Two possibilities exist: Either we are alone in the Universe or we are not.
Both are equally terrifying.

— Arthur C. Clarke

Feed aggregator

The hunt for where the last Neanderthals lived

New Scientist Space - Space Headlines - Tue, 01/13/2026 - 1:00pm
Clues from studies of ancient plants and animals have helped archaeologists pin down where the last Neanderthals found refuge, says columnist Michael Marshall
Categories: Astronomy

NASA Back for Seconds with New Food System Design Challenge

NASA News - Tue, 01/13/2026 - 11:53am

4 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) This illustration of Moon to Mars infrastructure shows astronauts living and working on the surface of Mars. NASA’s Moon to Mars Objectives establish an objectives-based approach to the agency’s human deep space exploration efforts; NASA’s Moon to Mars Architecture approach distills the objectives into operational capabilities and elements.

NASA is getting ready to send four astronauts around the Moon with Artemis II, laying the foundation for sustainable missions to the lunar surface and paving the way for human exploration on Mars. As the agency considers deep space endeavors that could last months or years, it must develop ways to feed astronauts beyond sending supplies from Earth.

That is why NASA is launching the Deep Space Food Challenge: Mars to Table, a new global competition inviting chefs, innovators, culinary experts, higher-education students, and citizen scientists to design a complete, Earth-independent food system for long-duration space missions.

“In the future, exploration missions will grow in both duration and distance from Earth. This will make the critical question of feeding our astronauts more complex, requiring innovative solutions to allow for long-term human exploration of space,” said Greg Stover, acting associate administrator of NASA’s Space Technology Missions Directorate at NASA Headquarters in Washington. “Opening the door to ideas from beyond the agency strengthens NASA’s ability to operate farther from Earth with greater independence.”

Mars to Table builds on NASA’s first Deep Space Food Challenge by seeking to integrate multiple food production and preparation methods into a holistic, self-sustaining system designed for use on Mars. This new challenge is open now until July 31 to the global public and carries a prize purse of up to $750,000.

“Future crews on the Moon and Mars will need food systems that are nutritious, sustainable, and fully independent from Earth,” said Jarah Meador, program executive for NASA’s Prizes, Challenges, and Crowdsourcing Program at NASA Headquarters. “Food will play a pivotal role in the overall health and happiness of future deep space explorers. The Mars to Table Challenge is about bringing all those pieces together into one comprehensive design.”

Solvers are tasked with creating a complete meal plan suitable for astronauts living on Mars, using a NASA-created mission scenario as their guide. Each team will design a full food system concept, including a detailed operations plan and system design layout that supports a surface mission. Teams must consider every detail – from nutritional balance and taste to safety, usability, and integration with NASA’s Environmental Control and Life Support Systems.

Participants in the Mars to Table Challenge are also encouraged to address food security on Earth. Innovative growth systems designed for space could make fresh food production possible in harsh, remote, or resource-limited areas, such as research stations located at Earth’s poles or in rural areas with limited access to traditional supply chains.

“This challenge isn’t just about feeding astronauts; it’s about feeding people anywhere,” said Jennifer Edmunson, acting program manager for NASA’s Centennial Challenges at NASA’s Marshall Spaceflight Center in Huntsville, Alabama. “Novel meals that are compact, shelf-stable, and nutrient-rich could expand culinary options for groups like military personnel or disaster relief responders. By solving for Mars and future planetary expeditions, we can also find solutions for Earth.”

NASA’s Centennial Challenges have a 20-year legacy of engaging the public to solve complex problems that benefit NASA’s broader initiatives. Past challenges have spurred advances in robotics, additive manufacturing, power and energy, textiles, chemistry, and biology.

Mars to Table is a collaborative, cross-program Centennial Challenge with support from NASA’s Division of Biological and Physical Sciences, Heliophysics Division, Planetary Science Program, Human Research Program, and Mars Campaign Office. Subject matter experts at the agency’s Johnson Space Center in Houston and Kennedy Space Center in Florida support the challenge. This challenge is part of the Prizes, Challenges and Crowdsourcing program within NASA’s Space Technology Mission Directorate. NASA has partnered with the Methuselah Foundation and contracted Floor23 Digital to support the administration and management of this challenge. 

To learn more about the challenge, including timelines, submission requirements, and future webinar dates, visit:

https://www.deepspacefood.org/marstotable

By Savannah Bullard

Facebook logo @NASATechnology @NASA_Technology Keep Exploring Discover More Topics From NASA

Space Technology Mission Directorate

STMD Solicitations and Opportunities

NASA Prizes, Challenges, and Crowdsourcing

CoECI

Share Details Last Updated Jan 13, 2026 EditorLoura Hall Related Terms
Categories: NASA

NASA Back for Seconds with New Food System Design Challenge

NASA - Breaking News - Tue, 01/13/2026 - 11:53am

4 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) This illustration of Moon to Mars infrastructure shows astronauts living and working on the surface of Mars. NASA’s Moon to Mars Objectives establish an objectives-based approach to the agency’s human deep space exploration efforts; NASA’s Moon to Mars Architecture approach distills the objectives into operational capabilities and elements.

