These earthly godfathers of Heaven's lights, that give a name to every fixed star, have no more profit of their shining nights than those that walk and know not what they are.

— William Shakespeare

NASA

The Marshall Star for April 3, 2024

NASA - Breaking News - Wed, 04/03/2024 - 4:14pm
23 Min Read The Marshall Star for April 3, 2024 Huntsville, Marshall Preparing to Celebrate Total Solar Eclipse

By Celine Smith

On April 8 between 1 and 3 p.m., the Moon will pass between the Sun and Earth to create a total solar eclipse for 15 states. While Alabama will experience a partial eclipse, area residents can enjoy some fun-filled festivities to celebrate the event.

The U.S. Space & Rocket Center in Huntsville, in collaboration with the Alabama Space Grant Consortium and NASA’s Marshall Space Flight Center, will host a family-friendly eclipse watch party. There will be children’s activities in the Spark!Lab, starting at 10 a.m. Dennis Gallagher, a plasma physicist within the Heliophysics and Planetary Science branch at Marshall, will give eclipse presentations at 11:30 a.m. and 12:30 p.m. in the National Geographic Theater at the center. Those attending the eclipse watch party will receive a pair of eclipse glasses with their ticket, which is included in the price of general admission to the rocket center. Civil servants can receive free admission for themselves and family members with their ID badge, while Marshall contractors can gain admission with their badge.

Joe Matus, an engineer at NASA’s Marshall Space Flight Center, captured this image of the total solar eclipse Aug. 21, 2017, near Hopkinsville, Kentucky. NASA/Joe Matus

Marshall team members don’t have to leave the arsenal to enjoy the solar eclipse. Food trucks will be staying at the food corral during the eclipse, so viewers can enjoy lunch while witnessing the natural phenomenon.

Meanwhile, experts from NASA and Marshall have collaborated with the city of Russellville, Arkansas, to provide educational outreach opportunities and panel discussions. The public is invited to this free event, with more than 100,000 tourists expected to visit Russellville for the rare experience.

Due to the length of the eclipse totality in Russellville, NASA is planning to host part of the agency’s live television broadcast from the city, as well as conduct several scientific presentations and public events for visitors. There, the total eclipse will last for four minute and 11 seconds.

Everyone is invited to experience the eclipse through NASA’s live coverage on NASA+ and the NASA app. NASA also will stream the broadcast live on its FacebookXYouTube, and Twitch social media accounts, as well as a telescope-only feed of eclipse views on the NASA TV media channel and YouTube.

Those viewing the eclipse should take proper precautions to protect their eyes. Without protective eyewear during a partial eclipse, viewers are susceptible to eye damage. It’s also highly recommended that eclipse viewers wear a hat, use sunscreen, and avoid exposing a lot of skin.

According to Gallagher, the Sun’s magnetic field is affected by its rotation. When the Sun rotates enough, the magnetic field can no longer hold its energy releasing solar flares. There are even some instances where bundles of the Sun’s magnetic field and ionized gas are ejected together from the Sun’s surface, creating a coronal mass ejection. These arches and arcs may be visible during the eclipse.

“Luminous tendrils of ionized gas reaching two to three solar radii in all directions away from the Sun’s surface will be revealed in graceful loops and sweeping arches off into the distance,” Gallagher said.

“Coronal mass ejections and solar flare emissions are a direct hazard to humans and human made systems. Coronal mass ejections specifically interact with Earth’s magnetic field to create additional hazards in space and on Earth’s surface. While the Sun seems a steady life-giving companion, uninvolved with Earthly travails, a total solar eclipse offers everyone, including scientists, the chance to get a closer look at what goes on at the Sun behind the blinding glare of its nuclear heart.”

Read more about the 2024 total solar eclipse from NASA.

Smith, a Media Fusion employee, supports the Marshall Office of Communications.

› Back to Top

Hi-C Rocket Experiment Could Provide New Look at Solar Flares

By Jessica Barnett 

For a brief moment in April, team members with NASA’s Marshall Space Flight Center could get their best opportunity yet to study a solar flare using a combination of new technologies in the first-ever Solar Flare Sounding Rocket Campaign.

