The space of night is infinite,
The blackness and emptiness
Crossed only by thin bright fences
Of logic

— Kenneth Rexroth
"Theory of Numbers"

Feed aggregator

Curiosity Blog, Sols 4602-4603: On Top of the Ridge

NASA News - Fri, 07/18/2025 - 3:52pm
Curiosity Navigation

2 min read

Curiosity Blog, Sols 4602-4603: On Top of the Ridge NASA’s Mars rover Curiosity acquired this image looking along the ridge it is exploring during its planned activities for July 16, 2025. Curiosity acquired this image using its Left Navigation Camera on July 15 — Sol 4600, or Martian day 4,600 of the Mars Science Laboratory mission — at 17:12:14 UTC. NASA/JPL-Caltech

Written by Alex Innanen, Atmospheric Scientist at York University

Earth planning date: Wednesday, July 16, 2025

As we hoped, we successfully climbed the 11-meter ramp (about 36 feet) and have arrived at the top of the ridge and the start of the main boxwork region. This means we’re moving into the next phase of the boxwork campaign, which is all about assessing these features and how we can navigate our way through them, and learning everything we can about their composition.

In support of that, we’re taking a good look around at the boxwork ridges with both ChemCam and Mastcam. Both instruments are taking mosaics of the more distant ridges to get a broader view of their features. A bit closer in, Mastcam has three more mosaics: two looking at different views of “El Corral” and “Chapare,” both of which we saw in Monday’s plan, and “Meson,” which is the ridge we’ll be heading for in today’s 15-meter drive (about 49 feet).

It’s not all looking ahead, though. The workspace in front of us has a lot to offer as well. Mastcam will be turning its sights to some nearby linear features. Our workspace is also full of nodular bedrock, which is getting lots of up-close attention. ChemCam will be turning its LIBS laser on a target called “Altamora,” and MAHLI and APXS will be examining another target called “Nocarane.”

With all the geological excitement, we can still manage to squeeze in some time to keep an eye on the environment. Though we don’t always mention them, REMS, RAD, and DAN are always there working steadily away to build up our understanding of Mars’ environment. We’ll also round out the plan with a suprahorizon cloud movie and a 360-degree dust-devil survey.


For more Curiosity blog posts, visit MSL Mission Updates


Learn more about Curiosity’s science instruments

Share

Details

Last Updated

Jul 18, 2025

Related Terms Explore More

2 min read Curiosity Blog, Sols 4600-4601: Up and Over the Sand Covered Ramp

Article


3 days ago

2 min read Curiosity Blog, Sols 4597-4599: Wide Open Spaces

Article


3 days ago

3 min read Curiosity Blog, Sols 4595-4596: Just Another Beautiful Day on Mars

Article


3 days ago

Keep Exploring Discover More Topics From NASA

Mars

Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


All Mars Resources

Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


Rover Basics

Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


Mars Exploration: Science Goals

The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

Categories: NASA

Curiosity Blog, Sols 4602-4603: On Top of the Ridge

NASA - Breaking News - Fri, 07/18/2025 - 3:52pm
Curiosity Navigation

2 min read

Curiosity Blog, Sols 4602-4603: On Top of the Ridge NASA’s Mars rover Curiosity acquired this image looking along the ridge it is exploring during its planned activities for July 16, 2025. Curiosity acquired this image using its Left Navigation Camera on July 15 — Sol 4600, or Martian day 4,600 of the Mars Science Laboratory mission — at 17:12:14 UTC. NASA/JPL-Caltech

Written by Alex Innanen, Atmospheric Scientist at York University

Earth planning date: Wednesday, July 16, 2025

As we hoped, we successfully climbed the 11-meter ramp (about 36 feet) and have arrived at the top of the ridge and the start of the main boxwork region. This means we’re moving into the next phase of the boxwork campaign, which is all about assessing these features and how we can navigate our way through them, and learning everything we can about their composition.

In support of that, we’re taking a good look around at the boxwork ridges with both ChemCam and Mastcam. Both instruments are taking mosaics of the more distant ridges to get a broader view of their features. A bit closer in, Mastcam has three more mosaics: two looking at different views of “El Corral” and “Chapare,” both of which we saw in Monday’s plan, and “Meson,” which is the ridge we’ll be heading for in today’s 15-meter drive (about 49 feet).