NASA is getting ready to send four astronauts around the Moon with Artemis II, laying the foundation for sustainable missions to the lunar surface and paving the way for human exploration on Mars. As the agency considers deep space endeavors that could last months or years, it must develop ways to feed astronauts beyond sending supplies from Earth.

That is why NASA is launching the Deep Space Food Challenge: Mars to Table, a new global competition inviting chefs, innovators, culinary experts, higher-education students, and citizen scientists to design a complete, Earth-independent food system for long-duration space missions.

“In the future, exploration missions will grow in both duration and distance from Earth. This will make the critical question of feeding our astronauts more complex, requiring innovative solutions to allow for long-term human exploration of space,” said Greg Stover, acting associate administrator of NASA’s Space Technology Missions Directorate at NASA Headquarters in Washington. “Opening the door to ideas from beyond the agency strengthens NASA’s ability to operate farther from Earth with greater independence.”

Mars to Table builds on NASA’s first Deep Space Food Challenge by seeking to integrate multiple food production and preparation methods into a holistic, self-sustaining system designed for use on Mars. This new challenge is open now until July 31 to the global public and carries a prize purse of up to $750,000.

“Future crews on the Moon and Mars will need food systems that are nutritious, sustainable, and fully independent from Earth,” said Jarah Meador, program executive for NASA’s Prizes, Challenges, and Crowdsourcing Program at NASA Headquarters. “Food will play a pivotal role in the overall health and happiness of future deep space explorers. The Mars to Table Challenge is about bringing all those pieces together into one comprehensive design.”

Solvers are tasked with creating a complete meal plan suitable for astronauts living on Mars, using a NASA-created mission scenario as their guide. Each team will design a full food system concept, including a detailed operations plan and system design layout that supports a surface mission. Teams must consider every detail – from nutritional balance and taste to safety, usability, and integration with NASA’s Environmental Control and Life Support Systems.

Participants in the Mars to Table Challenge are also encouraged to address food security on Earth. Innovative growth systems designed for space could make fresh food production possible in harsh, remote, or resource-limited areas, such as research stations located at Earth’s poles or in rural areas with limited access to traditional supply chains.

“This challenge isn’t just about feeding astronauts; it’s about feeding people anywhere,” said Jennifer Edmunson, acting program manager for NASA’s Centennial Challenges at NASA’s Marshall Spaceflight Center in Huntsville, Alabama. “Novel meals that are compact, shelf-stable, and nutrient-rich could expand culinary options for groups like military personnel or disaster relief responders. By solving for Mars and future planetary expeditions, we can also find solutions for Earth.”

NASA’s Centennial Challenges have a 20-year legacy of engaging the public to solve complex problems that benefit NASA’s broader initiatives. Past challenges have spurred advances in robotics, additive manufacturing, power and energy, textiles, chemistry, and biology.

Mars to Table is a collaborative, cross-program Centennial Challenge with support from NASA’s Division of Biological and Physical Sciences, Heliophysics Division, Planetary Science Program, Human Research Program, and Mars Campaign Office. Subject matter experts at the agency’s Johnson Space Center in Houston and Kennedy Space Center in Florida support the challenge. This challenge is part of the Prizes, Challenges and Crowdsourcing program within NASA’s Space Technology Mission Directorate. NASA has partnered with the Methuselah Foundation and contracted Floor23 Digital to support the administration and management of this challenge. 

To learn more about the challenge, including timelines, submission requirements, and future webinar dates, visit:

https://www.deepspacefood.org/marstotable

By Savannah Bullard

Facebook logo @NASATechnology @NASA_Technology Keep Exploring Discover More Topics From NASA

Space Technology Mission Directorate

STMD Solicitations and Opportunities

NASA Prizes, Challenges, and Crowdsourcing

CoECI

Share Details Last Updated Jan 13, 2026 EditorLoura Hall Related Terms
Categories: NASA

The Pacific Islanders fighting to save their homes from catastrophe

New Scientist Space - Space Headlines - Tue, 01/13/2026 - 11:00am
Some of climate change's sharpest realities are being felt on small island nations, where extreme weather is claiming homes and triggering displacement. Those able to stay are spearheading inventive adaptation techniques in a bid to secure their future
Categories: Astronomy

The Pacific Islanders fighting to save their homes from catastrophe

New Scientist Space - Cosmology - Tue, 01/13/2026 - 11:00am
Some of climate change's sharpest realities are being felt on small island nations, where extreme weather is claiming homes and triggering displacement. Those able to stay are spearheading inventive adaptation techniques in a bid to secure their future
Categories: Astronomy

Can Philanthropy Fast-Track a Flagship Telescope?

