340 kg (750 lbs.) Juno is powerful, produces a wide variety of quality science data, and is expensive.

ScienceCraft takes a different approach. It combines a single science instrument and spacecraft into one monolithic structure. It’s basically a solar sail with a built-in spectrometer. They’re aiming their design at the Neptune-Triton system.

This artist’s depiction shows ScienceCraft, which integrates the science instrument with the spacecraft by printing a quantum dot spectrometer directly on the solar sail to form a monolithic, lightweight structure.
Image Credit: Mahmooda Sultana

“By printing an ultra-lightweight quantum dot-based spectrometer, developed by the PI Sultana, directly on the solar sail, we create a breakthrough spacecraft architecture allowing an unprecedented parallelism and throughput of data collection and rapid travel across the solar system,” the ScienceCraft team writes.

Instead of merely providing the propulsion, the sail doubles as the spacecraft’s science instrument. The small mass means that ScienceCraft could be carried into orbit as a secondary payload. The team says they’ll use phase two to identify and develop key technologies for the spacecraft and to further mature the mission concept. They say that because of the low cost and simplicity, they could be ready by 2045.

“By leveraging these benefits, we propose a mission concept to Triton, a unique planetary body in our solar system, within the short window that closes around 2045 to answer compelling science questions about Triton’s atmosphere, ionosphere, plumes and internal structure,” the ScienceCraft team explains.

ScienceCraft is led by NASA’s Mahmooda Sultana at the agency’s Goddard Space Flight Center in Greenbelt, Maryland.

The post NASA Takes Six Advanced Tech Concepts to Phase II appeared first on Universe Today.

Categories: Astronomy