NASA - Breaking News

NICER Status Updates
NASA’s NICER (Neutron star Interior Composition Explorer), an X-ray telescope on the International Space Station, has paused observations due to a problem with one of the motors that drives its ability to track cosmic objects.
The NICER team paused operations June 17 when performance degradation in the motor began affecting science observations. Engineers are investigating the cause and potential solutions.
The telescope was installed near the space station’s starboard solar array in 2017. The NICER mission has successfully demonstrated a form of deep space navigation that could be used for travel to Mars and beyond. It has also made groundbreaking measurements of neutron stars, which contain the densest matter in the universe that we can measure, and revolutionized our understanding of black holes, active galaxies, and other mysterious phenomena in our universe.
April 17, 2025Following Repair, NASA’s NICER Improves Daytime Measurements
A NASA X-ray telescope on the International Space Station called NICER, or Neutron star Interior Composition Explorer, has regained additional daytime observation capabilities thanks to repairs completed during a spacewalk and a reconfiguration of its detectors.
In May 2023, NICER developed a light leak in which unwanted sunlight began entering the instrument. Photos taken from inside the space station revealed several small areas of damage to the telescope’s thin thermal shields, which block sunlight while allowing X-rays through to the detectors. Nighttime observations were unaffected, and with operational adjustments, the NICER team was able to recover about 20% of station daytime observations.
In January, NASA astronaut Nick Hague installed nine patches to cover the largest areas of damage during a spacewalk. After resuming science operations, the NICER team determined the overall level of sunlight inside NICER had substantially reduced. Still, it experienced more visible-light interference than expected.
The NICER (Neutron star Interior Composition Explorer) X-ray telescope is reflected on NASA astronaut and Expedition 72 flight engineer Nick Hague’s spacesuit helmet visor in this high-flying “space-selfie” taken during a spacewalk on Jan. 16, 2025. NASA/Nick HagueClose-up, high-resolution photos from the spacewalk allowed the team to see additional small holes and cracks in the thermal shields that were not previously visible. These accounted for the remaining sunlight intrusion.
After further analysis, the NICER team developed a novel approach to regaining additional daytime data collection.
Each X-ray that hits a NICER detector generates electrical charge that is sensed by a measurement/power unit (MPU). After so many hits, the detector resets — like emptying a cup before it overflows.
Sunlight can also create charge that accumulates in the detector, adding water to the metaphorical cup. There was so much sunlight entering NICER that the detectors were filling up with charge and resetting thousands of times for every X-ray detection. It overwhelmed the MPU’s ability to process the valid X-ray events.
Hague’s repair in January reduced the amount of sunlight entering NICER, which enabled the team to reconfigure the MPUs to ignore the sunlight-generated resets. After initial testing on the ground, the team updated one MPU before switching all seven. The changeover was completed March 12.
In combination with the patches, the reconfiguration has allowed NICER to return to collecting observations during more than 70% of station daytime, as the telescope continues to help us better understand the X-ray universe, including neutron stars, black holes, and other energetic phenomena. The team continues to look for more opportunities to improve NICER’s operations.
Jan. 24, 2025NASA’s NICER Continues Science Operations Post Repair
NASA crew aboard the International Space Station installed patches to the agency’s NICER (Neutron star Interior Composition Explorer) mission during a spacewalk on Jan. 16. NICER, an X-ray telescope perched near the station’s starboard solar array, resumed science operations later the same day.
The patches cover areas of NICER’s thermal shields where damage was discovered in May 2023. These thin filters block sunlight while allowing X-rays to pass through. After the discovery, the NICER team restricted their observations during the station’s daytime to avoid overwhelming the mission’s sensitive detectors. Nighttime observations were unaffected, and the team was able to continue collecting data for the science community to make groundbreaking measurements using the instrument’s full capabilities.
The repair went according to plan. Data since collected shows the detectors behind the patched areas are performing better than before during station night, and the overall level of sunlight inside NICER during the daytime is reduced substantially.
While NICER experiences less interference from sunlight than before, after analyzing initial data, the team has determined the telescope still experiences more interference than expected. The installed patches cover areas of known damage identified using astronomical observations and from photos taken by both external robotic cameras and astronauts inside the space station. Measurements collected since the repair and close-up, high-resolution photos obtained during the spacewalk are providing new information that may point the way toward further daytime data collection.
In the meantime, NICER continues operations with its full measurement capabilities during orbit night to enable further trailblazing discoveries in time domain and multimessenger astrophysics.
June 8, 2023Sunlight ‘Leak’ Impacting NASA’s NICER Telescope, Science Continues
On Tuesday, May 22, NASA’s NICER (Neutron Star Interior Composition Explorer), an X-ray telescope on the International Space Station, developed a “light leak,” in which unwanted sunlight enters the instrument. While analyzing incoming data since then, the team identified an impact to daytime observations. Nighttime observations seem to be unaffected.
The team suspects that at least one of the thin thermal shields on NICER’s 56 X-ray Concentrators has been damaged, allowing sunlight to reach its sensitive detectors.
To mitigate the effects on measurements, the NICER team has limited daytime observations to objects far away from the Sun’s position in the sky. The team has also updated commands to NICER that automatically lower its sensitivity during the orbital day to reduce the effects from sunlight contamination. The team is evaluating these changes and assessing additional measures to reduce the impact on science observations.
To date, more than 300 scientific papers have used NICER observations, and the team is confident that NICER will continue to produce world-class science.
Media contactsAlise Fisher
202-358-2546
alise.m.fisher@nasa.gov
NASA Headquarters, Washington
Claire Andreoli
301-286-1940
claire.andreoli@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Live or Fly a Plane in California? Help NASA Measure Ozone Pollution!
Ozone high in the stratosphere protects us from the Sun’s ultraviolet light. But ozone near the ground is a pollutant that harms people and plants. The San Joaquin Valley has some of the most polluted air in the country, and NASA scientists with the new Ozone Where We Live (OWWL) project are working to measure ozone and other pollutants there. They need your help!
Do you live or work in Bakersfield, CA? Sign up to host an ozone sensor! It’s like a big lunch box that you place in your yard, but it’s not packed with tuna and crackers. It’s filled with sensors that measure temperature and humidity and sniff out dangerous gases like methane, carbon monoxide, carbon dioxide, and of course, ozone.
Can you fly a plane? Going to the San Joaquin Valley? Sign up to take an ozone sensor on your next flight! You can help measure ozone levels in layers of the atmosphere that are hard for satellites to investigate. Scientists will combine the data you take with data from NASA’s TEMPO satellite to improve air quality models and measurements within the region. Find out more here or email: Emma.l.yates@nasa.gov
Join the Ozone Where We Live (OWWL) project and help NASA scientists protect the people of the San Joaquin Valley! Credit: Emma Yates Share Details Last Updated Jun 24, 2025 Related Terms Explore More 4 min read c-FIRST Team Sets Sights on Future Fire-observing Satellite ConstellationsArticle
3 weeks ago
2 min read Summer Students Scan the Radio Skies with SunRISE
Article
4 weeks ago
2 min read Space Cloud Watch Needs Your Photos of Night-Shining Clouds
Article
1 month ago
NASA’s SLS Solid Rocket Boosters: What is DM-1?
Demonstration Motor-1 (DM-1) is the first full-scale ground test of the evolved five-segment solid rocket motor of NASA’s SLS (Space Launch System) rocket. The event will take place in Promontory, Utah, and will be used as an opportunity to test several upgrades made from the current solid rocket boosters. Each booster burns six tons of solid propellant every second and together generates almost eight million pounds of thrust.
News Media ContactJonathan Deal
Marshall Space Flight Center, Huntsville, Ala.
256-544-0034
jonathan.e.deal@nasa.gov
Mission Accomplished! Artemis ROADS III National Challenge Competitors Celebrate their Achievements
5 min read
Mission Accomplished! Artemis ROADS III National Challenge Competitors Celebrate their AchievementsThe NASA Science Activation program’s Northwest Earth and Space Sciences Pathways (NESSP) team has successfully concluded the 2024–2025 Artemis ROADS III National Challenge, an educational competition that brought real NASA mission objectives to student teams (and reached more than 1,500 learners) across the country. From December 2024 through May 2025, over 300 teams of upper elementary, middle, and high school students from 22 states participated, applying STEM (Science, Technology, Engineering, and Mathematics) skills in exciting and creative ways.
Participants tackled eight Mission Objectives inspired by NASA’s Artemis missions, which aim to return humans to the Moon. Students explored challenges such as:
- Designing a water purification system for the Moon inspired by local water cycles
- Developing a Moon-based agricultural plan based on experimental results
- Programming a rover to autonomously navigate lunar tunnels
- Engineering and refining a human-rated water bottle rocket capable of safely returning a “chip-stronaut” to Earth
- Envisioning their future careers through creative projects like graphic novels or video interviews
- Exploring NASA’s Artemis program through a new Artemis-themed Lotería game
In-person hub events were hosted by Northern Arizona University, Central Washington University, and Montana State University, where teams from Washington, Montana, and Idaho gathered to present their work, collaborate with peers, and experience life on a college campus. Students also had the chance to connect virtually with NASA scientists and engineers through NESSP’s NASA Expert Talks series.
