There are many worlds and many systems of Universes existing all at the same time, all of them perishable.

— Anaximander 546 BC

Feed aggregator

Time crystals may make quantum computers more reliable

New Scientist Space - Cosmology - Mon, 06/17/2024 - 3:39pm
Extremely cold atoms that perpetually move in repeating patterns could be a promising building block for quantum computers
Categories: Astronomy

Time crystals may make quantum computers more reliable

New Scientist Space - Space Headlines - Mon, 06/17/2024 - 3:39pm
Extremely cold atoms that perpetually move in repeating patterns could be a promising building block for quantum computers
Categories: Astronomy

The unexpected behavior of pulsing stars could help us measure the universe

Space.com - Mon, 06/17/2024 - 3:00pm
New research offers the most precise measurements yet of pulsating Cepheid stars, which may hold clues about the immense size and scale of our universe.
Categories: Astronomy

Rotation Curves of Galaxies Stay Flat Indefinitely

Universe Today - Mon, 06/17/2024 - 2:50pm

In his classic book On the Structure of Scientific Revolutions, the philosopher Thomas Kuhn posited that, for a new scientific framework to take root, there has to be evidence that doesn’t sit well within the existing framework. For over a century now, Einstein’s theory of relativity and gravity has been the existing framework. However, cracks are starting to show, and a new paper from researchers at Case Western Reserve University added another one recently when they failed to find decreasing rotational energy in galaxies even millions of light years away from the galaxy’s center.

Galaxies are known to rotate – even our solar system travels in a circle around the center of the Milky Way galaxy at around 200 km per second, though we can’t perceive any motion on human time scales. According to Newtonian dynamics, this rotational speed should slow down the farther away a star is from the center of a galaxy. However, observations didn’t support this, showing that the speed kept up no matter how far away the star is.

That led scientists to create another force impacting the speed of rotation of the farthest-out stars. Today, we commonly call it dark matter. However, scientists have also spent decades trying to puzzle out what exactly dark matter is made of and have yet to come up with a coherent theory.

Anton dives into a weird quirk of galaxy rotation.
Credit – Anton Petrov YouTube Channel

But in some cases, even the existence of dark matter as we know it doesn’t match the observational data. Dr. Tobias Mistele, a post-doc at Case, found that the rotational speed of galaxies doesn’t drop off, no matter how far out they are and no matter how long they’ve been doing so. This data flies in the face of a traditional understanding of dark matter, where its gravitational influence is felt by a “halo” surrounding the dark matter itself. Even these dark matter halos have an effective area. Dr. Mistele and his co-authors found evidence of maintained rotational speed that should be well outside the sphere of influence of any dark matter halo existing in these galaxies.

To collect this data, the authors used a favorite tool of cosmologists – gravitational lensing. They collected data on galaxies that were far away and had their light amplified by a galaxy cluster or similarly massive object that was nearer. When collecting the data, Dr. Mistele analyzed the speed of rotation of the stars in a galaxy and plotted it against the distance of those stars from the galaxy’s center. This is known as a “Tully-Fisher” relation in cosmology.

The result was an almost perfectly straight line – the rotational speed of stars in a galaxy did not seem to diminish with distance from the galaxy’s center, as both traditional Newtonian dynamics and relativity via dark matter predicted it would. So, what alternative explanations are there?

Why do galaxy rotation curves matter? Nora explains.
Credit – Nora’s Guide to the Galaxy YouTube Channel

Paper co-author Stacy McGaugh points out in a press release that one theory in physics accurately predicted the data his team had collected—the modified Newtonian Dynamics (or MOND) theory. Designed explicitly to account for things like galaxy rotations, MOND was developed in 1983 and remains controversial to this day. It struggles with things like the gravitational lensing with which the paper’s data was collected. 