Universe Today - Tue, 01/13/2026 - 10:06am

New Space is a term now commonly used around the rocketry and satellite industries to indicate a new, speed focused model of development that takes its cue from the Silicon Valley mindset of “move fast and (hopefully don’t) break things.” Given that several of the founders of rocketry and satellite companies have a Silicon Valley background, that probably shouldn’t be a surprise, but the mindset has resulted in an exponential growth in the number of satellites in orbit, and also an exponential decrease in the cost of getting them to orbit. A new paper, recently published in pre-print form in arXiv from researchers at Schmidt Sciences and a variety of research institutes, lays out plans for the Lazuli Space Observatory, which hopes to apply that same mindset to flagship-level space observatory missions.

Categories: Astronomy

Greenland sharks survive for centuries with diseased hearts

New Scientist Space - Space Headlines - Tue, 01/13/2026 - 10:00am
A study of the hearts of Greenland sharks has found that the long-lived deep-sea predator has massive accumulations of ageing markers, such as severe scarring, but this doesn't appear to affect their health or longevity
Categories: Astronomy

Greenland sharks survive for centuries with diseased hearts

New Scientist Space - Cosmology - Tue, 01/13/2026 - 10:00am
A study of the hearts of Greenland sharks has found that the long-lived deep-sea predator has massive accumulations of ageing markers, such as severe scarring, but this doesn't appear to affect their health or longevity
Categories: Astronomy

Betelgeuse’s Elusive Companion Might Be Making Waves

Sky & Telescope Magazine - Tue, 01/13/2026 - 8:59am

In new observations, astronomers detect a moving wake of gas in the outer layers of the red supergiant Betelgeuse, offering fresh evidence for a long-suspected secondary star.

The post Betelgeuse’s Elusive Companion Might Be Making Waves appeared first on Sky & Telescope.

Categories: Astronomy

Hubble Nets Menagerie of Young Stellar Objects

NASA - Breaking News - Tue, 01/13/2026 - 8:38am
Explore Hubble

3 min read

Hubble Nets Menagerie of Young Stellar Objects A bright reflection nebula shares the stage with a protostar and planet-forming disk in this Hubble image. NASA, ESA, K. Stapelfeldt (Jet Propulsion Laboratory) and D. Watson (University of Rochester); Processing: Gladys Kober (NASA/Catholic University of America)
Download this image (58.3 MB)

A disparate collection of young stellar objects bejewels a cosmic panorama in the star-forming region NGC 1333 in this new image from NASA’s Hubble Space Telescope. To the left, an actively forming star called a protostar casts its glow on the surrounding gas and dust, creating a reflection nebula. Two dark stripes on opposite sides of the bright point (upper left) are its protoplanetary disk, a region where planets could form, and the disk’s shadow, cast across the large envelope of material around the star. Material accumulates onto the protostar through this rotating disk of gas and dust, a product of the collapsing cloud of gas and dust that gave birth to the star. Where the shadow stops and the disk begins is presently unknown.

To the center right, an outflow cavity reveals a fan-shaped reflection nebula. The two stars at its base, HBC 340 (lower) and HBC 341 (upper), unleash stellar winds, or material flowing from the surface of the star, that clear out the cavity from the surrounding molecular cloud over time. A reflection nebula like this one is illuminated by light from nearby stars that is scattered by the surrounding gas and dust.

This reflection nebula fluctuates in brightness over time, which researchers attribute to variations in brightness of HBC 340 and HBC 341. HBC 340 is the primary source of the fluctuation as the brighter and more variable star.
HBC 340 and HBC 341 are Orion variable stars, a class of forming stars that change in brightness irregularly and unpredictably, possibly due to stellar flares and ejections of matter from their surfaces. Orion variable stars, so named because they are associated with diffuse nebulae like the Orion Nebula, eventually evolve into non-variable stars.

In this image, the four beaming stars near the bottom of the image and one in the top right corner are also Orion variable stars. The rest of the cloudscape is studded with other young stellar objects.

NGC 1333 lies about 950 light-years away in the Perseus molecular cloud, and was imaged by Hubble to learn more about young stellar objects, such as properties of circumstellar disks and outflows in the gas and dust created by these stars.