It’s not all looking ahead, though. The workspace in front of us has a lot to offer as well. Mastcam will be turning its sights to some nearby linear features. Our workspace is also full of nodular bedrock, which is getting lots of up-close attention. ChemCam will be turning its LIBS laser on a target called “Altamora,” and MAHLI and APXS will be examining another target called “Nocarane.”

With all the geological excitement, we can still manage to squeeze in some time to keep an eye on the environment. Though we don’t always mention them, REMS, RAD, and DAN are always there working steadily away to build up our understanding of Mars’ environment. We’ll also round out the plan with a suprahorizon cloud movie and a 360-degree dust-devil survey.


For more Curiosity blog posts, visit MSL Mission Updates


Learn more about Curiosity’s science instruments

Share

Details

Last Updated

Jul 18, 2025

Related Terms Explore More

2 min read Curiosity Blog, Sols 4600-4601: Up and Over the Sand Covered Ramp

Article


3 days ago

2 min read Curiosity Blog, Sols 4597-4599: Wide Open Spaces

Article


3 days ago

3 min read Curiosity Blog, Sols 4595-4596: Just Another Beautiful Day on Mars

Article


3 days ago

Keep Exploring Discover More Topics From NASA

Mars

Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


All Mars Resources

Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


Rover Basics

Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


Mars Exploration: Science Goals

The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

Categories: NASA

Stay Cool: NASA Tests Innovative Technique for Super Cold Fuel Storage

NASA News - Fri, 07/18/2025 - 3:10pm
4 Min Read Stay Cool: NASA Tests Innovative Technique for Super Cold Fuel Storage The tank for NASA’s two-stage cooling tests is lowered into a vacuum chamber in Test Stand 300 at NASA’s Marshall Space Flight Center in Huntsville, Alabama. Credits: NASA/Kathy Henkel

In the vacuum of space, where temperatures can plunge to minus 455 degrees Fahrenheit, it might seem like keeping things cold would be easy. But the reality is more complex for preserving ultra-cold fluid propellants – or fuel – that can easily overheat from onboard systems, solar radiation, and spacecraft exhaust. The solution is a method called cryogenic fluid management, a suite of technologies that stores, transfers, and measures super cold fluids for the surface of the Moon, Mars, and future long-duration spaceflight missions.

Super cold, or cryogenic, fluids like liquid hydrogen and liquid oxygen are the most common propellants for space exploration. Despite its chilling environment, space has a “hot” effect on these propellants because of their low boiling points – about minus 424 degrees Fahrenheit for liquid hydrogen and about minus 298 for liquid oxygen – putting them at risk of boiloff.

In a first-of-its-kind demonstration, teams at NASA’s Marshall Space Flight Center in Huntsville, Alabama, are testing an innovative approach to achieve zero boiloff storage of liquid hydrogen using two stages of active cooling which could prevent the loss of valuable propellant.

“Technologies for reducing propellant loss must be implemented for successful long-duration missions to deep space like the Moon and Mars,” said Kathy Henkel, acting manager of NASA’s Cryogenic Fluid Management Portfolio Project, based at NASA Marshall. “Two-stage cooling prevents propellant loss and successfully allows for long-term storage of propellants whether in transit or on the surface of a planetary body.”

The new technique, known as “tube on tank” cooling, integrates two cryocoolers, or cooling devices, to keep propellant cold and thwart multiple heat sources. Helium, chilled to about minus 424 degrees Fahrenheit, circulates through tubes attached to the outer wall of the propellant tank.

NASA’s two-stage cooling testing setup sits in a vacuum chamber in Test Stand 300 at NASA’s Marshall Space Flight Center in Huntsville, Alabama. NASA/Tom Perrin The tank for NASA’s two-stage cooling tests is lowered into a vacuum chamber in Test Stand 300 at NASA’s Marshall Space Flight Center in Huntsville, Alabama.NASA/Kathy Henkel The tank for NASA’s two-stage cooling tests is lowered into a vacuum chamber in Test Stand 300 at NASA’s Marshall Space Flight Center in Huntsville, Alabama. NASA/Kathy Henkel The tank for NASA’s two-stage cooling tests is lowered into a vacuum chamber in Test Stand 300 at NASA’s Marshall Space Flight Center in Huntsville, Alabama. NASA/Kathy Henkel

Teams installed the propellant tank in a test stand at NASA Marshall in early June, and the 90-day test campaign is scheduled to conclude in September. The tank is wrapped in a multi-layer insulation blanket that includes a thin aluminum heat shield fitted between layers. A second set of tubes, carrying helium at about minus 298 Fahrenheit, is integrated into the shield. This intermediate cooling layer intercepts and rejects incoming heat before it reaches the tank, easing the heat load on the tube-on-tank system.