That disconnect points to the need for a deeper understanding of gravity – what Kuhn called a “crisis,” which many cosmologists already believe is afflicting the discipline. While there is no current consensus on what might resolve that crisis, the evidence is mounting for the need for resolution. If we’re truly going to understand our place in the universe, we will eventually need to figure out a solution – it just might take a while.

Learn More:
CWRU – New, groundbreaking research shows that rotation curves of galaxies stay flat indefinitely, corroborating predictions of modified gravity theory as an alternative to dark matter
Mistele et al. – Indefinitely Flat Circular Velocities and the Baryonic Tully-Fisher Relation from Weak Lensing
UT – Will Wide Binaries Be the End of MOND?
UT – New Measurements of Galaxy Rotation Lean Towards Modified Gravity as an Explanation for Dark Matter
UT – The Earliest Galaxies Rotated Slowly, Revving up Over Billions of Years

Lead Image:
Illustration of the galaxy rotation curve used in the research.
Credit – Mistele et al.

The post Rotation Curves of Galaxies Stay Flat Indefinitely appeared first on Universe Today.

Categories: Astronomy

Almost a Third of Early Galaxies Were Already Spirals

Universe Today - Mon, 06/17/2024 - 2:39pm

In the years before the JWST’s launch, astronomers’ efforts to understand the early Universe were stymied by a stubborn obstacle: the light from the early Universe was red-shifted to an extreme degree. The JWST was built with extreme redshifts in mind, and one of its goals was to study Galaxy Assembly.

Once the JWST activated its segmented, beryllium eye, the Universe’s most ancient, red-shifted light became visible.

The light emitted by the first galaxies is not only faint but has been stretched by billions of years of cosmic expansion. The galaxies that emitted that light are called high-redshift galaxies, where redshift is indicated by the letter z. Since its shifted into the red, only infrared telescopes can see it. Telescopes like the Hubble and the Spitzer can see some redshifted light. But the JWST has far more power than its predecessors, allowing it to effectively see further back in time.

“Using advanced instruments such as JWST allows us to study more distant galaxies with greater detail than ever before.”

Yicheng Guo, Department of Physics and Astronomy, University of Missouri

Observations have shown that galaxies grow large through mergers and collisions and that up to 60% of all galaxies are spirals. But how did the process play out? When did the first spirals emerge? An answer to that question trickles down and affects other outstanding questions about galaxies.

Spiral arms host active star formation, where successive generations of stars create heavier elements. Those elements allow rocky planets to form and are also a requirement for life. So, an understanding of when spiral galaxies formed helps astronomers understand the parameters of star formation, rocky planet formation, and even, potentially, the appearance of life.

“Knowing when spiral galaxies formed in the universe has been a popular question in astronomy because it helps us understand the evolution and history of the cosmos.”

Vicki Kuhn, Department of Physics and Astronomy, University of Missouri

One of the JWST’s observing efforts is CEERS, the Cosmic Evolution Early Release Science Survey. In CEERS, the JWST was the first telescope to capture images of the Universe’s early galaxies. CEERS found the most distant active supermassive black hole and galaxies that existed in the distant past when the Universe was only about 500 to 700 million years old.

Image of CEERS scientists looking at the Epoch 1 NIRCam color mosaic in TACC’s visualization lab at UT Austin. Credit: R. Larson

New research published in The Astrophysical Journal Letters examined galaxies from CEERS to determine how many of these ancient galaxies were spirals. The title is “JWST Reveals a Surprisingly High Fraction of Galaxies Being Spiral-like at 0.5 ≤ z ≤ 4.” The first author is Vicki Kuhn, a graduate student in the University of Missouri’s Department of Physics and Astronomy.

“Scientists formerly believed most spiral galaxies developed around 6 to 7 billion years after the universe formed,” said Yicheng Guo, an associate professor in Mizzou’s (University of Missouri) Department of Physics and Astronomy and co-author of the study. “However, our study shows spiral galaxies were already prevalent as early as 2 billion years afterward. This means galaxy formation happened more rapidly than we previously thought.”