New images added every day between January 12-17, 2026! Follow @NASAHubble on social media for the latest Hubble images and news and see Hubble’s Stellar Construction Zones for more images of young stellar objects.

Facebook logo @NASAHubble

@NASAHubble

Instagram logo @NASAHubble

Explore More
Exploring the Birth of Stars


Hubble’s Nebulae

Media Contact:

Claire Andreoli
NASA’s Goddard Space Flight CenterGreenbelt, MD
claire.andreoli@nasa.gov

Share

Details

Last Updated

Jan 13, 2026

Location NASA Goddard Space Flight Center

Related Terms Keep Exploring Discover More Topics From Hubble

Hubble Space Telescope

Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


Hubble’s Stellar Construction Zones


Explore the Night Sky


Hubble News

Categories: NASA

70 Percent of Cancer Patients Now Survive at Least Five Years, Study Finds

Scientific American.com - Tue, 01/13/2026 - 8:15am

Cancer survival rates climbed significantly in recent decades. But federal funding cuts could threaten that progress, physicians warn

Categories: Astronomy

When Martian Winds Become Sandblasters

Universe Today - Tue, 01/13/2026 - 8:04am

Mars Express has captured stunning images of wind sculpted terrain near the planet’s equator, revealing how Martian winds act as a sandblaster across geological timescales. The spacecraft’s high resolution camera spotted amazing ridges called yardangs, features carved by sand carrying winds that extend tens of kilometres across the surface. These dramatic erosional features share the landscape with impact craters and ancient lava flows, creating a fusion of three different geological forces that together tell the story of Mars’s violent and dynamic past.

Categories: Astronomy

Vertical Solar Panels—Wind-Resistant Trackers for High Latitudes

Scientific American.com - Tue, 01/13/2026 - 8:00am

Traditional solar fails in the windswept north. Two Swedish inventors are betting on aerodynamic resilience to solve the latitude gap

Categories: Astronomy

The Hidden Lives of the Universe’s Ultramassive Galaxies

Universe Today - Tue, 01/13/2026 - 7:43am

Astronomers have revealed a surprising diversity in the evolutionary paths of the universe’s most massive galaxies. Using multi-wavelength observations combining Keck Observatory spectroscopy with far infrared and radio data, researchers found that less than two billion years after the Big Bang, some ultramassive galaxies had already shut down star formation and shed their dust, while others continued building stars behind thick dusty veils.

Categories: Astronomy

The Galaxy’s Most Common Planets Have a Strange Childhood

Universe Today - Tue, 01/13/2026 - 5:10am

Astronomers have discovered a crucial missing link in understanding how the Galaxy’s most common planets form. By studying four young, extraordinarily puffy planets orbiting a 20 million year old star, researchers have captured a rare snapshot of worlds actively transforming into super Earths and sub Neptunes. This discovery reveals that the universe’s most successful planets start as bloated giants before shrinking dramatically over billions of years, fundamentally changing our understanding of how planetary systems evolve.

Categories: Astronomy

NASA’s Webb Delivers Unprecedented Look Into Heart of Circinus Galaxy

NASA - Breaking News - Tue, 01/13/2026 - 5:00am
Explore Webb

  1. Science
  2. James Webb Space Telescope (JWST)
  3. NASA’s Webb Delivers…
  7 Min Read NASA’s Webb Delivers Unprecedented Look Into Heart of Circinus Galaxy

This artist’s concept depicts the central engine of the Circinus galaxy, visualizing the supermassive black hole fed by a thick, dusty torus that glows in infrared light. 

Credits:
Artwork: NASA, ESA, CSA, Ralf Crawford (STScI)

The Circinus Galaxy, a galaxy about 13 million light-years away, contains an active supermassive black hole that continues to influence its evolution. The largest source of infrared light from the region closest to the black hole itself was thought to be outflows, or streams of superheated matter that fire outward. 

Image: Circinus Galaxy (Hubble and Webb) This image from NASA’s Hubble Space Telescope shows the Circinus galaxy. A close-up of its core from NASA’s James Webb Space Telescope shows the inner face of the hole of the donut-shaped disk of gas disk glowing in infrared light. The outer ring appears as dark spots.  Image: NASA, ESA, CSA, Enrique Lopez-Rodriguez (University of South Carolina), Deepashri Thatte (STScI); Image Processing: Alyssa Pagan (STScI); Acknowledgment: NSF’s NOIRLab, CTIO

Now, new observations by NASA’s James Webb Space Telescope, seen here with a new image from NASA’s Hubble Space Telescope, provide evidence that reverses this thinking, suggesting that most of the hot, dusty material is actually feeding the central black hole. The technique used to gather this data also has the potential to analyze the outflow and accretion components for other nearby black holes. 