To prevent dangerous pressure buildup in the propellant tank in current spaceflight systems, boiloff vapors must be vented, resulting in the loss of valuable fuel. Eliminating such propellant losses is crucial to the success of NASA’s most ambitious missions, including future crewed journeys to Mars, which will require storing large amounts of cryogenic propellant in space for months or even years. So far, cryogenic fuels have only been used for missions lasting less than a week.  

“To go to Mars and have a sustainable presence, you need to preserve cryogens for use as rocket or lander return propellant,” Henkel said. “Rockets currently control their propellant through margin, where larger tanks are designed to hold more propellant than what is needed for a mission. Propellant loss isn’t an issue with short trips because the loss is factored into this margin. But, human exploration missions to Mars or longer stays at the Moon will require a different approach because of the very large tanks that would be needed.”

The Cryogenic Fluid Management Portfolio Project is a cross-agency team based at NASA Marshall and the agency’s Glenn Research Center in Cleveland. The cryogenic portfolio’s work is under NASA’s Technology Demonstration Missions Program, part of NASA’s Space Technology Mission Directorate, and is comprised of more than 20 individual technology development activities.

Learn more about cryogenic fluid management:

go.nasa.gov/cfm

Share Details Last Updated Jul 19, 2025 EditorLee MohonContactCorinne M. Beckingercorinne.m.beckinger@nasa.govLocationMarshall Space Flight Center Related Terms Explore More 3 min read NASA-Derived Textiles are Touring France by Bike Article 1 day ago 3 min read Registration Opens for 2025 NASA International Space Apps Challenge Article 2 days ago 2 min read Ejection Mechanism Design for the SPEED Test Architecture Challenge Article 3 days ago Keep Exploring Discover More Topics From NASA

Missions

Humans in Space

Climate Change

Solar System

Categories: NASA

Stay Cool: NASA Tests Innovative Technique for Super Cold Fuel Storage

NASA - Breaking News - Fri, 07/18/2025 - 3:10pm
4 Min Read Stay Cool: NASA Tests Innovative Technique for Super Cold Fuel Storage The tank for NASA’s two-stage cooling tests is lowered into a vacuum chamber in Test Stand 300 at NASA’s Marshall Space Flight Center in Huntsville, Alabama. Credits: NASA/Kathy Henkel

In the vacuum of space, where temperatures can plunge to minus 455 degrees Fahrenheit, it might seem like keeping things cold would be easy. But the reality is more complex for preserving ultra-cold fluid propellants – or fuel – that can easily overheat from onboard systems, solar radiation, and spacecraft exhaust. The solution is a method called cryogenic fluid management, a suite of technologies that stores, transfers, and measures super cold fluids for the surface of the Moon, Mars, and future long-duration spaceflight missions.

Super cold, or cryogenic, fluids like liquid hydrogen and liquid oxygen are the most common propellants for space exploration. Despite its chilling environment, space has a “hot” effect on these propellants because of their low boiling points – about minus 424 degrees Fahrenheit for liquid hydrogen and about minus 298 for liquid oxygen – putting them at risk of boiloff.

In a first-of-its-kind demonstration, teams at NASA’s Marshall Space Flight Center in Huntsville, Alabama, are testing an innovative approach to achieve zero boiloff storage of liquid hydrogen using two stages of active cooling which could prevent the loss of valuable propellant.

“Technologies for reducing propellant loss must be implemented for successful long-duration missions to deep space like the Moon and Mars,” said Kathy Henkel, acting manager of NASA’s Cryogenic Fluid Management Portfolio Project, based at NASA Marshall. “Two-stage cooling prevents propellant loss and successfully allows for long-term storage of propellants whether in transit or on the surface of a planetary body.”

The new technique, known as “tube on tank” cooling, integrates two cryocoolers, or cooling devices, to keep propellant cold and thwart multiple heat sources. Helium, chilled to about minus 424 degrees Fahrenheit, circulates through tubes attached to the outer wall of the propellant tank.