In their research letter, the authors examined 873 galaxies from CEERS with redshift 0.5 ≤ z ≤ 4 and stellar mass ≤ 1010 solar masses. They found that 216 of them had spiral structures. “This fraction is surprisingly high and implies that the formation of spiral arms, as well as disks, was earlier in the Universe,” the authors write in their paper.

This figure from the research shows some of the galaxies in the sample. Redshift increases from left to right, and the rows from top to bottom show the range of galaxies classified as spiral to nonspiral. “Spiral structure is easier to see at the lower redshift ranges and becomes less pronounced at higher redshifts.” the authors write. The top three rows show galaxies identified as spirals with strong confidence, the middle three rows show galaxies identified as spirals with less confidence, and the bottom row shows non-spirals. Image Credit: Kuhn et al. 2024

“Knowing when spiral galaxies formed in the universe has been a popular question in astronomy because it helps us understand the evolution and history of the cosmos,” said lead author Kuhn. “Many theoretical ideas exist about how spiral arms are formed, but the formation mechanisms can vary amongst different types of spiral galaxies. This new information helps us better match the physical properties of galaxies with theories — creating a more comprehensive cosmic timeline.”

Spiral galaxies started as disks of gas. These results, when combined with other studies of high-redshift galaxies, paint a picture of the history of galaxy evolution in the early Universe. Dynamically hot gaseous disks appear around z = 4 to 5. These disks settled down to become dynamically cold gaseous disks around z = 3 to 4. Since stars form when gas cools and clumps together, large numbers of dynamically cold stellar disks appeared at z = 3 to 4, as indicated by their spiral arms.

This research also illuminates the relationships between spiral arms and other galaxy substructures. Gas-rich disks at high redshifts are very turbulent, and gravitational instabilities form giant clumps of star formation. Later, hot stars disperse young galaxies’ velocities, allowing them to settle down and become less turbulent. These bulges of star formation can also merge, helping to further stabilize the disks. The conclusion is that gravitational instabilities primarily lead to spiral arms, with clumps playing a secondary role since they co-exist with spirals at high redshifts.

The authors point out some caveats in their work. Galaxies that are merging can appear as spirals. The long tails prevalent during mergers can look like spiral arms, so their numbers could be off a little. But on the other hand, spirals can also look like mergers, adding to the uncertainty. “This situation is more severe for galaxies at z > 2, as the merger fraction is believed to be higher then,” the authors write.

But these facts likely don’t affect the conclusion much. “The observed spiral fraction decreases with increasing redshift, from ~43% at z = 1 to ~4% at z = 3,” the researchers conclude. So, while spirals are rarer the further we look back in time, they’re still more plentiful earlier than thought.

“Using advanced instruments such as JWST allows us to study more distant galaxies with greater detail than ever before,” Guo said. “A galaxy’s spiral arms are a fundamental feature used by astronomers to categorize galaxies and understand how they form over time. Even though we still have many questions about the universe’s past, analyzing this data helps us uncover additional clues and deepens our understanding of the physics that shaped the nature of our universe.”

The post Almost a Third of Early Galaxies Were Already Spirals appeared first on Universe Today.

Categories: Astronomy

Join the FAA's virtual public meeting about SpaceX's Starship this evening

Space.com - Mon, 06/17/2024 - 2:33pm
The FAA is holding a virtual public meeting this evening (June 17) about the potential environmental impact of SpaceX's Starship operations in Florida, and you can participate.
Categories: Astronomy

NASA Interns Blast Off for Their First Week at Goddard 

NASA - Breaking News - Mon, 06/17/2024 - 2:02pm

Several hundred new faces walked through the gates of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, for the first time on June 3. Who is this small army of motivated space-enthusiasts? It’s Goddard’s 2024 summer intern cohort.

Across Goddard’s campuses, more than 300 on-site and virtual interns spend the 10-week program contributing across all manners of disciplines, science, engineering, finance, communications, and many more. From helping engineers who will send new space telescopes into orbit, to communicating NASA’s scientific discoveries to the world, this cohort of interns hopes to bring their new ideas and perspectives to Goddard this summer.

