Feed aggregator
The Blue Danube Waltz sent into the stars
On 31 May, a live performance of The Blue Danube – often referred to as the ‘anthem of space’ – was transmitted by the European Space Agency (ESA) into the vastness of space. The event marked a double celebration: ESA’s 50th anniversary and the 200th birthday of the King of Waltz Johann Strauss II.
Watch an asteroid the size of an aircraft carrier make a close pass of Earth on June 5
How We Solve the Climate Crisis
Science communicator Hank Green explains how our species’ unique intelligence got us into this climate mess—and how it will help us solve it
Aurora alert: Incoming solar storm could spark auroras as far south as New York and Idaho this weekend
Mathematicians Solve Multidimensional Shape-Slicing Dilemma
A 40-year-old conjecture on shapes’ cross sections is finally proven
Ancient humans evolved to be better teachers as technology advanced
Ancient humans evolved to be better teachers as technology advanced
What Will Happen to Opioid and Drug Overdose Deaths after CDC Cuts?
Layoffs and funding freezes have gutted the CDC’s response to the opioid crisis—just as harm reduction was beginning to work
Nuclear Weapon Strike Decisions Could Come Down to Human Suggestibility
Surveys show that how nuclear strike options are presented strongly influences the decision a president may make
How Velvet Worm Slime Hardens in Seconds to Trap Prey
The velvet worm’s extraordinary goo could inspire recyclable bioplastics
Why MTG-S1 is a nowcasting game-changer
The Meteosat Third Generation Sounder satellite (MTG-S) will generate a completely new type of data product, especially suited to nowcasting severe weather events. Here are five ways in which Europe’s latest weather satellite will change how we forecast weather.
Building the 'Moonhouse': Q&A with artist Mikael Genberg
ESA’s new asteroid hunter opens its eye to the sky
The European Space Agency’s (ESA) newest planetary defender has opened its ‘eye’ to the cosmos for the first time. The Flyeye telescope’s ‘first light’ marks the beginning of a new chapter in how we scan the skies for new near-Earth asteroids and comets.
Magnetic fields appear to be as old as the universe itself. What created them?
The bizarre story of a maths proof that is only true in Japan
The bizarre story of a maths proof that is only true in Japan
SpaceX launches Starlink satellite stack from Vandenberg Space Force Base (video, photos)
Sols 4559-4560: Drill Campaign — Searching for a Boxwork Bedrock Drill Site
- Curiosity Home
- Science
- News and Features
- Multimedia
- Mars Missions
- Mars Home
3 min read
Sols 4559-4560: Drill Campaign — Searching for a Boxwork Bedrock Drill Site NASA’s Mars rover Curiosity acquired this image of a portion of its workspace, full of interesting but not drillable bedrock, using its Left Navigation Camera on June 2, 2025 — Sol 4558, or Martian day 4,558 of the Mars Science Laboratory mission — at 12:23:24 UTC. NASA/JPL-CaltechWritten by Lucy Lim, Planetary Scientist at NASA’s Goddard Space Flight Center
Earth planning date: Monday, June 2, 2025
Now that Curiosity has spent a few sols collecting close-up measurements of the rocks in the outer edge of the boxwork-forming geologic unit, the team has decided that it’s time to collect a drill sample. The geochemical measurements by APXS and ChemCam have shown changes since we crossed over from the previous layered sulfate unit, but we can’t figure out the mineralogy from those data alone. As we’ve often seen before on Mars, the same chemical elements can crystallize into a number of different mineral assemblages. That’s even more the case in sedimentary rocks such as we are driving through, in which different grains in our rocks may have formed in different times and places. This also means that when we do get our mineral data, those minerals will tell us a lot about the history of these new-to-us rocks.
On board Curiosity, that mineral analysis is the job of the CheMin instrument, which uses X-ray diffraction to identify minerals. CheMin shines a narrow X-ray beam through a powdered sample in order to generate the diffraction pattern, which means that it needs a drilled sample. So the team today was busy looking for a drillable spot. Unfortunately the rover’s drill reach from today’s parking spot included only rocks that were too fractured or had too much debris sitting on them to be considered likely to produce a good drilled sample, so we will have to move, or “bump,” at least one more time before progressing to the drill preload test, which is the next step in drilling.