Teams are planning to launch two rocket experiments within a minute of each other during an active solar flare. The High-resolution Coronal Flare mission (Hi-C Flare) led by Marshall and the fourth Focusing Optics X-ray Solar Imager mission (FOXSI-4), led by the University of Minnesota, have complementary instrumentation designed to study the extreme energies involved with solar flares. 

From left, NASA test engineer William Hogue, Hi-C principal investigator Sabrina Savage, and NASA systems scientist Ken Kobayashi stand in front of the Hi-C flare instrument section after it has been packaged and prepared for shipping from White Sands to Alaska. NASA

“This is a pioneering campaign,” said Sabrina Savage, principal investigator for Hi-C Flare. “Launching sounding rockets to observe the Sun to test new technologies optimized for flare observations has not even been an option until now.”

Following a month of integration and testing at White Sands Missile Range in New Mexico, the Hi-C Flare team is completing two weeks of launch site integration at the Poker Flat Research Range in Alaska. The planned campaign window will be open for two weeks, beginning April 5. Each morning, the teams will spend about five hours preparing the experiment for launch, followed by up to four hours of monitoring solar data for the right flare that meets the mission study criteria. If none occurs, the rockets will be restowed in shelters overnight, and the launch will be reattempted the next day.

But if the right one does appear, the experiments will launch on Black Brant IX sounding rockets. Hi-C Flare is equipped with the third iteration of the High-Resolution Coronal Imager, or Hi-C 3. This will be the fourth flight for Hi-C, but its first with such ride-along instruments as COOL-AID (COronal OverLapagram – Ancillary Imaging Diagnostics), CAPRI-SUN (high-Cadence low-energy Passband x-Ray detector with Integrated full-SUN field of view), and SSAXI (Swift Solar Activity X-ray Imager). With these new tools, the team hopes to further solar research by capturing data at flare energies in higher-than-ever resolution and cadence.

Austin Bumbalough, an electronics engineer at NASA’s Marshall Space Flight Center, waves from behind the Hi-C payload in front of the Vehicle Assembly Building in White Sands, New Mexico, in February 2024. The payload will be used in the Hi-C rocket experiment planned to take place sometime in April.NASA

“It’s a different wavelength from previous Hi-C flights, there are different features that we expect to see on the Sun’s corona, and there’s a slightly different temperature range of features that we expect to see,” said Adam Kobelski, institutional principal investigator for the SSAXI instrument.

The Sun is currently experiencing the “solar maximum” phase of its activity cycle, which increases the chances of a solar flare occurring during the campaign window. The study requires a specific type of flare, one that registers as a C5-class or higher with a duration longer than the rocket flight. While it isn’t yet possible to precisely predict when a solar flare will occur or how long it will be, the team has developed algorithms to provide alerts and predictive diagnostics using data from solar telescopes in orbit, factoring in the complexity of active regions and real-time changes to X-ray and extreme ultraviolet solar output. 

The alert won’t be instant, however. In fact, it could take several minutes for the information to get from a telescope in space to the team on the ground to the team members who launch the rocket – and even then, due to the science requirements for the two missions, Hi-C Flare is planning to launch after FOXSI-4 takes flight. The flare may have progressed by up to 10 minutes by the time Hi-C Flare begins making observations.

The Hi-C flare instrument sits inside a clean tent for integration testing at White Sands Missile Range in February 2024. NASA

“That’s why we’re requiring a long-duration flare, so we can guarantee ourselves that we will see it,” said Genevieve Vigil, technical and camera lead for Hi-C and COOL-AID.

Once in air, sensors on the rocket will point the cameras toward the Sun and stabilize the instrumentation. Then, a shutter door will open and allow the cameras to acquire data for about five minutes before the door closes and the rocket falls back to Earth. Vigil said the rocket will land somewhere in the Alaskan tundra, where it will stay until weather conditions are safe enough for it to be retrieved via helicopter and for the team to begin fully processing the data.

Kobelski is hoping to see small-scale heating in the corona.