About 200 interns attended summer orientation at Goddard’s Greenbelt, Maryland, campus of NASA’s Goddard Space Flight Center, on June 3, 2024. This was the first in-person summer orientation since 2019.Credit: NASA/Jimmy Acevedo The Artemis Generation Takes Flight

This group of interns is part of the Artemis Generation: they come to NASA near the culmination of the campaign that will return humanity to the Moon for the first time in more than 50 years. Through Artemis, NASA will land the first woman and first person of color on the lunar surface.

“I’m just excited to contribute to Artemis,” said Kate Oberlander, who just graduated from UCLA in aerospace engineering. “We’ll be helping connect communications between the Moon and Earth for the Artemis campaign, and that is so monumental. That’s exciting to be a part of.”

In addition to work on their projects, interns also have networking opportunities where they can meet current NASA employees and learn about careers in aerospace.

“I’ve been really enjoying getting to know my fellow interns, and also getting that professional development alongside technical skills,” said Oberlander, who plans on returning to UCLA to earn her master’s degree and learn more about optics, electromagnetics, and space exploration. She said her internship this summer will bring all her favorite subjects together.

Down to Earth: Interns Work Across Fields

Interns at Goddard take on a diverse set of projects across many disciplines. “It’s a lot of learning — but I love learning. I’m like a sponge,” said Addie Colwell, an environmental science student at the University of Vermont.

Colwell’s internship focuses on stormwater management at Goddard. “We have to renovate the embankment of the stormwater pond,” Colwell said. “I’m assessing how that’s going to impact the wildlife there. It’s a lot of species identification and research.”

Emma Stefanacci, a science communication master’s student at the University of Wisconsin, Madison, will be working on the astrophysics social media team.

“I’m excited to see what social media looks like, as I haven’t been able to play in that realm of communications before,” said Stefanacci. She will help develop a campaign for the launch anniversary of XRISM, a telescope collaboration between NASA and the Japan Aerospace Exploration Agency (JAXA).

This summer, NASA’s Wallops Flight Facility on Virginia’s Eastern Shore also hosts a diverse intern cohort, some of whom are shown here in the Range Control Center. Goddard manages Wallops on behalf of NASA.Credit: NASA/Pat Benner Working on the Next Generation of Space Discovery

Kevin Mora is a student at Arizona State University studying computer science. Mora is working on several projects this summer, one of them focusing on pipeline coding in Python to help engineers working on the Nancy Grace Roman Space Telescope. “It’s literally like a pipeline — just moving data from here to there,” Mora said. “It helps the engineers that are building Roman get stuff done faster.”

The Roman Space Telescope is the next in line to carry on the Hubble and Webb legacy. Roman will have a much wider field of view than the space telescopes preceding it, giving scientists a bigger picture of the universe, and hopefully telling us more about dark matter and dark energy. Many interns are working on this space telescope, which is expected to launch by 2027.

Alongside new faces in this year’s program, some interns are returning to NASA for repeat sessions. Cord Mazzetti, a recent electrical engineering graduate of the University of Texas at Austin, will be continuing work on quantum clock synchronization that he began researching at Goddard last summer.

“It’s nice to be back here at NASA and to be able to dive into my work even faster,” said Mazzetti.

In-person Orientation Returns to Campus

The interns’ orientation was the first to be held in-person since before the COVID-19 pandemic, according to Laura Schmidt, an internships specialist in NASA’s Office of STEM Engagement.

“It was thrilling to welcome our incredible group of interns and host our first onsite summer orientation in five years,” Schmidt said. “The energy was palpable as we welcomed nearly 200 interns onsite at Goddard, and I have no doubt that the stage is set for a fantastic summer ahead.”

By Avery Truman and Matthew Kaufman

NASA’s Goddard Space Flight Center, Greenbelt, Md.