“Artemis ROADS III is NESSP’s eighth ROADS challenge, and I have to say, I think it’s the best one yet. It’s always inspiring to see so many students across the country engage in a truly meaningful STEM experience. I heard from several students and educators that participating in the challenge completely changed their perspective on science and engineering. I believe that’s because this program is designed to let students experience the joy of discovery and invention—driven by both teamwork and personal creativity—that real scientists and engineers love about their work. We also show students the broad range of STEM expertise NASA relies on to plan and carry out a mission like Artemis. Most importantly, it gives them a chance to feel like they are part of the NASA mission, which can be truly transformative.”
– Dr. Darci Snowden, Director, NESSP
NESSP proudly recognizes the following teams for completing all eight Mission Objectives and the Final Challenge:
- Space Pringles, 3rd-5th Grade, San Antonio, TX
- Space Axolotls, 3rd-5th Grade, Roberts, MT
- TEAM Wild, 6th-8th Grade, Eagle Mountain, UT
- Pessimistic Penguins, 6th-8th Grade, Eagle Mountain, UT
- Dwarf Planets, 6th-8th Grade, Eagle Mountain, UT
- Astronomical Rovers, 6th-8th Grade, Eagle Mountain, UT
- Cosmic Honeybuns, 6th-8th Grade, Eagle Mountain, UT
- Houston we have a Problem, 6th-8th Grade, Eagle Mountain, UT
- FBI Wanted List, 6th-8th Grade, Eagle Mountain, UT
- Lunar Legion, 6th-8th Grade, San Antonio, TX
- Artemis Tax-Free Space Stallions, 6th-8th Grade, Egg Harbor, NJ
- Aquila, 6th-8th Grade, Gooding, ID
- Space Warriors, 6th-8th Grade, Wapato, WA
- Team Cygnus, 6th-8th Grade, Red Lodge, MT
- Maple RocketMen, 6th-8th Grade, Northbrook, IL
- RGB Hawks, 6th-8th Grade, Sagle, ID
- The Blue Moon Bigfoots, 6th-8th Grade, Medford, OR
- W.E.P.Y.C.K., 6th-8th Grade, Roberts, MT
- Lunar Dawgz, 6th-8th Grade, Safford, AZ
- ROSEBUD ROCKETEERS, 6th-8th Grade, Rosebud, MT
- The Cosmic Titans, 6th-8th Grade, Thomson Falls, MT
- The Chunky Space Monkeys, 6th-8th Grade, Naches, WA
- ROSEBUD RED ANGUS, 9th-12th Grade, Rosebud, MT
- Bulky Bisons, 9th-12th Grade, Council Grove, KS
- The Falling Stars, 9th-12th Grade, Thomson Falls, MT
- The Roadkillers, 9th-12th Grade, Thomson Falls, MT
- The Goshawks, 9th-12th Grade, Thomson Falls, MT
- Sequim Cosmic Catalysts, 9th-12th Grade, Sequim, WA
- Spuddie Buddies, 9th-12th Grade, Moses Lake, WA
- Astrocoquí 2, 9th-12th Grade, Mayaguez, PR
- Big Sky Celestials, 9th-12th Grade, Billings, MT
- TRYOUTS, 9th-12th Grade, Columbus, MT
- Cosmonaughts, 9th-12th Grade, Columbus, MT
- TCCS 114, 9th-12th Grade, Tillamook, OR
- Marvin’s Mighty Martians, 9th-12th Grade, Simms, TX
You can see highlights of these teams’ work in the Virtual Recognition Ceremony video on the NESSP YouTube channel. The presentation also features the teams selected to travel to Kennedy Space Center in August of 2025, the ultimate prize for these future space explorers!
In addition to student engagement, the ROADS program provided professional development workshops and NGSS-aligned classroom resources to support K–12 educators. Teachers are invited to explore these materials and register for the next round of workshops, beginning in August 2025: https://nwessp.org/professional-development-registration.
For more information about NESSP, its programs, partners, and the ROADS National Challenge, visit www.nwessp.org or contact info@nwessp.org.
———–
NASA’s Northwest Earth and Space Science Pathways’ (NESSP) project is supported by NASA cooperative agreement award number 80NSSC22M0006 and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn/about-science-activation/
A water bottle rocket launches into the air carrying its precious chip-stronaut cargo. Share Details Last Updated Jun 23, 2025 Editor NASA Science Editorial Team Related Terms Explore More 3 min read NASA Scientists Find Ties Between Earth’s Oxygen and Magnetic FieldArticle
5 days ago
3 min read NASA Interns Conduct Aerospace Research in Microgravity
Article
4 weeks ago
5 min read Percolating Clues: NASA Models New Way to Build Planetary Cores
Article
1 month ago
Keep Exploring Discover More Topics From NASA James Webb Space Telescope
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Perseverance Rover
This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…
Parker Solar Probe
On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…
Juno
NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…
NASA’s Curiosity Mars Rover Starts Unpacking Boxwork Formations
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater) Drag your mouse or move your phone to pan around within this 360-degree view to explore the boxwork patterns on Mars that NASA’s Curiosity is investigating for the first time. The rover captured the 291 images that make up this mosaic between May 15 and May 18.Credit: NASA/JPL-Caltech/MSSS
The rover recently drilled a sample from a new region with features that could reveal whether Mars’ subsurface once provided an environment suitable for life.
New images from NASA’s Curiosity Mars rover show the first close-up views of a region scientists had previously observed only from orbit. The images and data being collected are already raising new questions about how the Martian surface was changing billions of years ago. The Red Planet once had rivers, lakes, and possibly an ocean. Although scientists aren’t sure why, its water eventually dried up and the planet transformed into the chilly desert it is today.
By the time Curiosity’s current location formed, the long-lived lakes were gone in Gale Crater, the rover’s landing area, but water was still percolating under the surface. The rover found dramatic evidence of that groundwater when it encountered crisscrossing low ridges, some just a few inches tall, arranged in what geologists call a boxwork pattern. The bedrock below these ridges likely formed when groundwater trickling through the rock left behind minerals that accumulated in those cracks and fissures, hardening and becoming cementlike. Eons of sandblasting by Martian wind wore away the rock but not the minerals, revealing networks of resistant ridges within.
The ridges Curiosity has seen so far look a bit like a crumbling curb. The boxwork patterns stretch across miles of a layer on Mount Sharp, a 3-mile-tall (5-kilometer-tall) mountain whose foothills the rover has been climbing since 2014. Intriguingly, boxwork patterns haven’t been spotted anywhere else on the mountain, either by Curiosity or orbiters passing overhead.
NASA’s Curiosity Mars rover viewed this low ridge, which looks a bit like a crumbling curb, on May 16. Scientists think the hardened edges of such ridges — part of the boxwork region the rover is exploring — may have been formed by ancient groundwater.NASA/JPL-Caltech/MSSS“A big mystery is why the ridges were hardened into these big patterns and why only here,” said Curiosity’s project scientist, Ashwin Vasavada of NASA’s Jet Propulsion Laboratory in Southern California. “As we drive on, we’ll be studying the ridges and mineral cements to make sure our idea of how they formed is on target.”
Important to the boxwork patterns’ history is the part of the mountain where they’re found. Mount Sharp consists of multiple layers, each of which formed during different eras of ancient Martian climate. Curiosity essentially “time travels” as it ascends from the oldest to youngest layers, searching for signs of water and environments that could have supported ancient microbial life.
The rover is currently exploring a layer with an abundance of salty minerals called magnesium sulfates, which form as water dries up. Their presence here suggests this layer emerged as the climate became drier. Remarkably, the boxwork patterns show that even in the midst of this drying, water was still present underground, creating changes seen today.
NASA’s Curiosity Mars rover captured this scene while looking out across a region filled with boxwork patterns, low ridges that scientists think could have been formed by groundwater billions of years ago.NASA/JPL-Caltech/MSSSScientists hope to gain more insight into why the boxwork patterns formed here, and Mars recently provided some unexpected clues. The bedrock between the boxwork ridges has a different composition than other layers of Mount Sharp. It also has lots of tiny fractures filled with white veins of calcium sulfate, another salty mineral left behind as groundwater trickles through rock cracks. Similar veins were plentiful on lower layers of the mountain, including one enriched with clays, but had not been spotted in the sulfate layer until now.
“That’s really surprising,” said Curiosity’s deputy project scientist, Abigail Fraeman of JPL. “These calcium sulfate veins used to be everywhere, but they more or less disappeared as we climbed higher up Mount Sharp. The team is excited to figure out why they’ve returned now.”