NASA’s two-stage cooling testing setup sits in a vacuum chamber in Test Stand 300 at NASA’s Marshall Space Flight Center in Huntsville, Alabama. NASA/Tom Perrin The tank for NASA’s two-stage cooling tests is lowered into a vacuum chamber in Test Stand 300 at NASA’s Marshall Space Flight Center in Huntsville, Alabama.NASA/Kathy Henkel The tank for NASA’s two-stage cooling tests is lowered into a vacuum chamber in Test Stand 300 at NASA’s Marshall Space Flight Center in Huntsville, Alabama. NASA/Kathy Henkel The tank for NASA’s two-stage cooling tests is lowered into a vacuum chamber in Test Stand 300 at NASA’s Marshall Space Flight Center in Huntsville, Alabama. NASA/Kathy Henkel

Teams installed the propellant tank in a test stand at NASA Marshall in early June, and the 90-day test campaign is scheduled to conclude in September. The tank is wrapped in a multi-layer insulation blanket that includes a thin aluminum heat shield fitted between layers. A second set of tubes, carrying helium at about minus 298 Fahrenheit, is integrated into the shield. This intermediate cooling layer intercepts and rejects incoming heat before it reaches the tank, easing the heat load on the tube-on-tank system.

To prevent dangerous pressure buildup in the propellant tank in current spaceflight systems, boiloff vapors must be vented, resulting in the loss of valuable fuel. Eliminating such propellant losses is crucial to the success of NASA’s most ambitious missions, including future crewed journeys to Mars, which will require storing large amounts of cryogenic propellant in space for months or even years. So far, cryogenic fuels have only been used for missions lasting less than a week.  

“To go to Mars and have a sustainable presence, you need to preserve cryogens for use as rocket or lander return propellant,” Henkel said. “Rockets currently control their propellant through margin, where larger tanks are designed to hold more propellant than what is needed for a mission. Propellant loss isn’t an issue with short trips because the loss is factored into this margin. But, human exploration missions to Mars or longer stays at the Moon will require a different approach because of the very large tanks that would be needed.”

The Cryogenic Fluid Management Portfolio Project is a cross-agency team based at NASA Marshall and the agency’s Glenn Research Center in Cleveland. The cryogenic portfolio’s work is under NASA’s Technology Demonstration Missions Program, part of NASA’s Space Technology Mission Directorate, and is comprised of more than 20 individual technology development activities.

Learn more about cryogenic fluid management:

go.nasa.gov/cfm

Share Details Last Updated Jul 19, 2025 EditorLee MohonContactCorinne M. Beckingercorinne.m.beckinger@nasa.govLocationMarshall Space Flight Center Related Terms Explore More 3 min read NASA-Derived Textiles are Touring France by Bike Article 23 hours ago 3 min read Registration Opens for 2025 NASA International Space Apps Challenge Article 2 days ago 2 min read Ejection Mechanism Design for the SPEED Test Architecture Challenge Article 3 days ago Keep Exploring Discover More Topics From NASA

Missions

Humans in Space

Climate Change

Solar System

Categories: NASA

Your chance of having a boy or girl may not be 50/50

New Scientist Space - Cosmology - Fri, 07/18/2025 - 3:00pm
We commonly think that sperm determines the sex of a child, depending on whether it carries an X or Y chromosome, but a study now suggests that a woman's age is also a factor
Categories: Astronomy

Your chance of having a boy or girl may not be 50/50

New Scientist Space - Space Headlines - Fri, 07/18/2025 - 3:00pm
We commonly think that sperm determines the sex of a child, depending on whether it carries an X or Y chromosome, but a study now suggests that a woman's age is also a factor
Categories: Astronomy

The 2025 Southern Delta Aquariid meteor shower is upon us! Here's what you need to know

Space.com - Fri, 07/18/2025 - 3:00pm
The Southern Delta Aquariids are active alongside the trusty Perseid meteor shower.
Categories: Astronomy

Exposure to microplastic makes animals want to eat it more

New Scientist Space - Cosmology - Fri, 07/18/2025 - 2:00pm
Over multiple generations, small nematode worms began preferring microplastic-contaminated food over cleaner options, which could have consequences for ecosystem health
Categories: Astronomy

Exposure to microplastic makes animals want to eat it more

New Scientist Space - Space Headlines - Fri, 07/18/2025 - 2:00pm
Over multiple generations, small nematode worms began preferring microplastic-contaminated food over cleaner options, which could have consequences for ecosystem health
Categories: Astronomy