Share Details Last Updated Jun 17, 2024 EditorKaty MersmannContactRob Garnerrob.garner@nasa.govLocationGoddard Space Flight Center Related Terms
Categories: NASA

Shine on, Starliner! Aurora glows green as astronauts test spacecraft ahead of return to Earth June 22 (image, video)

Space.com - Mon, 06/17/2024 - 2:00pm
Boeing Starliner has seen its one-week test mission in space double to about two weeks. That allowed time for an incredible aurora show during thruster testing on June 15.
Categories: Astronomy

NASA Satellites Find Snow Didn’t Offset Southwest US Groundwater Loss

NASA - Breaking News - Mon, 06/17/2024 - 1:56pm

4 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) Despite some years with significant snowfalls, long-term drought conditions in the Great Basin region of Nevada, California, Arizona, and Utah, along with increasing water demands, have strained water reserves in the western U.S. As a result, inland bodies of water, including the Great Salt Lake pictured here, have shrunk dramatically, exposing lakebeds that may release toxic dust when dried.Dorothy Hall/University of Maryland

Record snowfall in recent years has not been enough to offset long-term drying conditions and increasing groundwater demands in the U.S. Southwest, according to a new analysis of NASA satellite data.

Declining water levels in the Great Salt Lake and Lake Mead have been testaments to a megadrought afflicting western North America since 2000. But surface water only accounts for a fraction of the Great Basin watershed that covers most of Nevada and large portions of California, Utah, and Oregon. Far more of the region’s water is underground. That has historically made it difficult to track the impact of droughts on the overall water content of the Great Basin.

A new look at 20 years of data from the Gravity Recovery and Climate Experiment (GRACE) series of satellites shows that the decline in groundwater in the Great Basin far exceeds stark surface water losses. Over about the past two decades, the underground water supply in the basin has fallen by 16.5 cubic miles (68.7 cubic kilometers). That’s roughly two-thirds as much water as the entire state of California uses in a year and about six times the total volume of water that was left in Lake Mead, the nation’s largest reservoir, at the end of 2023.

While new maps show a seasonal rise in water each spring due to melting snow from higher elevations, University of Maryland earth scientist Dorothy Hall said occasional snowy winters are unlikely to stop the dramatic water level decline that’s been underway in the U.S. Southwest.

The finding came about as Hall and colleagues studied the contribution of annual snowmelt to Great Basin water levels. “In years like the 2022-23 winter, I expected that the record amount of snowfall would really help to replenish the groundwater supply,” Hall said. “But overall, the decline continued.” The research was published in March 2024 in the journal Geophysical Research Letters.

“A major reason for the decline is the upstream water diversion for agriculture and households,” Hall said. Populations in the states that rely on Great Basin water supplies have grown by 6% to 18% since 2010, according to the U.S. Census Bureau. “As the population increases, so does water use.”

Runoff, increased evaporation, and water needs of plants suffering hot, dry conditions in the region are amplifying the problem. “With the ongoing threat of drought,” Hall said, “farmers downstream often can’t get enough water.”

Gravity measurements from the GRACE series of satellites show that the decline in water levels in the Great Basin region from April 2002 to September 2023 has most severely affected portions of southern California (indicated in red).D.K. Hall et al./Geophysical Research Letters 2024

While measurements of the water table in the Great Basin — including the depths required to connect wells to depleted aquifers — have hinted at declining groundwater, data from the joint German DLR-NASA GRACE missions provide a clearer picture of the total loss of water supply in the region. The original GRACE satellites, which flew from March 2002 to October 2017, and the successor GRACE–Follow On (GRACE–FO) satellites, which launched in May 2018 and are still active, track changes in Earth’s gravity due primarily to shifting water mass.