New Terrain, New FindingsOn June 8, Curiosity set out to learn about the unique composition of the bedrock in this area, using the drill on the end of its robotic arm to snag a sample of a rock nicknamed “Altadena.” The rover then dropped the pulverized sample into instruments within its body for more detailed analysis.
Drilling additional samples from more distant boxwork patterns, where the mineral ridges are much larger, will help the mission make sense of what they find. The team will also search for organic molecules and other evidence of an ancient habitable environment preserved in the cemented ridges.
As Curiosity continues to explore, it will be leaving a new assortment of nicknames behind, as well. To keep track of features on the planet, the mission applies nicknames to each spot the rover studies, from hills it views with its cameras to specific calcium sulfate veins it zaps with its laser. (Official names, such as Aeolis Mons — otherwise known as Mount Sharp — are approved by the International Astronomical Union.)
The previous names were selected from local sites in Southern California, where JPL is based. The Altadena sample, for instance, bears the name of a community near JPL that was severely burned during January’s Eaton Canyon fire. Now on a new part of their Martian map, the team is selecting names from around Bolivia’s Salar de Uyuni, Earth’s largest salt flat. This exceptionally dry terrain crosses into Chile’s Atacama Desert, and astrobiologists study both the salt flat and the surrounding desert because of their similarity to Mars’ extreme dryness.
More About CuriosityCuriosity was built by NASA’s Jet Propulsion Laboratory, which is managed by Caltech in Pasadena, California. JPL leads the mission on behalf of NASA’s Science Mission Directorate in Washington as part of NASA’s Mars Exploration Program portfolio.
For more about Curiosity, visit:
science.nasa.gov/mission/msl-curiosity
News Media ContactsAndrew Good
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-2433
andrew.c.good@jpl.nasa.gov
Karen Fox / Molly Wasser
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
2025-080
Share Details Last Updated Jun 23, 2025 Related Terms Explore More 4 min read NASA Tech to Use Moonlight to Enhance Measurements from Space Article 5 days ago 2 min read NASA’s LRO Views ispace HAKUTO-R Mission 2 Moon Lander Impact Site Article 5 days ago 2 min read Explore Our Dynamic Sun!from NASA’s Heliophysics Education Activation Team (NASA HEAT) and the Astronomical Society of the Pacific/Night…
Article 1 week ago Keep Exploring Discover Related TopicsMissions
Humans in Space
Climate Change
Solar System
A Martian Volcano in the Mist
Arsia Mons, one of the Red Planet’s largest volcanoes, peeks through a blanket of water ice clouds in this image captured by NASA’s 2001 Mars Odyssey orbiter on May 2, 2025. Odyssey used a camera called the Thermal Emission Imaging System (THEMIS) to capture this view while studying the Martian atmosphere, which appears here as a greenish haze above the scene. A large crater known as a caldera, produced by massive volcanic explosions and collapse, is located at the summit. At 72 miles (120 kilometers) wide, the Arsia Mons summit caldera is larger than many volcanoes on Earth.
Learn more about Arsia Mons and Mars Odyssey.
Image Credit: NASA/JPL-Caltech/ASU
Clay Minerals From Mars’ Most Ancient Past?
- Perseverance Home
- Science
- News and Features
- Multimedia
- Mars Missions
- Mars Home
2 min read
Clay Minerals From Mars’ Most Ancient Past?Recent detections of clay-bearing bedrock on Jezero’s crater rim have the Perseverance Science Team excited and eager to sample.
NASA’s Mars Perseverance rover acquired this image of the Laknes abrasion, acquired in the clay-bearing bedrock of the Krokodillen plateau, on the outer slopes of the Jezero crater rim. Perseverance captured the image using its Right Mastcam-Z camera on June 8, 2025 — or, Sol 1529, Martian day 1,529 of the Mars 2020 mission — at the local mean solar time of 12:03:14. NASA/JPL-Caltech/ASUWritten by Alex Jones, Ph.D. candidate at Imperial College London
Since finishing its exploration of spherule-rich stratigraphy at Witch Hazel Hill, Perseverance has been exploring the Krokodillen plateau, a relatively low-lying terrain on the outer slopes of the crater rim. It was in these rocks where the SuperCam instrument began detecting signatures of clay-minerals. These minerals, also known as “phyllosilicates,” are an exciting find as they primarily form by extensive interactions between basaltic rocks and liquid water. Phyllosilicates are also excellent at preserving organic materials, if present, by adsorbing them or encapsulating them within their mineral structure.
What’s more, it’s possible that these clay-bearing rocks may be some of the most ancient rocks explored by Perseverance, dating back to a time when Mars may have been warmer and wetter than the present day. Clay-bearing rocks are abundant in the regions around Jezero, and are thought to date to Mars’ Noachian period, around 4 billion years ago. Needless to say, the Science Team were keen to investigate (and eventually sample) these materials.
Perseverance performed an initial toe-dip into this clay-bearing unit back in April, creating the Strong Island abrasion patch, before returning back upslope to Witch Hazel Hill to sample some spherule-bearing rocks. Since then, Perseverance has started exploring this clay-bearing unit more extensively, creating the Laknes abrasion (pictured) on Sol 1526.
Initial data collected by Perseverance suggests that the clay signature may be variable across the Krokodillen plateau. Next, the Science Team plan to rove around to establish a clear geologic context for these rocks, as well as locating a good site for sampling!
Share Details Last Updated Jun 23, 2025 Related Terms Explore More 4 min read Curiosity Blog, Sols 4577-4579: Watch the SkiesArticle
3 days ago
2 min read Curiosity Blog, Sols 4575-4576: Perfect Parking Spot
Article
3 days ago
3 min read Curiosity Blog, Sols 4573-4574: Welcome to the Uyuni Quad
Article
5 days ago
Keep Exploring Discover More Topics From NASA Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
NASA Intern Took Career from Car Engines to Cockpits
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)Some career changes involve small shifts. But for one NASA engineering intern, the leap was much bigger –moving from under the hood of a car to helping air taxis take to the skies.
Saré Culbertson spent more than a decade in the auto industry and had been working as a service manager in busy auto repair shops. Today, she supports NASA’s Air Mobility Pathfinders project as a flight operations engineer intern at NASA’s Armstrong Flight Research Center in Edwards, California, through NASA’s Pathways program.
“NASA has helped me see opportunities I didn’t even know existedSaré Culbertson
NASA Intern
“NASA has helped me see opportunities I didn’t even know existed,” she said. “I realized that being good at something isn’t enough – you have to be passionate about it too.”
With a strong foundation in mechanical engineering – earning a bachelor’s degree from California State University, Long Beach, Antelope Valley Engineering Program – she graduated magna cum laude and delivered her class’s commencement speech. Culbertson also earned two associate’s degrees, one in engineering and one in fine arts.
NASA Pathways intern Saré Culbertson, right, works with NASA operations engineer Jack Hayes at NASA’s Armstrong Flight Research Center in Edwards, California, on Nov. 7, 2024. They are verifying GPS and global navigation satellite system coordinates using Emlid Reach RS2+ receiver equipment, which supports surveying, mapping, and navigation in preparation for future air taxi test flight research.NASA/Genaro VavurisBefore making the switch to aeronautics, she worked at car dealerships and independent car repair facilities while in college. She also led quality control efforts to help a manufacturer meet international standards for quality.
“I never thought land surveying would have anything to do with flying. But it’s a key part of supporting our research with GPS and navigation verification,” Culbertson said. “GPS measures exact positions by analyzing how long signals take to travel from satellites to ground receivers. In aviation testing, it helps improve safety by reducing signal errors and ensuring location data of the aircraft is accurate and reliable.”
A musician since childhood, Culbertson has also performed in 21 states, playing everything from tuba to trumpet, and even appeared on HBO’s “Silicon Valley” with her tuba. She’s played in ska, punk, and reggae bands and now performs baritone in the Southern Sierra Pops Orchestra.
Saré Culbertson, NASA Pathways intern at NASA’s Armstrong Flight Research Center in Edwards, California, adjusts the Emlid Reach RS2+ receiver equipment that connects with GPS and global navigation satellite systems on Nov. 7, 2024, in preparation for future air taxi test flight research.NASA/Genaro VavurisThe NASA Pathways internship, she says, changed everything. Culbertson was recently accepted into the Master of Science in Flight Test Engineering program at the National Test Pilot School, where she will be specializing in fixed wing performance and flying qualities.
Her advice for anyone starting out?
“Listen more than you talk,” she said. “Don’t get so focused on the next promotion that you forget to be great at the job you have now.”
During her internship, Culbertson is making meaningful contributions toward NASA’s Urban Air Mobility research. She collects location data for test landing sites as part of the first evaluation of an experimental commercial electric vertical takeoff landing aircraft, a significant milestone in the development of next generation aviation technologies. From fixing cars to helping air taxis become a reality, Saré Culbertson is proof that when passion meets persistence, the sky isn’t the limit – it’s just the beginning.