'Star Trek: Strange New Worlds': Jess Bush and Martin Quinn talk feeling comfortable in their characters for Season 3 (exclusive)

Space.com - Fri, 07/18/2025 - 2:00pm
'I'm trying to make it as realistic as possible, so that a modern day Scottish person could see themselves in space one day.'
Categories: Astronomy

Record-breaking high-altitude shot of sun's surface captured from one of Europe's tallest mountains (photo)

Space.com - Fri, 07/18/2025 - 2:00pm
"The mountaineer defies gravity; the astronomer looks up. Both seek to reach the unreachable."
Categories: Astronomy

NASA-Derived Textiles are Touring France by Bike

NASA News - Fri, 07/18/2025 - 1:40pm

3 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) This woman is wearing an Ekoï jersey made from Outlast. The phase-change materials incorporated into the fabric help the wearer stay comfortable in any temperature. Credit: Ekoï

During the Tour de France, athletes have to maintain a constant speed while bike riding for dozens of miles through cold rains and summer heat. These cyclists need gear that adapts to the different environments they encounter. One company is using a material with NASA origins to ensure these athletes stay comfortable while taking their grand tours.

Phase-change materials use basic properties of matter to maintain a steady temperature. When a substance melts from a solid to a liquid, the material absorbs heat, and when it becomes solid again, it releases that heat. In the 1980s, Triangle Research Corporation received a NASA Small Business Innovation Research award to explore how phase-change materials could be incorporated into textiles to control temperatures in spacesuit gloves. By placing phase-change materials in small capsules woven throughout a textile, these temperature-regulating properties can be tuned to the comfort of the human body. While these textiles weren’t incorporated into any gloves flown on NASA missions, they formed the basis for a new product, sold under the name Outlast.

Spacesuit gloves have to be both dexterous enough to use tools and insulating enough to protect against the temperature extremes of working in space. Working with industry, NASA explored the use of phase-change materials for these purposes, which was later commercialized under the name Outlast.Credit: NASA

Outlast has since become one of the most widely distributed temperature-regulating fabrics, found in products such as bedding, loungewear, and office chairs. It has seen especially extensive use in activewear, ranging from jogging clothes to professional sports gear. 

Founded in 2001 and based in Fréjus, France, the company Ekoï makes clothing and accessories for cyclists, particularly those who bike competitively. The company first encountered Outlast at the Performance Days fabric trade fair in Munich, Germany, and was impressed with its capabilities as well as its NASA heritage.

“When you say NASA, it’s always impressive.” said Celine Milan, director of textiles at Ekoï. “At the beginning we were even saying in here in our offices, ‘Wow, this technology was developed by NASA.’ It’s on another level.”

Ekoi’s Outlast line officially launched in July 2022, during that year’s Tour de France. Over the course of that race, the company found it improved cyclists’ performance in the event’s mountain stages, where elevation changes mean wide swings in temperature. It also improved athletes’ aerodynamics, as their jerseys could stay closed in warmer environments, rather than opening them to let in wind.

Today, Ekoï sells several products that incorporate Outlast materials, including jerseys, gloves, and socks. These products are internationally known for their NASA heritage. Whether engineering for astronaut’s comfort in space or competitive athletes, NASA aims for excellence. 

Learn more about NASA’s Spinoff Technologies: https://spinoff.nasa.gov/

Read More Share Details Last Updated Jul 18, 2025 Related Terms Explore More 3 min read Comet-Catching NASA Technology Enables Exotic Works of Art  Article 1 month ago 2 min read NASA Tech Gives Treadmill Users a ‘Boost’  

Creators of the original antigravity treadmill continue to advance technology with new company.

Article 2 months ago
3 min read Winners Announced in NASA’s 2025 Gateways to Blue Skies Competition Article 2 months ago Keep Exploring Discover Related Topics

Technology Transfer & Spinoffs

Humans in Space

SBIR/STTR Phase I

Solar System

Categories: NASA

NASA-Derived Textiles are Touring France by Bike

NASA - Breaking News - Fri, 07/18/2025 - 1:40pm

3 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) This woman is wearing an Ekoï jersey made from Outlast. The phase-change materials incorporated into the fabric help the wearer stay comfortable in any temperature. Credit: Ekoï

During the Tour de France, athletes have to maintain a constant speed while bike riding for dozens of miles through cold rains and summer heat. These cyclists need gear that adapts to the different environments they encounter. One company is using a material with NASA origins to ensure these athletes stay comfortable while taking their grand tours.