GRACE-based maps of fluctuating water levels have improved recently as the team has learned to parse more and finer details from the dataset. “Improved spatial resolution helped in this study to distinguish the location of the mass trends in the Western U.S. roughly ten times better than prior analyses,” said Bryant Loomis, who leads GRACE data analysis at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

The diminishing water supplies of the U.S. Southwest could have consequences for both humans and wildlife, Hall said. In addition to affecting municipal water supplies and limiting agricultural irrigation, “It exposes the lake beds, which often harbor toxic minerals from agricultural runoff, waste, and anything else that ends up in the lakes.”

In Utah, a century of industrial chemicals accumulated in the Great Salt Lake, along with airborne pollutants from present-day mining and oil refinement, have settled in the water. The result is a hazardous muck that is uncovered and dried as the lake shrinks. Dust blown from dry lake beds, in turn, exacerbates air pollution in the region. Meanwhile, shrinking lakes are putting a strain on bird populations that rely on the lakes as stopovers during migration.

According to the new findings, Hall said, “The ultimate solution will have to include wiser water management.”

By James R. Riordon
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Facebook logo @NASAEarth @NASAEarth Instagram logo @NASAEarth Share Details Last Updated Jun 17, 2024 EditorRob GarnerContactJames R. Riordonjames.r.riordon@nasa.govLocationGoddard Space Flight Center Related Terms Explore More 5 min read US, Germany Partnering on Mission to Track Earth’s Water Movement Article 3 months ago 5 min read Warming Makes Droughts, Extreme Wet Events More Frequent, Intense

Scientists have predicted that droughts, floods will become more frequent and severe as our planet…

Article 1 year ago
9 min read Drought Makes its Home on the Range Article 3 years ago
Categories: NASA

Which Stars are Lethal to their Planets?

Universe Today - Mon, 06/17/2024 - 1:34pm

Many years ago, there was a viral YouTube video called “History of the entire world, i guess,” which has been an endless source of internet memes since its release. One of the most prominent is also scientifically accurate—when describing why animals couldn’t start living on land, the video’s creator, Bill Wurtz, intones, “The Sun is a deadly laser.” 

Early in planetary development, the X-ray and ultraviolet radiation level of a planet’s host stars could sterilize the entire planet’s surface, even if it is in the so-called “habitable zone.” To narrow down the search for potentially habitable planets, the team at the Chandra X-ray Observatory and XMM-Newton telescopes took a look at stars that had planets in their habitable zone and analyzed them for whether the star’s radiation itself might preclude life as we know it from developing there.

Over ten observational days on Chandra and 26 on XMM-Newton, scientists observed 57 stars close enough to Earth to have their exoplanets explored by the next generation of exoplanet-hunting telescopes, such as the Habitable Worlds Observatory. While not all of them had known exoplanets, at least some did. 

YouTube Video detailing the research.
Credit – Chandra X-ray Observatory YouTube Channel

However, those exoplanets were typically much larger than Earth, even if they were in the habitable zone. It is much easier to detect giant planets orbiting close to their stars using modern date exoplanet detection techniques like transiting and astrometry. A press release from Chandra notes how many more rocky exoplanets the size of Earth are likely hiding around these stars, but our limited detection methods are not yet capable of finding them.

That isn’t to say we can’t learn much about their host stars, though, and that is where the data from the paper presented to the 244 meeting of the American Astronomical Society in Madison, Wisconsin, comes in. Watching the X-ray emissions of these local stars allowed the team to narrow down what stars to look at for potentially habitable exoplanets, thereby allowing the future powerful planet hunters to focus their observational time on candidates that are more likely to produce results.

Fraser details the path towards detecting 100 million exoplanets over the next thirty years.

Some of the stars in the study were indeed promising, with X-ray exposure similar to, or even less than, that of Earth when life began forming here billions of years ago. The data measured several aspects of the star’s output, including their brightness, how much energy those X-rays pack, and how powerful the star’s flares are. All of those could significantly impact the ability of life to form on any orbiting planets.