Share Details Last Updated Jun 23, 2025 EditorDede DiniusContactLaura Mitchelllaura.a.mitchell@nasa.govLocationArmstrong Flight Research Center Related Terms Explore More 3 min read NASA Air Taxi Passenger Comfort Studies Move Forward Article 4 days ago 2 min read NASA Aircraft to Make Low-Altitude Flights in Mid-Atlantic, California Article 4 days ago 4 min read NASA to Gather In-Flight Imagery of Commercial Test Capsule Re-Entry Article 6 days ago Keep Exploring Discover More Topics From NASAArmstrong Flight Research Center
Humans in Space
Climate Change
Solar System
NASA Fosters Innovative, Far-Out Tech for the Future of Aerospace
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater) A collage of artist concepts highlighting the novel approaches proposed by the 2025 NIAC awardees for possible future missions.Through the NASA Innovative Advanced Concepts (NIAC) program, NASA nurtures visionary yet credible concepts that could one day “change the possible” in aerospace, while engaging America’s innovators and entrepreneurs as partners in the journey.
These concepts span various disciplines and aim to advance capabilities such as finding resources on distant planets, making space travel safer and more efficient, and even providing benefits to life here on Earth. The NIAC portfolio of studies also includes several solutions and technologies that could help NASA achieve a future human presence on Mars. One concept at a time, NIAC is taking technology concepts from science fiction to reality.
Astronauts have a limited supply of water and oxygen in space, which makes producing and maintaining these resources extremely valuable. One NIAC study investigates a system to separate oxygen and hydrogen gas bubbles in microgravity from water, without touching the water directly. Researchers found the concept can handle power changes, requires less clean water, works in a wide range of temperatures, and is more resistant to bacteria than existing oxygen generation systems for short-term crewed missions. These new developments could make it a great fit for a long trip to Mars.
Newly selected for another phase of study, the team wants to understand how the system will perform over long periods in space and consider ways to simplify the system’s build. They plan to test a large version of the system in microgravity in hopes of proving how it may be a game changer for future missions.
Unlike water on Earth, Mars’ water is contaminated with toxic chemical compounds such as perchlorates and chlorates. These contaminants threaten human health even at tiny concentrations and can easily corrode hardware and equipment. Finding a way to remove contaminates from water will benefit future human explorers and prepare them to live on Mars long term.
Researchers are creating a regenerative perchlorate reduction system that uses perchlorate reduction pathways from naturally occurring bacteria. Perchlorate is a compound comprised of oxygen and chlorine that is typically used for rocket propellant. These perchlorate reduction pathways can be engineered into a type of bacterium that is known for its remarkable resilience, even in the harsh conditions of space. The system would use these enzymes to cause the biochemical reduction of chlorate and perchlorate to chloride and oxygen, eliminating these toxic molecules from the water. With the technology to detoxify water on Mars, humans could thrive on the Red Planet with an abundant water supply.
Tackling deep space radiation exposure
Mitochondria are the small structures within cells often called the “powerhouse,” but what if they could also power human health in space? Chronic radiation exposure is among the many threats to long-term human stays in space, including time spent traveling to and from Mars. One NIAC study explores transplanting new, undamaged mitochondria to radiation-damaged cells and investigates cell responses to relevant radiation levels to simulate deep-space travel. Researchers propose using in vitro human cell models – complex 3D structures grown in a lab to mimic aspects of organs – to demonstrate how targeted mitochondria replacement therapy could regenerate cellular function after acute and long-term radiation exposure.
While still in early stages, the research could help significantly reduce radiation risks for crewed missions to Mars and beyond. Here on Earth, the technology could also help treat a wide variety of age-related degenerative diseases associated with mitochondrial dysfunction.
Suiting up for Mars
Mars is no “walk in the park,” which is why specialized spacesuits are essential for future missions. Engineers propose using a digital template to generate custom, cost-effective, high-performance spacesuits. This spacesuit concept uses something called digital thread technology to protect crewmembers from the extreme Martian environment, while providing the mobility to perform daily Mars exploration endeavors, including scientific excursions.
This now completed NIAC study focused on mapping key spacesuit components and current manufacturing technologies to digital components, identifying technology gaps, benchmarking required capabilities, and developing a conceptional digital thread model for future spacesuit development and operational support. This research could help astronauts suit up for Mars and beyond in a way like never before.
Redefining what’s possible
From studying Mars to researching black holes and monitoring the atmosphere of Venus, NIAC concepts help us push the boundaries of exploration. By collaborating with innovators and entrepreneurs, NASA advances concepts for future and current missions while energizing the space economy.
If you have a visionary idea to share, you can apply to NIAC’s 2026 Phase I solicitation now until July 15.
Facebook logo @NASATechnology @NASA_Technology Explore More 4 min read NASA Tech to Use Moonlight to Enhance Measurements from Space Article 3 days ago 3 min read NASA’s Lunar Rescue System Challenge Supports Astronaut Safety Article 6 days ago 2 min read Tuning a NASA Instrument: Calibrating MASTER Article 2 weeks ago Keep Exploring Discover More Topics From NASAMissions
Humans in Space
Climate Change
Solar System
Share Details Last Updated Jun 23, 2025 EditorLoura Hall Related TermsNASA Tests New RS-25 Engine
NASA tested RS-25 engine No. 20001 on June 20, at the Fred Haise Test Stand at NASA’s Stennis Space Center at Bay St. Louis, Mississippi. Test teams fired the engine for almost eight-and-a-half minutes (500 seconds), the same amount of time RS-25 engines fire during a launch of an SLS (Space Launch System) rocket on Artemis missions to the Moon. The Artemis campaign will explore the Moon for scientific discovery, economic benefits, and to build the foundation for the first crewed missions to Mars – for the benefit of all.
Four RS-25 engines, built by contractor L3Harris Technologies (formerly Aerojet Rocketdyne), help power each SLS launch, producing up to 2 million pounds of combined thrust. During the test, operators also fired engine No. 20001 up to the 111% power level, the same amount of thrust needed to launch an SLS rocket, carrying the Orion spacecraft, to orbit. The full-duration “hot fire” was the first test since NASA completed certification testing for new production RS-25 engines in 2024.
All RS-25 engines are tested and proven flightworthy at NASA Stennis. The test was conducted by a team of operators from NASA, L3Harris, and Syncom Space Services, prime contractor for site facilities and operations.
Explore More NASA Stennis ImagesHeather Cowardin Safeguards the Future of Space Exploration
As branch chief of the Hypervelocity Impact and Orbital Debris Office at NASA’s Johnson Space Center in Houston, Dr. Heather Cowardin leads a team tasked with a critical mission: characterizing and mitigating orbital debris—space junk that poses a growing risk to satellites, spacecraft, and human spaceflight.
Long before Cowardin was a scientist safeguarding NASA’s mission, she was a young girl near Johnson dreaming of becoming an astronaut.
“I remember driving down Space Center Boulevard with my mom and seeing people running on the trails,” she said. “I told her, ‘That will be me one day—I promise!’ And she always said, ‘I know, honey—I know you will.’”
Official portrait of Heather Cowardin. NASA/James Blai I was committed to working at NASA—no matter what it took.Heather Cowardin
Hypervelocity Impact and Orbital Debris Branch Chief
Today, that childhood vision has evolved into a leadership role at the heart of NASA’s orbital debris research. Cowardin oversees an interdisciplinary team within the Astromaterials Research and Exploration Science Division, or ARES. She supports measurements, modeling, risk assessments, and mitigation strategies to ensure the efficiency of space operations.
With more than two decades of experience, Cowardin brings expertise and unwavering dedication to one of the agency’s most vital safety initiatives.
Her work focuses on characterizing Earth-orbiting objects using optical and near-infrared telescopic and laboratory data. She helped establish and lead the Optical Measurement Center, a specialized facility at Johnson that replicates space-like lighting conditions and telescope orientations to identify debris materials and shapes, and evaluate potential risk.
Cowardin supports a range of research efforts, from ground-based and in-situ, or in position, observations to space-based experiments. She has contributed to more than 100 scientific publications and presentations and serves as co-lead on Materials International Space Station Experiment missions, which test the durability of materials on the exterior of the orbiting laboratory.
She is also an active member of the Inter-Agency Space Debris Coordination Committee, an international forum with the goal of minimizing and mitigating the risks posed by space debris.
Heather Cowardin, left, holds a spectrometer optical feed as she prepares to take a spectral measurement acquisition on the returned Wide Field Planetary Camera 2 radiator. It was inspected by the Orbital Debris Program Office team for micrometeoroid and orbital debris impacts at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, in 2009, and later studied for space weathering effects on its painted surface.Her passion was fueled further by a mentor, Dr. James R. Benbrook, a University of Houston space physics professor and radar scientist supporting the Orbital Debris Program Office. “He was a hard-core Texas cowboy and a brilliant physicist,” she said. “He brought me on as a NASA fellow to study orbital debris using optical imaging. After that, I was committed to working at NASA—no matter what it took.”