The research, which includes the sharpest image of a black hole’s surroundings ever taken by Webb, published Tuesday in Nature.

Outflow question

Supermassive black holes like those in Circinus remain active by consuming surrounding matter. Infalling gas and dust accumulates into a donut-shaped ring around the black hole, known as a torus. As supermassive black holes gather matter from the torus’ inner walls, they form an accretion disk, similar to a whirlpool of water swirling around a drain. This disk grows hotter through friction, eventually becoming hot enough to emit light. 

This glowing matter can become so bright that resolving details within the galaxy’s center with ground-based telescopes is difficult. It’s made even harder due to the bright, concealing starlight within Circinus. Further, since the torus is incredibly dense, the inner region of the infalling material, heated by the black hole, is obscured from our point of view. For decades, astronomers contended with these difficulties, designing and improving models of Circinus with as much data as they could gather.

Image: Circinus Galaxy Center (Artist’s Concept) This artist’s concept depicts the central engine of the Circinus galaxy, visualizing the supermassive black hole fed by a thick, dusty torus that glows in infrared light.  Artwork: NASA, ESA, CSA, Ralf Crawford (STScI)

“In order to study the supermassive black hole, despite being unable to resolve it, they had to obtain the total intensity of the inner region of the galaxy over a large wavelength range and then feed that data into models,” said lead author Enrique Lopez-Rodriguez of the University of South Carolina. 

Early models would fit the spectra from specific regions, such as the emissions from the torus, those of the accretion disk closest to the black hole, or those from the outflows, each detected at certain wavelengths of light. However, since the region could not be resolved in its entirety, these models left questions at several wavelengths. For example, some telescopes could detect an excess of infrared light, but lacked the resolution to determine where exactly it was coming from.

“Since the ‘90s, it has not been possible to explain excess infrared emissions that come from hot dust at the cores of active galaxies, meaning the models only take into account either the torus or the outflows, but cannot explain that excess,” said Lopez-Rodriguez.

Such models found that most of the emission (and, therefore, mass) close to the center came from outflows. To test this theory, then, astronomers needed two things: the ability to filter the starlight that previously prevented a deeper analysis, and the ability to distinguish the infrared emissions of the torus from those of the outflows. Webb, sensitive and technologically sophisticated enough to meet both challenges, was necessary to advance our understanding.

Webb’s innovative technique

To look into the center of Circinus, Webb needed the Aperture Masking Interferometer tool on its NIRISS (Near-Infrared Imager and Slitless Spectrograph) instrument. 

On Earth, interferometers usually take the form of telescope arrays: mirrors or antennae that work together as if they were a single telescope. An interferometer does this by gathering and combining the light from whichever source it is pointed toward, causing the electromagnetic waves that make up light to “interfere” with each other (hence, “interfere-ometer”) and creating interference patterns. These patterns can be analyzed by astronomers to reconstruct the size, shape, and features of distant objects with much greater detail than non-interferometric techniques. 

The Aperture Masking Interferometer allows Webb to become an array of smaller telescopes working together as an interferometer, creating these interference patterns by itself. It does this by utilizing a special aperture made of seven small, hexagonal holes, which, like in photography, controls the amount and direction of light that enters the telescope’s detectors.

“These holes in the mask are transformed into small collectors of light that guide the light toward the detector of the camera and create an interference pattern,” said Joel Sanchez-Bermudez, co-author based at the National University of Mexico.

With new data in hand, the research team was able to construct an image from the central region’s interference patterns. To do so, they referenced data from previous observations to ensure their data from Webb was free of any artifacts. This resulted in the first extragalactic observation from an infrared interferometer in space.

“By using an advanced imaging mode of the camera, we can effectively double its resolution over a smaller area of the sky,” Sanchez-Bermudez said. “This allows us to see images twice as sharp. Instead of Webb’s 6.5-meter diameter, it’s like we are observing this region with a 13-meter space telescope.” 

The data showed that contrary to the models predicting that the infrared excess comes from the outflows, around 87% of the infrared emissions from hot dust in Circinus come from the areas closest to the black hole, while less than 1% of emissions come from hot dusty outflows. The remaining 12% comes from distances farther away that could not previously be told apart. 

“It is the first time a high-contrast mode of Webb has been used to look at an extragalactic source,” said Julien Girard, paper co-author and senior research scientist at the Space Telescope Science Institute. “We hope our work inspires other astronomers to use the Aperture Masking Interferometer mode to study faint, but relatively small, dusty structures in the vicinity of any bright object.”