Fifty-seven stars is a relatively small sample size. Still, the proof of concept for how Chandra and XMM-Newton can be used to scout potential systems for habitability can be scaled up before any long-term observing mission for the new planet finders—no doubt they will be shortly as HWF and other missions get closer to fruition.

However, Chandra itself is facing budgetary challenges, causing many in the media to speculate that it might soon go “dark.” XMM-Newton itself is almost a quarter century old at this point, and a new joint X-ray mission, XRISM, is facing its own technical challenges, with a stuck door limiting it from observing in some of its potential wavelengths.

With luck, X-ray astronomy will continue to evolve over the next few decades. Part of that mission might be leading the scouting team for one of the most important astronomical searches humanity is currently undergoing.

Learn More:
Chandra Press Room – Coming in Hot: NASA’s Chandra Checks Habitability of Exoplanets
UT – Chandra’s X-ray Vision Combined With JWST Reveals Even More Details About the Universe
UT – A Collection of New Images Reveal X-Rays Across the Universe
UT – Chandra and JWST Join Forces in a Stunning Series of Images

Lead Image:
Illustration of hot exoplanet.
Credit – NASA/CXC/M.Weiss

The post Which Stars are Lethal to their Planets? appeared first on Universe Today.

Categories: Astronomy

NASA moon orbiter spots Chinese lander on lunar far side (photo)

Space.com - Mon, 06/17/2024 - 1:30pm
NASA's Lunar Reconnaissance Orbiter has taken its first look at China's Chang'e 6 spacecraft on the moon's far side.
Categories: Astronomy

Mathematicians find odd shapes that roll like a wheel in any dimension

New Scientist Space - Space Headlines - Mon, 06/17/2024 - 1:00pm
Not content with shapes in two or three dimensions, mathematicians like to explore objects in any number of spatial dimensions. Now they have discovered shapes of constant width in any dimension, which roll like a wheel despite not being round
Categories: Astronomy

Mathematicians find odd shapes that roll like a wheel in any dimension

New Scientist Space - Cosmology - Mon, 06/17/2024 - 1:00pm
Not content with shapes in two or three dimensions, mathematicians like to explore objects in any number of spatial dimensions. Now they have discovered shapes of constant width in any dimension, which roll like a wheel despite not being round
Categories: Astronomy

Slow Your Student’s ‘Summer Slide’ and Beat Boredom With NASA STEM

NASA - Breaking News - Mon, 06/17/2024 - 12:31pm
4 Min Read Slow Your Student’s ‘Summer Slide’ and Beat Boredom With NASA STEM Creating and testing soda-straw rockets is a fun way for younger students to avoid the “summer slide” and stay engaged in STEM during summer vacation. Credits: NASA

The school year has come to an end, and those long summer days are stretching ahead like an open runway. Parents and educators often worry about the “summer slide,” the concept that students may lose academic ground while out of school. But summer doesn’t mean students’ imaginations have to stay grounded!

Are you hoping to slow the summer slide or simply to beat back boredom with some fun options that will also keep young minds active? NASA’s Office of STEM Engagement has pulled together this collection of hands-on activities and interesting resources to set students up for a stellar summer vacation. Read on for ways to keep students entertained and engaged, from learning about NASA’s exciting missions, to exploring the world, to making some out-of-this-world art and more.

Take NASA With You on Summer Vacation

Whether you’re whiling away the hours on a quiet summer day or setting out on a travel adventure, NASA offers fun resources for young explorers to learn while passing the time.

Prepare for air travel with the Four Forces of Flight, a set of four activities explaining the forces that make airplanes work, and NASA’s Junior Pilot Program, in which Orville the flying squirrel teaches youngsters about sustainable aviation that’s making airplanes safer and faster. Students can also learn about NASA’s X-59 experimental aircraft, which will fly faster than the speed of sound while reducing the sound of sonic booms to mere “sonic thumps,” and the whole family can sign up as virtual passengers on NASA’s upcoming flights through the NASA Flight Log.