After completing her fellowship, Cowardin began graduate studies at the University of Houston while working full time. Within a year, she accepted a contract position at Johnson, where she helped develop the Optical Measurement Center and supported optical analyses of geosynchronous orbital debris. She soon advanced to optical lead, later serving as a contract project manager and section manager.
Heather Cowardin inspects targets to study the shapes of orbital debris using the Optical Measurement Center at NASA’s Johnson Space Center in Houston. What we do at NASA takes new thinking, new skills, and hard work—but I believe the next generation will raise the bar and lead us beyond low Earth orbit.Heather Cowardin
Hypervelocity Impact and Orbital Debris Branch Chief
Building on her growing expertise, Cowardin became the laboratory and in-situ measurements lead for the Orbital Debris Program Office, a program within the Office of Safety and Mission Assurance at NASA Headquarters. She led efforts to characterize debris and deliver direct measurement data to support orbital debris engineering models, such as NASA’s Orbital Debris Engineering Model and NASA’s Standard Satellite Breakup Model, while also overseeing major projects like DebriSat.
Cowardin was selected as the Orbital Debris and Hypervelocity Integration portfolio scientist, where she facilitated collaboration within the Hypervelocity Impact and Orbital Debris Office—both internally and externally with stakeholders and customers. These efforts laid the foundation for her current role as branch chief.
“I’ve really enjoyed reflecting on the path I’ve traveled and looking forward to the challenges and successes that lie ahead with this great team,” she said.
One of Cowardin’s proudest accomplishments was earning her doctorate while working full time and in her final trimester of pregnancy.
“Nothing speaks to multitasking and time management like that achievement,” Cowardin said. “I use that story to mentor others—it’s proof that you can do both. Now I’m a mom of two boys who inspire me every day. They are my motivation to work harder and show them that dedication and perseverance always pay off.”
From left to right: Heather Cowardin, her youngest child Jamie, her husband Grady, and her oldest child Trystan. The family celebrates Jamie’s achievement of earning a black belt.Throughout her career, Cowardin said one lesson has remained constant: never underestimate yourself.
“It’s easy to think, ‘I’m not ready,’ or ‘Someone else will ask the question,’” she said. “But speak up. Every role I’ve taken on felt like a leap, but I embraced it and each time I’ve learned and grown.”
She has also learned the value of self-awareness. “It’s scary to ask for feedback, but it’s the best way to identify growth opportunities,” she said. “The next generation will build on today’s work. That’s why we must capture lessons learned and share them. It’s vital to safe and successful operations.”
Heather Cowardin, fifth from left, stands with fellow NASA delegates at the 2024 Inter-Agency Space Debris Coordination Committee meeting hosted by the Indian Space Research Organisation in Bengaluru, India. The U.S. delegation included representatives from NASA, the Department of Defense, the Federal Aviation Administration, and the Federal Communications Commission.To the Artemis Generation, she hopes to pass on a sense of purpose.
“Commitment to a mission leads to success,” she said. “Even if your contributions aren’t immediately visible, they matter. What we do at NASA takes new thinking, new skills, and hard work—but I believe the next generation will raise the bar and lead us beyond low Earth orbit.”
When she is not watching over orbital debris, she is lacing up her running shoes.
“I’ve completed five half-marathons and I’m training for the 2026 Rock ‘n’ Roll half-marathon in Nashville,” she said. “Running helps me decompress—and yes, I often role-play technical briefings or prep conference talks while I’m out on a jog. Makes for interesting moments when I pass people in the neighborhood!”
About the AuthorSumer Loggins Share Details Last Updated Jun 23, 2025 LocationJohnson Space Center Related Terms Explore More 5 min read Johnson’s Jason Foster Recognized for New Technology Reporting Record Article 1 week ago 3 min read NASA Engineers Simulate Lunar Lighting for Artemis III Moon Landing Article 6 days ago 5 min read Driven by a Dream: Farah Al Fulfulee’s Quest to Reach the Stars Article 7 days ago Keep Exploring Discover More Topics From NASAMissions
Humans in Space
Climate Change
Solar System
Curiosity Blog, Sols 4577-4579: Watch the Skies
- Curiosity Home
- Science
- News and Features
- Multimedia
- Mars Missions
- Mars Home
4 min read
Curiosity Blog, Sols 4577-4579: Watch the Skies NASA’s Mars rover Curiosity acquired this image inside a trough in the boxwork terrain on Mars, using its Right Navigation Camera. Curiosity captured the image on June 20, 2025 — Sol 4575, or Martian day 4,575 of the Mars Science Laboratory mission — at 00:30:12 UTC. NASA/JPL-CaltechWritten by Deborah Padgett, OPGS Task Lead at NASA’s Jet Propulsion Laboratory
Earth planning date: Friday, June 20, 2025
During the plan covering Sols 4575-4576, Curiosity continued our investigation of mysterious boxwork structures on the shoulders of Mount Sharp. After a successful 56-meter drive (about 184 feet), Curiosity is now parked in a trough cutting through a highly fractured region covered by linear features thought to be evidence of groundwater flow in the distant past of Mars. With all six wheels firmly planted on solid ground, our rover is ready for contact science! Unfortunately, a repeat of the frost-detection experiment expected for the weekend plan is postponed for a few days due to a well-understood ChemCam issue. In the meantime, our atmospheric investigations have a chance to shine, as they received additional time to observe the Martian sky.
In the early afternoon of Sol 4577, Curiosity’s navigation cameras will take a movie of the upper reaches of Aeolis Mons (Mount Sharp), hoping to see moving cloud shadows. This observation enables the team to calculate the altitude of clouds drifting over the peak. Next, Navcam will point straight up, to image cloud motion at the zenith and determine wind direction at their altitude. Mastcam will then do a series of small mosaics to study the rover workspace and features of the trough that Curiosity has entered. First is a 6×4 stereo mosaic of the workspace and the contact science targets “Copacabana” and “Copiapo.” The first target is a representative sample of the trough bedrock, and its name celebrates a town in Bolivia located on the shores of Lake Titicaca. The second target is a section of lighter-toned material, which may be associated with stripes or “veins” filling the many crosscutting fractures in the local stones. These are the deposits potentially left by groundwater intrusion long ago. The name “Copiapo” honors a silver mining city in the extremely dry Atacama desert of northern Chile. A second 6×3 Mastcam stereo mosaic will look at active cracks in the trough. Two additional 5×1 Mastcam stereo mosaics target “Ardamarca,” a ridge parallel to the trough walls, and a cliff exposing layers of rock at the base of “Mishe Mokwa” butte. At our current location, all the Curiosity target names are taken from the Uyuni geologic quadrangle named after the otherworldly lake bed and ephemeral lake high on the Bolivian altiplano, but the Mishe Mokwa butte is back in the Altadena quad, named for a popular hiking trail in the Santa Monica Mountains. After this lengthy science block, Curiosity will deploy its arm, brush the dust from Copacabana with the DRT, then image both it and Copiapo with the MAHLI microscopic imager. Overnight, APXS will determine the composition of these two targets.
Early in the morning of Sol 4578, Mastcam will take large 27×5 and 18×3 stereo mosaics of different parts of the trough, using morning light to highlight the terrain shadows. Later in the day, Navcam will do a 360 sky survey, determining phase function across the entire sky. A 25-meter drive (about 82 feet) will follow, and the post-drive imaging includes both a 360-degree Navcam panorama of our new location and an image of the ground under the rover with MARDI in the evening twilight. The next sol is all atmospheric science, with an extensive set of afternoon suprahorizon movies and a dust-devil survey for Navcam, as well as a Mastcam dust opacity observation. The final set of observations in this plan happens on the morning of Sol 4580 with more Navcam suprahorizon and zenith movies to observe clouds, a Navcam dust opacity measurement across Gale Crater, and a last Mastcam tau. On Monday, we expect to plan another drive and hope to return to the frost-detection experiment soon as we explore the boxwork canyons of Mars.
For more Curiosity blog posts, visit MSL Mission Updates
Learn more about Curiosity’s science instruments
Share Details Last Updated Jun 20, 2025 Related Terms Explore More 2 min read Curiosity Blog, Sols 4575-4576: Perfect Parking Spot
Article
5 hours ago
3 min read Curiosity Blog, Sols 4573-4574: Welcome to the Uyuni Quad
Article
2 days ago
3 min read Curiosity Blog, Sols 4570-4572: A Fond Farewell, With a Side of Frost
Article
6 days ago
Keep Exploring Discover More Topics From NASA Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
Curiosity Blog, Sols 4575-4576: Perfect Parking Spot
- Curiosity Home
- Science
- News and Features
- Multimedia
- Mars Missions
- Mars Home
2 min read
Curiosity Blog, Sols 4575-4576: Perfect Parking Spot NASA’s Mars rover Curiosity acquired this image of interesting textures exposed in an outcrop at the base of the “Mishe Mokwa” butte, ahead of the rover, using its Chemistry & Camera (ChemCam) Remote Micro Imager (RMI). Curiosity captured the image on June 13, 2025 — Sol 4569, or Martian day 4,569 of the Mars Science Laboratory mission — at 17:53:55 UTC. NASA/JPL-Caltech/LANLWritten by Lucy Thompson, APXS Collaborator and Senior Research Scientist at the University of New Brunswick
Earth planning date: Wednesday, June 18, 2025
Not only did our drive execute perfectly, Curiosity ended up in one of the safest, most stable parking spots of the whole mission. We often come into the start of planning hoping that all the wheels are safely on the ground, but the terrain on Mars is not always very cooperative. As the APXS strategic planner I was really hoping that the rover was stable enough to unstow the arm and place APXS on a rock — which it was! We are acquiring APXS and ChemCam compositional analyses and accompanying Mastcam and MAHLI imaging of a brushed, flat, typical bedrock target, “Tarija.” This allows us to track the chemistry of the bedrock that hosts the potential boxwork features that we are driving towards.