Video: Circinus Galaxy Zoom

To view this video please enable JavaScript, and consider upgrading to a web browser that
supports HTML5 video

This zoom-in video shows the location of the Circinus galaxy on the sky. It begins with a ground-based photo of the constellation Circinus by the late astrophotographer Akira Fujii. The video closes in on the Circinus galaxy, using views from the Digitized Sky Survey and the Dark… Video: NASA, ESA, CSA, Alyssa Pagan (STScI); Acknowledgment: CTIO, NSF’s NOIRLab, DSS, Akira Fujii Universe of black holes

While the mystery of Circinus’ excess emissions has been solved, there are billions of black holes in our universe. Those of different luminosities, the team notes, may have an influence on whether most of the emissions come from a black hole’s torus or their outflows.

“The intrinsic brightness of Circinus’ accretion disk is very moderate,” Lopez-Rodriguez said. “So it makes sense that the emissions are dominated by the torus. But maybe, for brighter black holes, the emissions are dominated by the outflow.” 

With this research, astronomers now have a tested technique to investigate whichever black holes they want, so long as they are bright enough for the Aperture Masking Interferometer to be useful. Studying additional targets will be essential to building a catalog of emission data to figure out if Circinus’ results were unique or characteristic of a pattern. 

“We need a statistical sample of black holes, perhaps a dozen or two dozen, to understand how mass in their accretion disks and their outflows relate to their power,” Lopez-Rodriguez said.

The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).

To learn more about Webb, visit: 

https://science.nasa.gov/webb

Downloads & Related Information

The following sections contain links to download this article’s images and videos in all available resolutions followed by related information links, media contacts, and if available, research paper and spanish translation links.

Related Images & Videos

Circinus Galaxy Center (Artist’s Concept)

This artist’s concept depicts the central engine of the Circinus galaxy, visualizing the supermassive black hole fed by a thick, dusty torus that glows in infrared light.



Circinus Galaxy (Hubble and Webb)

This image from NASA’s Hubble Space Telescope shows the Circinus galaxy. A close-up of its core from NASA’s James Webb Space Telescope shows the inner face of the hole of the donut-shaped disk of gas disk glowing in infrared light. The outer ring appears as dark spots.



Circinus Galaxy (Hubble and Webb Compass Image)

This image shows two views of the Circinus galaxy, one captured by the Hubble Space Telescope and the other by the James Webb Space Telescope’s NIRISS (Near-Infrared Imager and Slitless Spectrograph. It shows compass arrows, scale bar, and color key for reference.



Circinus Galaxy Zoom

This zoom-in video shows the location of the Circinus galaxy on the sky. It begins with a ground-based photo of the constellation Circinus by the late astrophotographer Akira Fujii. The video closes in on the Circinus galaxy, using views from the Digitized Sky Survey and the Dark…



Related Links

Read more: The Modes of Webb’s NIRISS

Explore moreBlack Hole Resources from NASA’s Universe of Learning

Read more:  Webb’s Scientific Instruments

VideoNASA Animation Sizes Up the Universe’s Biggest Black Holes

More Webb News

More Webb Images

Webb Science Themes

Webb Mission Page


Share

Details

Last Updated

Jan 13, 2026

Location NASA Goddard Space Flight Center Contact

Media

Laura Betz
NASA’s Goddard Space Flight Center
Greenbelt, Maryland
laura.e.betz@nasa.gov

Matthew Brown
Space Telescope Science Institute
Baltimore, Maryland

Hannah Braun
Space Telescope Science Institute
Baltimore, Maryland

Related Terms

Related Links and Documents

Science Paper: “JWST interferometric imaging reveals the dusty disk obscuring the supermassive black hole of the Circinus galaxy” by E. Lopez Rodriguez et al.

Keep Exploring Discover More Topics From Webb

James Webb Space Telescope

Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


Science Overview


Webb Observatory


Webb Image Galleries

Categories: NASA

NASA’s Webb Delivers Unprecedented Look Into Heart of Circinus Galaxy

NASA News - Tue, 01/13/2026 - 5:00am
Explore Webb

  1. Science
  2. James Webb Space Telescope (JWST)
  3. NASA’s Webb Delivers…
  7 Min Read NASA’s Webb Delivers Unprecedented Look Into Heart of Circinus Galaxy

This artist’s concept depicts the central engine of the Circinus galaxy, visualizing the supermassive black hole fed by a thick, dusty torus that glows in infrared light. 

Credits:
Artwork: NASA, ESA, CSA, Ralf Crawford (STScI)

The Circinus Galaxy, a galaxy about 13 million light-years away, contains an active supermassive black hole that continues to influence its evolution. The largest source of infrared light from the region closest to the black hole itself was thought to be outflows, or streams of superheated matter that fire outward. 