In the meantime, we are taking more measurements to understand the range of compositions that can be found in this rock layer. Dust removal (DRT) + APXS + LIBS + MAHLI were all planned for target “Holcomb Valley,” while a short distance away a second DRT/APXS/MAHLI measurement was planned for “Santa Ysabel Valley” and in another direction, a second LIBS for “Stough Saddle.” One long-distance ChemCam remote imaging mosaic was planned to cover a boxwork structure off in the distance. Mastcam had a relatively light day of imaging, with just a couple of small mosaics covering a nearby trough feature, and providing context for the RMI of the boxwork structure, in addition to documenting the two LIBS targets. The modern Mars environment was also recorded with a couple of movies to look for dust-devil activity, a measurement of atmospheric opacity, and a pair of suprahorizon observations to look for clouds, plus the usual passive observations by DAN and REMS to monitor the neutron environment, temperature, and humidity.
I’ll be on rover planning Wednesday as Geology and Mineralogy Science Theme Lead and looking forward to what we find — hopefully some drillable boxwork-unit bedrock!
Share Details Last Updated Jun 04, 2025 Related Terms Explore More 2 min read Sols 4556-4558: It’s All in a Day’s (box)WorkArticle
1 day ago
2 min read Sols 4554–4555: Let’s Try That One Again…
Article
6 days ago
2 min read Sol 4553: Back to the Boxwork!
Article
6 days ago
Keep Exploring Discover More Topics From NASA Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
Sols 4559-4560: Drill Campaign — Searching for a Boxwork Bedrock Drill Site
- Curiosity Home
- Science
- News and Features
- Multimedia
- Mars Missions
- Mars Home
3 min read
Sols 4559-4560: Drill Campaign — Searching for a Boxwork Bedrock Drill Site NASA’s Mars rover Curiosity acquired this image of a portion of its workspace, full of interesting but not drillable bedrock, using its Left Navigation Camera on June 2, 2025 — Sol 4558, or Martian day 4,558 of the Mars Science Laboratory mission — at 12:23:24 UTC. NASA/JPL-CaltechWritten by Lucy Lim, Planetary Scientist at NASA’s Goddard Space Flight Center
Earth planning date: Monday, June 2, 2025
Now that Curiosity has spent a few sols collecting close-up measurements of the rocks in the outer edge of the boxwork-forming geologic unit, the team has decided that it’s time to collect a drill sample. The geochemical measurements by APXS and ChemCam have shown changes since we crossed over from the previous layered sulfate unit, but we can’t figure out the mineralogy from those data alone. As we’ve often seen before on Mars, the same chemical elements can crystallize into a number of different mineral assemblages. That’s even more the case in sedimentary rocks such as we are driving through, in which different grains in our rocks may have formed in different times and places. This also means that when we do get our mineral data, those minerals will tell us a lot about the history of these new-to-us rocks.
On board Curiosity, that mineral analysis is the job of the CheMin instrument, which uses X-ray diffraction to identify minerals. CheMin shines a narrow X-ray beam through a powdered sample in order to generate the diffraction pattern, which means that it needs a drilled sample. So the team today was busy looking for a drillable spot. Unfortunately the rover’s drill reach from today’s parking spot included only rocks that were too fractured or had too much debris sitting on them to be considered likely to produce a good drilled sample, so we will have to move, or “bump,” at least one more time before progressing to the drill preload test, which is the next step in drilling.
In the meantime, we are taking more measurements to understand the range of compositions that can be found in this rock layer. Dust removal (DRT) + APXS + LIBS + MAHLI were all planned for target “Holcomb Valley,” while a short distance away a second DRT/APXS/MAHLI measurement was planned for “Santa Ysabel Valley” and in another direction, a second LIBS for “Stough Saddle.” One long-distance ChemCam remote imaging mosaic was planned to cover a boxwork structure off in the distance. Mastcam had a relatively light day of imaging, with just a couple of small mosaics covering a nearby trough feature, and providing context for the RMI of the boxwork structure, in addition to documenting the two LIBS targets. The modern Mars environment was also recorded with a couple of movies to look for dust-devil activity, a measurement of atmospheric opacity, and a pair of suprahorizon observations to look for clouds, plus the usual passive observations by DAN and REMS to monitor the neutron environment, temperature, and humidity.
I’ll be on rover planning Wednesday as Geology and Mineralogy Science Theme Lead and looking forward to what we find — hopefully some drillable boxwork-unit bedrock!
Share Details Last Updated Jun 04, 2025 Related Terms Explore More 2 min read Sols 4556-4558: It’s All in a Day’s (box)WorkArticle
1 day ago
2 min read Sols 4554–4555: Let’s Try That One Again…
Article
6 days ago
2 min read Sol 4553: Back to the Boxwork!
Article
6 days ago
Keep Exploring Discover More Topics From NASA Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…