As well as composition, we continue to image the terrain around us to better understand the local and regional context. Mastcam will acquire mosaics of some linear ridges off to the north of our current location, as well as of a potential fracture fill just out in front of our current parking spot, “Laguna del Bayo.” ChemCam will image part of an interesting outcrop (“Mishe Mokwa”) that we have already observed (see the image associated with this blog).
Thanks to the relatively benign terrain, the engineers have planned a 54-meter drive (about 177 feet) to our next location. After that drive (hopefully) executes successfully, we have a series of untargeted science observations. MARDI will image the terrain beneath the wheels and ChemCam will pick a rock target autonomously from our new workspace and analyze its chemistry.
To track atmospheric and environmental fluctuations, we are acquiring a Mastcam tau to measure dust in the sky as well as a Navcam large dust-devil survey and suprahorizon movie. The plan is rounded, as always, with standard DAN, REMS, and RAD activities.
For more Curiosity blog posts, visit MSL Mission Updates
Learn more about Curiosity’s science instruments
Share Details Last Updated Jun 20, 2025 Related Terms Explore More 3 min read Curiosity Blog, Sols 4573-4574: Welcome to the Uyuni Quad
Article
2 days ago
3 min read Curiosity Blog, Sols 4570-4572: A Fond Farewell, With a Side of Frost
Article
6 days ago
2 min read Curiosity Blog, Sols 4568-4569: A Close Look at the Altadena Drill Hole and Tailings
Article
7 days ago
Keep Exploring Discover More Topics From NASA Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
NASA Tech to Use Moonlight to Enhance Measurements from Space
NASA will soon launch a one-of-a-kind instrument, called Arcstone, to improve the quality of data from Earth-viewing sensors in orbit. In this technology demonstration, the mission will measure sunlight reflected from the Moon— a technique called lunar calibration. Such measurements of lunar spectral reflectance can ultimately be used to set a high-accuracy, universal standard for use across the international scientific community and commercial space industry.
To ensure satellite and airborne sensors are working properly, researchers calibrate them by comparing the sensor measurements against a known standard measurement. Arcstone will be the first mission exclusively dedicated to measuring lunar reflectance from space as a way to calibrate and improve science data collected by Earth-viewing, in-orbit instruments.
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
This visualization demonstrates how Arcstone will operate while in orbit measuring lunar reflectance to establish a new calibration standard for future Earth-observing remote sensors. Arcstone’s satellite platform was manufactured by Blue Canyon Technologies. NASA/Tim Marvel/Blue Canyon Technologies“One of the most challenging tasks in remote sensing from space is achieving required instrument calibration accuracy on-orbit,” said Constantine Lukashin, principal investigator for the Arcstone mission and physical scientist at NASA’s Langley Research Center in Hampton, Virginia. “The Moon is an excellent and available calibration source beyond Earth’s atmosphere. The light reflected off the Moon is extremely stable and measurable at a very high level of detail. Arcstone’s goal is to improve the accuracy of lunar calibration to increase the quality of spaceborne remote sensing data products for generations to come.”
Across its planned six-month mission, Arcstone will use a spectrometer — a scientific instrument that measures and analyzes light by separating it into its constituent wavelengths, or spectrum — to measure lunar spectral reflectance. Expected to launch in late June as a rideshare on a small CubeSat, Arcstone will begin collecting data, a milestone called first light, approximately three weeks after reaching orbit.
“The mission demonstrates a new, more cost-efficient instrument design, hardware performance, operations, and data processing to achieve high-accuracy reference measurements of lunar spectral reflectance,” said Lukashin.
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
Measuring the lunar reflectance at the necessary ranges of lunar phase angles and librations is required to build a highly accurate lunar reference. A satellite platform in space would provide this required sampling. Arcstone will use a spectrometer to demonstrate the ability to observe and establish a data record of lunar spectral reflectance throughout its librations and phases for other instruments to use the Moon to calibrate sensors.NASA/Scientific Visualization StudioMeasurements of lunar reflectance taken from Earth’s surface can be affected by interference from the atmosphere, which can complicate calibration efforts. Researchers already use the Sun and Moon to calibrate spaceborne instruments, but not at a level of precision and agreement that could come from having a universal standard.
Lukashin and colleagues want to increase calibration accuracy by getting above the atmosphere to measure reflected solar wavelengths in a way that provides a stable and universal calibration source. Another recent NASA mission, called the Airborne Lunar Spectral Irradiance mission also used sensors mounted on high-altitude aircraft to improve lunar irradiance measurements from planes.
There is not an internationally accepted standard (SI-traceable) calibration for lunar reflectance from space across the scientific community or the commercial space industry.
“Dedicated radiometric characterization measurements of the Moon have never been acquired from a space-based platform,” said Thomas Stone, co-investigator for Arcstone and scientist at the U.S. Geological Survey (USGS). “A high-accuracy, SI-traceable lunar calibration system enables several important capabilities for space-based Earth observing missions such as calibrating datasets against a common reference – the Moon, calibrating sensors on-orbit, and the ability to bridge gaps in past datasets.”
The Arcstone spacecraft with solar panels installed as it is tested before being integrated for launch. Blue Canyon TechnologiesIf the initial Arcstone technology demonstration is successful, a longer Arcstone mission could allow scientists to make the Moon the preferred reference standard for many other satellites. The new calibration standard could also be applied retroactively to previous Earth data records to improve their accuracy or fill in data gaps for data fields. It could also improve high-precision sensor performance on-orbit, which is critical for calibrating instruments that may be sensitive to degradation or hardware breakdown over time in space.
“Earth observations from space play a critical role in monitoring the environmental health of our planet,” said Stone. “Lunar calibration is a robust and cost-effective way to achieve high accuracy and inter-consistency of Earth observation datasets, enabling more accurate assessments of Earth’s current state and more reliable predictions of future trends.”
The Arcstone technology demonstration project is funded by NASA’s Earth Science Technology Office’s In-space Validation of Earth Science Technologies. Arcstone is led by NASA’s Langley Research Center in partnership with Colorado University Boulder’s Laboratory for Atmospheric and Space Physics, USGS, NASA Goddard Space Flight Center in Greenbelt, Maryland, Resonon Inc., Blue Canyon Technologies, and Quartus Engineering.
For more information on NASA’s Arcstone mission visit:
https://science.larc.nasa.gov/arcstone/about/
About the AuthorCharles G. HatfieldScience Public Affairs Officer, NASA Langley Research Center Share Details Last Updated Jun 20, 2025 LocationNASA Langley Research Center Related Terms Explore More 3 min read NASA Measures Moonlight to Improve Earth Observations Article 2 months ago Keep Exploring Discover More Topics From NASAMissions
Humans in Space
Climate Change
Solar System
NASA’s LRO Views ispace HAKUTO-R Mission 2 Moon Lander Impact Site
On June 11, NASA’s LRO (Lunar Reconnaissance Orbiter) captured photos of the site where the ispace Mission 2 SMBC x HAKUTO-R Venture Moon (RESILIENCE) lunar lander experienced a hard landing on June 5, 2025, UTC.
RESILIENCE lunar lander impact site, as seen by NASA’s Lunar Reconnaissance Orbiter Camera (LROC) on June 11, 2025. The lander created a dark smudge surrounded by a subtle bright halo.Credit: NASA/Goddard/Arizona State University.RESILIENCE was launched on Jan. 15 on a privately funded spacecraft.
LRO’s right Narrow Angle Camera (one in a suite of cameras known as LROC) captured the images featured here from about 50 miles above the surface of Mare Frigoris, a volcanic region interspersed with large-scale faults known as wrinkle ridges.
The dark smudge visible above the arrow in the photo formed as the vehicle impacted the surface, kicking up regolith — the rock and dust that make up Moon “soil.” The faint bright halo encircling the site resulted from low-angle regolith particles scouring the delicate surface.