Image: Circinus Galaxy (Hubble and Webb) This image from NASA’s Hubble Space Telescope shows the Circinus galaxy. A close-up of its core from NASA’s James Webb Space Telescope shows the inner face of the hole of the donut-shaped disk of gas disk glowing in infrared light. The outer ring appears as dark spots.  Image: NASA, ESA, CSA, Enrique Lopez-Rodriguez (University of South Carolina), Deepashri Thatte (STScI); Image Processing: Alyssa Pagan (STScI); Acknowledgment: NSF’s NOIRLab, CTIO

Now, new observations by NASA’s James Webb Space Telescope, seen here with a new image from NASA’s Hubble Space Telescope, provide evidence that reverses this thinking, suggesting that most of the hot, dusty material is actually feeding the central black hole. The technique used to gather this data also has the potential to analyze the outflow and accretion components for other nearby black holes. 

The research, which includes the sharpest image of a black hole’s surroundings ever taken by Webb, published Tuesday in Nature.

Outflow question

Supermassive black holes like those in Circinus remain active by consuming surrounding matter. Infalling gas and dust accumulates into a donut-shaped ring around the black hole, known as a torus. As supermassive black holes gather matter from the torus’ inner walls, they form an accretion disk, similar to a whirlpool of water swirling around a drain. This disk grows hotter through friction, eventually becoming hot enough to emit light. 

This glowing matter can become so bright that resolving details within the galaxy’s center with ground-based telescopes is difficult. It’s made even harder due to the bright, concealing starlight within Circinus. Further, since the torus is incredibly dense, the inner region of the infalling material, heated by the black hole, is obscured from our point of view. For decades, astronomers contended with these difficulties, designing and improving models of Circinus with as much data as they could gather.

Image: Circinus Galaxy Center (Artist’s Concept) This artist’s concept depicts the central engine of the Circinus galaxy, visualizing the supermassive black hole fed by a thick, dusty torus that glows in infrared light.  Artwork: NASA, ESA, CSA, Ralf Crawford (STScI)

“In order to study the supermassive black hole, despite being unable to resolve it, they had to obtain the total intensity of the inner region of the galaxy over a large wavelength range and then feed that data into models,” said lead author Enrique Lopez-Rodriguez of the University of South Carolina. 

Early models would fit the spectra from specific regions, such as the emissions from the torus, those of the accretion disk closest to the black hole, or those from the outflows, each detected at certain wavelengths of light. However, since the region could not be resolved in its entirety, these models left questions at several wavelengths. For example, some telescopes could detect an excess of infrared light, but lacked the resolution to determine where exactly it was coming from.

“Since the ‘90s, it has not been possible to explain excess infrared emissions that come from hot dust at the cores of active galaxies, meaning the models only take into account either the torus or the outflows, but cannot explain that excess,” said Lopez-Rodriguez.

Such models found that most of the emission (and, therefore, mass) close to the center came from outflows. To test this theory, then, astronomers needed two things: the ability to filter the starlight that previously prevented a deeper analysis, and the ability to distinguish the infrared emissions of the torus from those of the outflows. Webb, sensitive and technologically sophisticated enough to meet both challenges, was necessary to advance our understanding.

Webb’s innovative technique

To look into the center of Circinus, Webb needed the Aperture Masking Interferometer tool on its NIRISS (Near-Infrared Imager and Slitless Spectrograph) instrument. 

On Earth, interferometers usually take the form of telescope arrays: mirrors or antennae that work together as if they were a single telescope. An interferometer does this by gathering and combining the light from whichever source it is pointed toward, causing the electromagnetic waves that make up light to “interfere” with each other (hence, “interfere-ometer”) and creating interference patterns. These patterns can be analyzed by astronomers to reconstruct the size, shape, and features of distant objects with much greater detail than non-interferometric techniques. 

The Aperture Masking Interferometer allows Webb to become an array of smaller telescopes working together as an interferometer, creating these interference patterns by itself. It does this by utilizing a special aperture made of seven small, hexagonal holes, which, like in photography, controls the amount and direction of light that enters the telescope’s detectors.

“These holes in the mask are transformed into small collectors of light that guide the light toward the detector of the camera and create an interference pattern,” said Joel Sanchez-Bermudez, co-author based at the National University of Mexico.

With new data in hand, the research team was able to construct an image from the central region’s interference patterns. To do so, they referenced data from previous observations to ensure their data from Webb was free of any artifacts. This resulted in the first extragalactic observation from an infrared interferometer in space.

“By using an advanced imaging mode of the camera, we can effectively double its resolution over a smaller area of the sky,” Sanchez-Bermudez said. “This allows us to see images twice as sharp. Instead of Webb’s 6.5-meter diameter, it’s like we are observing this region with a 13-meter space telescope.” 