Phase-change materials use basic properties of matter to maintain a steady temperature. When a substance melts from a solid to a liquid, the material absorbs heat, and when it becomes solid again, it releases that heat. In the 1980s, Triangle Research Corporation received a NASA Small Business Innovation Research award to explore how phase-change materials could be incorporated into textiles to control temperatures in spacesuit gloves. By placing phase-change materials in small capsules woven throughout a textile, these temperature-regulating properties can be tuned to the comfort of the human body. While these textiles weren’t incorporated into any gloves flown on NASA missions, they formed the basis for a new product, sold under the name Outlast.

Spacesuit gloves have to be both dexterous enough to use tools and insulating enough to protect against the temperature extremes of working in space. Working with industry, NASA explored the use of phase-change materials for these purposes, which was later commercialized under the name Outlast.Credit: NASA

Outlast has since become one of the most widely distributed temperature-regulating fabrics, found in products such as bedding, loungewear, and office chairs. It has seen especially extensive use in activewear, ranging from jogging clothes to professional sports gear. 

Founded in 2001 and based in Fréjus, France, the company Ekoï makes clothing and accessories for cyclists, particularly those who bike competitively. The company first encountered Outlast at the Performance Days fabric trade fair in Munich, Germany, and was impressed with its capabilities as well as its NASA heritage.

“When you say NASA, it’s always impressive.” said Celine Milan, director of textiles at Ekoï. “At the beginning we were even saying in here in our offices, ‘Wow, this technology was developed by NASA.’ It’s on another level.”

Ekoi’s Outlast line officially launched in July 2022, during that year’s Tour de France. Over the course of that race, the company found it improved cyclists’ performance in the event’s mountain stages, where elevation changes mean wide swings in temperature. It also improved athletes’ aerodynamics, as their jerseys could stay closed in warmer environments, rather than opening them to let in wind.

Today, Ekoï sells several products that incorporate Outlast materials, including jerseys, gloves, and socks. These products are internationally known for their NASA heritage. Whether engineering for astronaut’s comfort in space or competitive athletes, NASA aims for excellence. 

Learn more about NASA’s Spinoff Technologies: https://spinoff.nasa.gov/

Read More Share Details Last Updated Jul 18, 2025 Related Terms Explore More 3 min read Comet-Catching NASA Technology Enables Exotic Works of Art  Article 1 month ago 2 min read NASA Tech Gives Treadmill Users a ‘Boost’  

Creators of the original antigravity treadmill continue to advance technology with new company.

Article 2 months ago
3 min read Winners Announced in NASA’s 2025 Gateways to Blue Skies Competition Article 2 months ago Keep Exploring Discover Related Topics

Technology Transfer & Spinoffs

Humans in Space

SBIR/STTR Phase I

Solar System

Categories: NASA

Hubble Snaps Galaxy Cluster’s Portrait

NASA Image of the Day - Fri, 07/18/2025 - 1:24pm
This NASA/ESA Hubble Space Telescope image features the galaxy cluster Abell 209.
Categories: Astronomy, NASA

Hubble Snaps Galaxy Cluster’s Portrait

NASA News - Fri, 07/18/2025 - 1:23pm
This NASA/ESA Hubble Space Telescope image features the galaxy cluster Abell 209.ESA/Hubble & NASA, M. Postman, P. Kelly

A massive, spacetime-warping cluster of galaxies is the setting of today’s NASA/ESA Hubble Space Telescope image. The galaxy cluster in question is Abell 209, located 2.8 billion light-years away in the constellation Cetus (the Whale).

This Hubble image of Abell 209 shows more than a hundred galaxies, but there’s more to this cluster than even Hubble’s discerning eye can see. Abell 209’s galaxies are separated by millions of light-years, and the seemingly empty space between the galaxies is filled with hot, diffuse gas that is visible only at X-ray wavelengths. An even more elusive occupant of this galaxy cluster is dark matter: a form of matter that does not interact with light. Dark matter does not absorb, reflect, or emit light, effectively making it invisible to us. Astronomers detect dark matter by its gravitational influence on normal matter. Astronomers surmise that the universe is comprised of 5% normal matter, 25% dark matter, and 70% dark energy.