This animation shows the RESILIENCE site before and after the impact. In the image, north is up. Looking from west to east, or left to right, the area pictured covers 2 miles.Credit: NASA/Goddard/Arizona State University.LRO is managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland, for the Science Mission Directorate at NASA Headquarters in Washington. Launched on June 18, 2009, LRO has collected a treasure trove of data with its seven powerful instruments, making an invaluable contribution to our knowledge about the Moon. NASA is returning to the Moon with commercial and international partners to expand human presence in space and bring back new knowledge and opportunities.
More on this story from Arizona State University’s LRO Camera website
Media Contact
Karen Fox / Molly Wasser
Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
Lonnie Shekhtman
NASA’s Goddard Space Flight Center, Greenbelt, Md.
lonnie.shekhtman@nasa.gov
NASA Air Taxi Passenger Comfort Studies Move Forward
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA employee Naomi Torres sits inside the air taxi passenger ride quality simulator at NASA’s Armstrong Flight Research Center in Edwards, California, as the simulator moves during a study on Oct. 23, 2024. Research continues to better understand how humans may interact with these new types of aircraft.NASA/Steve FreemanNASA’s Advanced Air Mobility vision involves the skies above the U.S. filled with new types of aircraft, including air taxis. But making that vision a reality involves ensuring that people will actually want to ride these aircraft – which is why NASA has been working to evaluate comfort, to see what passengers will and won’t tolerate.
NASA is conducting a series of studies to understand how air taxi motion, vibration, and other factors affect ride comfort. The agency will provide the data it gathers to industry and others to guide the design and operational practices for future air taxis.
“The results of this study can guide air taxi companies to design aircraft that take off, land, and respond to winds and gusts in a way that is comfortable for the passengers,” said Curt Hanson, senior flight controls researcher for this project based at NASA’s Armstrong Flight Research Center in Edwards, California. “Passengers who enjoy their experience in an air taxi are more likely to become repeat riders, which will help the industry grow.”
The air taxi comfort research team uses NASA Armstrong’s Ride Quality Laboratory as well as the Human Vibration Lab and Vertical Motion Simulator at NASA’s Ames Research Center in California’s Silicon Valley to study passenger response to ride quality, as well as how easily and precisely a pilot can control and maneuver aircraft.
After pilots checked out the simulator setup, the research team conducted a study in October where NASA employees volunteered to participate as passengers to experience the virtual air taxi flights and then describe their comfort level to the researchers.
Curt Hanson, senior flight controls researcher for the Revolutionary Vertical Lift Technology project based at NASA’s Armstrong Flight Research Center in Edwards, California, explains the study about to begin to NASA employee and test subject Naomi Torres on Oct. 23, 2024. Behind them is the air taxi passenger ride quality simulator in NASA Armstrong’s Ride Quality Laboratory. Studies continue to better understand passenger comfort for future air taxi rides.NASA/Steve FreemanUsing this testing, the team produced an initial study that found a relationship between levels of sudden vertical motion and passenger discomfort. More data collection is needed to understand the combined effect of motion, vibration, and other factors on passenger comfort.
“In the Vertical Motion Simulator, we can investigate how technology and aircraft design choices affect the handling qualities of the aircraft, generate data as pilots maneuver the air taxi models under realistic conditions, and then use this to further investigate passenger comfort in the Ride Quality and Human Vibration Labs,” said Carlos Malpica, senior rotorcraft flight dynamics researcher for this effort based at NASA Ames.
This work is managed by the Revolutionary Vertical Lift Technology project under NASA’s Advanced Air Vehicles Program in support of NASA’s Advanced Air Mobility mission, which seeks to deliver data to guide the industry’s development of electric air taxis and drones.
Share Details Last Updated Jun 20, 2025 EditorDede DiniusContactTeresa Whitingteresa.whiting@nasa.govLocationArmstrong Flight Research Center Related Terms Explore More 2 min read NASA Aircraft to Make Low-Altitude Flights in Mid-Atlantic, California Article 1 day ago 4 min read NASA to Gather In-Flight Imagery of Commercial Test Capsule Re-Entry Article 3 days ago 4 min read NASA Tech to Measure Heat, Strain in Hypersonic Flight Article 3 days ago Keep Exploring Discover More Topics From NASAArmstrong Flight Research Center
Humans in Space
Climate Change
Solar System
Summer Begins in Northern Hemisphere
This full-disk image from NOAA’s GOES-13 satellite was captured at 7:45 a.m. EDT (11:45 UTC) and shows the Americas on June 21, 2012, the start of astronomical summer – in the Northern Hemisphere – that year.
The first day of summer in 2025 is June 20; it is also the longest day of the year. In the Southern Hemisphere, it’s the shortest day of the year and the beginning of winter.
Earth orbits at an angle, so the Northern Hemisphere is tilted toward the Sun half of the year — this is summer in the Northern Hemisphere, and winter in the Southern Hemisphere. The other half of the year, the Northern Hemisphere is tilted away from the Sun, creating winter in the north and summer in the south. Solstices happen twice per year, at the points in Earth’s orbit where this tilt is most pronounced.
Image credit: NASA
NASA History News and Notes – Summer 2025
7 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)In the summer 2025 issue of the NASA History Office’s News & Notes newsletter, examples of leadership and critical decision-making in NASA’s history form the unifying theme. Among the topics discussed are NASA’s Shuttle-Centaur program, assessing donations to the NASA Archives, how the discovery of the first exoplanet orbiting a sun-like star catalyzed NASA’s exoplanet program, and Chief of the Medical Operations Office Charles A. Berry’s decisions surrounding crew health when planning the Project Gemini missions.
Volume 42, Number 2
Summer 2025
By Brian Odom
NASA’s is a history marked by critical decisions. From George Mueller’s 1963 decision for “all up” testing of the Saturn V rocket to Michael Griffin’s 2006 decision to launch a final servicing mission to the Hubble Space Telescope, the agency has continually met key inflection points with bold decisions. These choices, such as the decision to send a crewed Apollo 8 mission around the Moon in December 1968, stand at the center of the agency’s national legacy and promote confidence in times of crisis. Continue Reading
Shuttle-Centaur: Loss of Launch Vehicle Redundancy Leads to DiscordBy Robert Arrighi
“Although the Shuttle/Centaur decision was very difficult to make, it is the proper thing to do, and this is the time to do it.” With those words on June 19, 1986, NASA Administrator James Fletcher canceled the intensive effort to integrate the Centaur upper stage with the Space Shuttle to launch the Galileo and Ulysses spacecraft. The decision, which was tied to increased safety measures following the loss of Challenger several months earlier, brought to the forefront the 1970s decision to launch all U.S. payloads with the Space Shuttle. Continue Reading
Lewis Director Andy Stofan speaks at the Shuttle-Centaur rollout ceremony on August 23, 1985 at General Dynamics’s San Diego headquarters. Galileo mission crew members Dave Walker, Rick Hauck, and John Fabian were among those on stage. NASA A View into NASA’s Response to the Apollo 1 TragedyBy Kate Mankowski
On January 27, 1967, Mission AS-204 (later known as Apollo 1) was conducting a simulated countdown when a fire suddenly broke out in the spacecraft, claiming the lives of astronauts Virgil I. “Gus” Grissom, Edward H. White, and Roger B. Chaffee. The disaster highlighted the risks that come with spaceflight and the work that still needed to be accomplished to meet President Kennedy’s challenge of going to the Moon before the end of the decade. With the complexity of the Apollo spacecraft, discerning the cause of the fire proved to be incredibly difficult. Continue Reading
The Fight to Fund AgRISTARSBy Brad Massey
Robert MacDonald, the manager of NASA’s Large Area Crop Inventory Experiment (LACIE), was not pleased in January 1978 after he read a draft copy of the U.S. General Accounting Office’s (GAO’s) “Crop Forecasting by Satellite: Progress and Problems” report. The draft’s authors argued that LACIE had not achieved its goals of accurately predicting harvest yields in the mid-1970s. Therefore, congressional leaders should “be aware of the disappointing performance of LACIE to date when considering the future direction of NASA’s Landsat program and the plans of the Department of Agriculture.” Continue Reading
The Hubble Space Telescope: The Right Project at the Right TimeBy Jillian Rael
This year, NASA commemorates 35 years of the Hubble Space Telescope’s study of the cosmos. From observations of never-before-seen phenomena within our solar system, to the discovery of distant galaxies, the confirmation of the existence of supermassive black holes, and precision measurements of the universe’s expansion, Hubble has made incredible contributions to science, technology, and even art. Yet, for all its contemporary popularity, the Hubble program initially struggled for congressional approval and consequential funding. For its part, NASA found new ways to compromise and cut costs, while Congress evaluated national priorities and NASA’s other space exploration endeavors against the long-range value of Hubble. Continue Reading
Within the tempestuous Carina Nebula lies “Mystic Mountain.”NASA/ESA/M. Livio/Hubble 20th Anniversary Team Appraisal: The Science and Art of Assessing Donations to the NASA ArchivesBy Alan Arellano