Traveling to somewhere new? Astronauts living and working in low Earth orbit take many photographs of Earth as it rotates. Explore the world using the Explore Astronaut Photography interactive map, or test geography knowledge through the “Where in the World” Expedition I and Expedition II interactive quizzes.

Of course, some kids prefer to kick back with a good book while on the couch, at the beach, in the backseat, or on a plane – and NASA is ready with reading material! Kids aged 3 to 8 can learn about the Space Launch System (SLS) rocket that will return humans to the Moon with the “Hooray for SLS” children’s book and related activities. Students of all ages are invited to take their imaginations on a lunar adventure with fictional astronaut Callie Rodriguez through the First Woman graphic novel series.

Blast Boredom With STEM Crafts and Creativity

Making, baking, coloring, or drawing – there are plenty of ways to keep kids’ artistic abilities engaged while learning.

Students can download and create their own Artemis illustrations through Learn How to Draw Artemis, featuring the SLS rocket and Orion spacecraft, and younger kids can learn the ABCs of human spaceflight with the Commercial Crew A to Z Activity and Coloring Booklet. Learn about the search for life in the universe while getting creative and colorful with Astrobiology Coloring and Drawing Pages.

If crafts are more appealing, create and launch a soda-straw rocket and use printable templates to build a model of the Orion spacecraft or the Parker Solar Probe. Kids can even create a sundial and use the Sun to tell time on a sunny day.

Finally, summer isn’t complete without a sweet treat, so bake some sunspot cookies. Real sunspots are not made of chocolate, but in this recipe, they are!

Hungry for More?

Don’t let the summer doldrums get you down. NASA STEM offers an entire universe of activities, resources, and opportunities for STEM fans at a variety of grade levels. Check out the NASA STEM Search and discover more NASA STEM categories below.

Explore the NASA STEM Search Now Keep Exploring Discover More Topics From NASA

For Students Grades K-4

For Students Grades 5-8

For Students Grades 9-12

Learning Resources

Categories: NASA

Why humanity’s survival may depend on us becoming a tribe of billions

New Scientist Space - Space Headlines - Mon, 06/17/2024 - 12:00pm
Tribalism can be toxic, yet we need more of it if we are to meet today’s global challenges, argues one anthropologist. His research reveals how to create a “teratribe”
Categories: Astronomy

Why humanity’s survival may depend on us becoming a tribe of billions

New Scientist Space - Cosmology - Mon, 06/17/2024 - 12:00pm
Tribalism can be toxic, yet we need more of it if we are to meet today’s global challenges, argues one anthropologist. His research reveals how to create a “teratribe”
Categories: Astronomy

Management and Program Analyst Mallory Carbon

NASA Image of the Day - Mon, 06/17/2024 - 11:11am
“I feel that my larger purpose at NASA, which I've felt since I came on as an intern, is to leave NASA a better place than I found it." — Mallory Carbon, Management and Program Analyst, NASA Headquarters
Categories: Astronomy, NASA

The universe’s biggest explosions made some of the elements we are composed of. But there’s another mystery source out there

Space.com - Mon, 06/17/2024 - 11:00am
In order to explain the presence of these heavier elements today, it’s necessary to find phenomena that can produce them. One type of event that fits the bill is a gamma-ray burst (GRB) – the most powerful class of explosion in the universe.
Categories: Astronomy

Watch a humanoid robot driving a car extremely slowly

New Scientist Space - Cosmology - Mon, 06/17/2024 - 10:55am
A robot named Musashi with a human-like "skeleton" and "musculature" can perform basic driving tasks – but this isn’t the safest approach to autonomous transport
Categories: Astronomy

Watch a humanoid robot driving a car extremely slowly

New Scientist Space - Space Headlines - Mon, 06/17/2024 - 10:55am
A robot named Musashi with a human-like "skeleton" and "musculature" can perform basic driving tasks – but this isn’t the safest approach to autonomous transport
Categories: Astronomy