The data showed that contrary to the models predicting that the infrared excess comes from the outflows, around 87% of the infrared emissions from hot dust in Circinus come from the areas closest to the black hole, while less than 1% of emissions come from hot dusty outflows. The remaining 12% comes from distances farther away that could not previously be told apart. 

“It is the first time a high-contrast mode of Webb has been used to look at an extragalactic source,” said Julien Girard, paper co-author and senior research scientist at the Space Telescope Science Institute. “We hope our work inspires other astronomers to use the Aperture Masking Interferometer mode to study faint, but relatively small, dusty structures in the vicinity of any bright object.”

Video: Circinus Galaxy Zoom

To view this video please enable JavaScript, and consider upgrading to a web browser that
supports HTML5 video

This zoom-in video shows the location of the Circinus galaxy on the sky. It begins with a ground-based photo of the constellation Circinus by the late astrophotographer Akira Fujii. The video closes in on the Circinus galaxy, using views from the Digitized Sky Survey and the Dark… Video: NASA, ESA, CSA, Alyssa Pagan (STScI); Acknowledgment: CTIO, NSF’s NOIRLab, DSS, Akira Fujii Universe of black holes

While the mystery of Circinus’ excess emissions has been solved, there are billions of black holes in our universe. Those of different luminosities, the team notes, may have an influence on whether most of the emissions come from a black hole’s torus or their outflows.

“The intrinsic brightness of Circinus’ accretion disk is very moderate,” Lopez-Rodriguez said. “So it makes sense that the emissions are dominated by the torus. But maybe, for brighter black holes, the emissions are dominated by the outflow.” 

With this research, astronomers now have a tested technique to investigate whichever black holes they want, so long as they are bright enough for the Aperture Masking Interferometer to be useful. Studying additional targets will be essential to building a catalog of emission data to figure out if Circinus’ results were unique or characteristic of a pattern. 

“We need a statistical sample of black holes, perhaps a dozen or two dozen, to understand how mass in their accretion disks and their outflows relate to their power,” Lopez-Rodriguez said.

The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).

To learn more about Webb, visit: 

https://science.nasa.gov/webb

Downloads & Related Information

The following sections contain links to download this article’s images and videos in all available resolutions followed by related information links, media contacts, and if available, research paper and spanish translation links.

Related Images & Videos

Circinus Galaxy Center (Artist’s Concept)

This artist’s concept depicts the central engine of the Circinus galaxy, visualizing the supermassive black hole fed by a thick, dusty torus that glows in infrared light.



Circinus Galaxy (Hubble and Webb)

This image from NASA’s Hubble Space Telescope shows the Circinus galaxy. A close-up of its core from NASA’s James Webb Space Telescope shows the inner face of the hole of the donut-shaped disk of gas disk glowing in infrared light. The outer ring appears as dark spots.



Circinus Galaxy (Hubble and Webb Compass Image)

This image shows two views of the Circinus galaxy, one captured by the Hubble Space Telescope and the other by the James Webb Space Telescope’s NIRISS (Near-Infrared Imager and Slitless Spectrograph. It shows compass arrows, scale bar, and color key for reference.



Circinus Galaxy Zoom

This zoom-in video shows the location of the Circinus galaxy on the sky. It begins with a ground-based photo of the constellation Circinus by the late astrophotographer Akira Fujii. The video closes in on the Circinus galaxy, using views from the Digitized Sky Survey and the Dark…



Related Links

Read more: The Modes of Webb’s NIRISS

Explore moreBlack Hole Resources from NASA’s Universe of Learning

Read more:  Webb’s Scientific Instruments

VideoNASA Animation Sizes Up the Universe’s Biggest Black Holes

More Webb News

More Webb Images

Webb Science Themes

Webb Mission Page


Share

Details

Last Updated

Jan 13, 2026

Location NASA Goddard Space Flight Center Contact

Media

Laura Betz
NASA’s Goddard Space Flight Center
Greenbelt, Maryland
laura.e.betz@nasa.gov

Matthew Brown
Space Telescope Science Institute
Baltimore, Maryland

Hannah Braun
Space Telescope Science Institute
Baltimore, Maryland

Related Terms

Related Links and Documents

Science Paper: “JWST interferometric imaging reveals the dusty disk obscuring the supermassive black hole of the Circinus galaxy” by E. Lopez Rodriguez et al.

Keep Exploring Discover More Topics From Webb

James Webb Space Telescope

Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


Science Overview


Webb Observatory


Webb Image Galleries

Categories: NASA

<p><a href="https://apod.nasa.gov/apod

APOD - Mon, 01/12/2026 - 8:00pm

How complex is Jupiter?


Categories: Astronomy, NASA