The major functions of an archivist center include appraising, arranging, describing, preserving, and providing access to historical records and documents. While together these are pillars of archival science, they are more of an art than a science in their application, fundamentally necessitating skilled decision making. Throughout the NASA archives, staff members make these decisions day in and day out. Continue Reading
Orbit Shift: How 50 Pegasi b Helped Pull NASA Toward the Stars in the 1990sBy Lois Rosson
On October 20, 1995, the New York Times reported the detection of a distant planet orbiting a Sun-like star. The star, catalogued as 51 Pegasi by John Flamsteed in the 18th century, was visible to the naked eye as part of the constellation Pegasus—and had wobbled on its axis just enough that two Swiss astronomers were able to deduce the presence of another object exerting its gravitational pull on the star’s rotation. The discovery was soon confirmed by other astronomers, and 51 Pegasi b was heralded as the first confirmed exoplanet orbiting a star similar to our own Sun. Continue Reading
Detail from an infographic about 51 Pegasi b and the significance of its discovery.NASA Four, Eight, Fourteen Days: Charles A. Berry, Gemini, and the Critical Steps to Living and Working in SpaceBy Jennifer Ross-Nazzal
In 1963, critical decisions had to be made about NASA’s upcoming Gemini missions if the nation were to achieve President John F. Kennedy’s lunar goals. Known as the bridge to Apollo, Project Gemini was critical to landing a man on the Moon by the end of the decade and returning him safely to Earth. The project would demonstrate that astronauts could rendezvous and dock their spacecraft to another space vehicle and give flight crews the opportunity to test the planned extravehicular capabilities in preparation for walking on the lunar surface on future Apollo flights. Perhaps most importantly, Gemini had to show that humans could live and work in space for long periods of time, a fiercely debated topic within and outside of the agency. Continue Reading
Dr. Charles Berry prepares to check the blood pressure of James A. McDivitt, Command Pilot for the Gemini IV mission. McDivitt is on the tilt table at the Aero Medical Area, Merritt Island, FL, where he and Gemini IV pilot Edward H. White II underwent preflight physicals in preparation for their four-day spaceflight.NASA Imagining Space: The Life and Art of Robert McCallBy Sandra Johnson
As we walked into Bob McCall’s Arizona home, it quickly became obvious that two talented and creative people lived there. Tasked with interviewing one of the first artists to be invited to join the NASA Art Program, our oral history team quickly realized the session with McCall would include a unique perspective on NASA’s history. We traveled to Arizona in the spring of 2000 to capture interviews with some of the pioneers of spaceflight and had already talked to an eclectic group of subjects in their homes, including a flight controller for both Gemini and Apollo, an astronaut who had flown on both Skylab and Space Shuttle missions, a former NASA center director, and two former Women’s Airforce Service Pilots (WASPs) who ferried airplanes during WWII. However, unlike most interviews, the setting itself provided a rare glimpse into the man and his inspiration. Continue Reading
Inside the Archives: Biomedical Branch FilesBy Alejandra Lopez
The Biomedical Branch Files (1966–2008) in the Johnson Space Center archives showcase the inner workings of a NASA office established to perform testing to provide a better understanding of the impacts of spaceflight on the human body. Ranging from memos and notes to documents and reports, this collection is an invaluable resource on the biomedical research done with NASA’s Apollo, Skylab, Space Shuttle, and Space Station projects. Files in the collection cover work done by groups within the branch such as the Toxicology, Microbiology, Clinical, and Biochemistry Laboratories. It also reveals the branch’s evolution and changes in its decision-making process over the years. Continue Reading
Dr. Carolyn S. Huntoon, shown here in 1972, became the Biomedical Branch’s first chief in 1977.NASA Download the Summer 2025 Edition More Issues of NASA History News and Notes Share Details Last Updated Jun 20, 2025 EditorMichele Ostovar Related Terms Explore More 5 min read NASA History News and Notes–Spring 2025 Article 3 months ago 6 min read NASA History News and Notes – Winter 2024 Article 6 months ago 7 min read NASA History News and Notes – Fall 2024 Article 9 months ago Keep Exploring Discover Related TopicsNASA History
History Publications and Resources
NASA Archives
NASA Oral Histories
NASA Aircraft to Make Low-Altitude Flights in Mid-Atlantic, California
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)From Sunday, June 22 to Wednesday, July 2, two research aircraft will make a series of low-altitude atmospheric research flights near Philadelphia, Baltimore, and some Virginia cities, including Richmond, as well as over the Los Angeles Basin, Salton Sea, and Central Valley in California.
NASA’s P-3 Orion aircraft, based out of the agency’s Wallops Flight Facility in Virginia, along with Dynamic Aviation’s King Air B200 aircraft, will fly over parts of the East and West coasts during the agency’s Student Airborne Research Program. The science flights will be conducted between June 22 and July 2, 2025. NASA/Garon ClarkPilots will operate the aircraft at altitudes lower than typical commercial flights, executing specialized maneuvers such as vertical spirals between 1,000 and 10,000 feet, circling above power plants, landfills, and urban areas. The flights will also include occasional missed approaches at local airports and low-altitude flybys along runways to collect air samples near the surface.
The East Coast flights will be conducted between June 22 and Thursday, June 26 over Baltimore and near Philadelphia, as well as near the Virginia cities of Hampton, Hopewell, and Richmond. The California flights will occur from Sunday, June 29 to July 2.
The flights, part of NASA’s Student Airborne Research Program (SARP), will involve the agency’s Airborne Science Program’s P-3 Orion aircraft (N426NA) and a King Air B200 aircraft (N46L) owned by Dynamic Aviation and contracted by NASA. The program is an eight-week summer internship program that provides undergraduate students with hands-on experience in every aspect of a scientific campaign.
The P-3, operated out of NASA’s Wallops Flight Facility in Virginia, is a four-engine turboprop aircraft outfitted with a six-instrument science payload to support a combined 40 hours of SARP science flights on each U.S. coast. The King Air B200 will fly at the same time as the P-3 but in an independent flight profile. Students will assist in the operation of the science instruments on the aircraft to collect atmospheric data.
“The SARP flights have become mainstays of NASA’s Airborne Science Program, as they expose highly competitive STEM students to real-world data gathering within a dynamic flight environment,” said Brian Bernth, chief of flight operations at NASA Wallops.
“Despite SARP being a learning experience for both the students and mentors alike, our P-3 is being flown and performing maneuvers in some of most complex and restricted airspace in the country,” said Bernth. “Tight coordination and crew resource management is needed to ensure that these flights are executed with precision but also safely.”
For more information about Student Airborne Research Program, visit:
https://science.nasa.gov/earth-science/early-career-opportunities/student-airborne-research-program/
By Olivia Littleton
NASA’s Wallops Flight Facility, Wallops Island, Va.
Hubble Studies Small but Mighty Galaxy
- Hubble Home
- Overview
- Impact & Benefits
- Science
- Observatory
- Team
- Multimedia
- News
- More
2 min read
Hubble Studies Small but Mighty Galaxy This NASA/ESA Hubble Space Telescope features the nearby galaxy NGC 4449. ESA/Hubble & NASA, E. Sabbi, D. Calzetti, A. AloisiThis portrait from the NASA/ESA Hubble Space Telescope puts the nearby galaxy NGC 4449 in the spotlight. The galaxy is situated just 12.5 million light-years away in the constellation Canes Venatici (the Hunting Dogs). It is a member of the M94 galaxy group, which is near the Local Group of galaxies that the Milky Way is part of.
NGC 4449 is a dwarf galaxy, which means that it is far smaller and contains fewer stars than the Milky Way. But don’t let its small size fool you — NGC 4449 packs a punch when it comes to making stars! This galaxy is currently forming new stars at a much faster rate than expected for its size, which makes it a starburst galaxy. Most starburst galaxies churn out stars mainly in their centers, but NGC 4449 is alight with brilliant young stars throughout. Researchers believe that this global burst of star formation came about because of NGC 4449’s interactions with its galactic neighbors. Because NGC 4449 is so close, it provides an excellent opportunity for Hubble to study how interactions between galaxies can influence the formation of new stars.
Hubble released an image of NGC 4449 in 2007. This new version incorporates several additional wavelengths of light that Hubble collected for multiple observing programs. These programs encompass an incredible range of science, from a deep dive into NGC 4449’s star-formation history to the mapping of the brightest, hottest, and most massive stars in more than two dozen nearby galaxies.
The NASA/ESA/CSA James Webb Space Telescope has also observed NGC 4449, revealing in intricate detail the galaxy’s tendrils of dusty gas, glowing from the intense starlight radiated by the flourishing young stars.
Text Credit: ESA/Hubble
Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubbleMedia Contact:
Claire Andreoli (claire.andreoli@nasa.gov)
NASA’s Goddard Space Flight Center, Greenbelt, MD
Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.
Hubble’s Galaxies
Galaxy Details and Mergers
Hubble’s Night Sky Challenge