Hubble observations, like the ones used to create this image, can help astronomers answer fundamental questions about our universe, including mysteries surrounding dark matter and dark energy. These investigations leverage the immense mass of a galaxy cluster, which can bend the fabric of spacetime itself and create warped and magnified images of background galaxies and stars in a process called gravitational lensing.

While this image lacks the dramatic rings that gravitational lensing can sometimes create, Abell 209 still shows subtle signs of lensing at work, in the form of streaky, slightly curved galaxies within the cluster’s golden glow. By measuring the distortion of these galaxies, astronomers can map the distribution of mass within the cluster, illuminating the underlying cloud of dark matter. This information, which Hubble’s fine resolution and sensitive instruments help to provide, is critical for testing theories of how our universe evolved.

Text Credit: ESA/Hubble

Image credit: ESA/Hubble & NASA, M. Postman, P. Kelly

Categories: NASA

Hubble Snaps Galaxy Cluster’s Portrait

NASA - Breaking News - Fri, 07/18/2025 - 1:23pm
This NASA/ESA Hubble Space Telescope image features the galaxy cluster Abell 209.ESA/Hubble & NASA, M. Postman, P. Kelly

A massive, spacetime-warping cluster of galaxies is the setting of today’s NASA/ESA Hubble Space Telescope image. The galaxy cluster in question is Abell 209, located 2.8 billion light-years away in the constellation Cetus (the Whale).

This Hubble image of Abell 209 shows more than a hundred galaxies, but there’s more to this cluster than even Hubble’s discerning eye can see. Abell 209’s galaxies are separated by millions of light-years, and the seemingly empty space between the galaxies is filled with hot, diffuse gas that is visible only at X-ray wavelengths. An even more elusive occupant of this galaxy cluster is dark matter: a form of matter that does not interact with light. Dark matter does not absorb, reflect, or emit light, effectively making it invisible to us. Astronomers detect dark matter by its gravitational influence on normal matter. Astronomers surmise that the universe is comprised of 5% normal matter, 25% dark matter, and 70% dark energy.

Hubble observations, like the ones used to create this image, can help astronomers answer fundamental questions about our universe, including mysteries surrounding dark matter and dark energy. These investigations leverage the immense mass of a galaxy cluster, which can bend the fabric of spacetime itself and create warped and magnified images of background galaxies and stars in a process called gravitational lensing.

While this image lacks the dramatic rings that gravitational lensing can sometimes create, Abell 209 still shows subtle signs of lensing at work, in the form of streaky, slightly curved galaxies within the cluster’s golden glow. By measuring the distortion of these galaxies, astronomers can map the distribution of mass within the cluster, illuminating the underlying cloud of dark matter. This information, which Hubble’s fine resolution and sensitive instruments help to provide, is critical for testing theories of how our universe evolved.

Text Credit: ESA/Hubble

Image credit: ESA/Hubble & NASA, M. Postman, P. Kelly

Categories: NASA

Ranching and farming have eroded almost all the soil in the Alps

New Scientist Space - Space Headlines - Fri, 07/18/2025 - 1:00pm
Grazing livestock and farming over the past 4000 years have rapidly accelerated the rate of soil loss in the Alps, jeopardising the ecosystem and putting the mountains at risk of further erosion
Categories: Astronomy

Ranching and farming have eroded almost all the soil in the Alps

New Scientist Space - Cosmology - Fri, 07/18/2025 - 1:00pm
Grazing livestock and farming over the past 4000 years have rapidly accelerated the rate of soil loss in the Alps, jeopardising the ecosystem and putting the mountains at risk of further erosion
Categories: Astronomy

Tests that AIs Often Fail and Humans Ace Could Pave the Way for Artificial General Intelligence

Scientific American.com - Fri, 07/18/2025 - 1:00pm

Discover why some puzzles stump supersmart AIs but are easy for humans, what this reveals about the quest for true artificial general intelligence—and why video games are the next frontier

Categories: Astronomy

Space station astronauts bid farewell to private Ax-4 crew | On the ISS this week July 14-18, 2025

Space.com - Fri, 07/18/2025 - 1:00pm
The Expedition 73 and Axiom Mission 4 crews wrapped up their time together as science and maintenance activities continued aboard the International Space Station.
Categories: Astronomy