“It’s a very unique thing that only this set of instrumentation can do, since it has the high resolution and can see very hot things,” he said. “I would like to see actual structure in the heating that occurs in the corona.”

The Hi-C Flare experiment and rocket subsystems are staged on the launch rail and prepared for integration with the rocket motors in April 2024.NASA

For Vigil, it’s about testing the equipment and the process.

“I want to show that this method – of catching a flare in action, then launching a rocket to go take pictures of it – is an effective way to study flares,” she said. “That would open a lot of doors to a lot of other kinds of instruments that you could build and specifically design for flare studies, that you could then test.”

Marshall Space Flight Center leads the Hi-C Flare experiment in partnership with the Smithsonian Astrophysical Observatory in Cambridge, Massachusetts, and Montana State University in Bozeman. Launch support is provided at Poker Flat Research Range by the University of Alaska Fairbanks and NASA’s Sounding Rocket Program at the agency’s Wallops Flight Facility on Wallops Island, Virginia, which is managed by NASA’s Goddard Space Flight Center. NASA’s Heliophysics Division manages the sounding-rocket program for the agency’s Science Mission Directorate.

Barnett, a Media Fusion employee, supports the Marshall Office of Communications.

› Back to Top

‘Hooray for SLS!’ Children’s Book Launches on NASA.gov

“Hooray for SLS!” – the first in a series of illustrated children’s books designed to introduce the youngest members of the Artemis Generation ages 3 to 8 to the unique elements that make NASA’s Artemis campaign possible – is now publicly available on NASA’s website.

“Hooray for SLS!” is a NASA product written by Lane Polak and illustrated by Heather Legge-Click.NASA

In addition to a downloadable version of the book, coloring sheets, and student activities online, parents and educators can also watch and listen to a read aloud version of the book on YouTube.

“Hooray for SLS!”is a NASA product written by Lane Polak and illustrated by Heather Legge-Click. Learn more about SLS (Space Launch System) and check out the book here.

NASA’s Marshall Space Flight Center manages the SLS Program.

› Back to Top

I Am Artemis: Mat Bevill

Significant events in history keep finding Mat Bevill. As the associate chief engineer for NASA’s SLS (Space Launch System) Program, Bevill assists the program chief engineer by interfacing with each of the element chief engineers and helping make critical decisions for the development and flight of the SLS mega rocket that will power NASA’s Artemis campaign. With the launch of Artemis II, the first crewed test flight of SLS and the Orion spacecraft, Bevill’s technical leadership and support for the SLS Chief Engineer’s Office will place him, once again, at a notable moment in time.

Mat Bevill, the associate chief engineer for NASA’s SLS (Space Launch System) Program, stands in front of a four-segment solid rocket booster that powered the space shuttle at NASA’s Marshall Space Flight Center.NASA/Brandon Hancock

“Think of me as the assistant coach. While the head coach is on the front line leading the team, I’m on the sidelines providing feedback and advising those efforts,” said Bevill. As a jack-of-all-trades, he enables progress in any way that he can, something he’s familiar with after 37 years with NASA. And, on Nov. 16, 2022, as the SLS rocket roared to life for the first time with the Artemis I test flight, Bevill couldn’t help but reflect on a lifetime of experiences and lessons that led to that moment.

Bevill began his NASA career while he was still attending the University of Tennessee at Chattanooga. During his sophomore year as a mechanical engineer student, he applied for the agency’s internship program at NASA’s Marshall Space Flight Center.

Just a few months before Bevill began his journey with NASA, the Challenger accident occurred, taking the lives of all seven crewmembers in January 1986. Bevill joined the Solid Motor Branch at Marshall as teams across the agency worked to understand the cause of the accident. It was a fast-paced environment, and Bevill had to learn quickly about the solid rocket boosters.

“It was a surreal experience, but I was privileged to work with those people. We were figuring out tough lessons together and working toward a common goal,” Bevill recalls.

Those tough lessons provided Bevill with tremendous hands-on experience related to the solid rocket booster hardware that would not only shape his career, but, later, the SLS rocket. The five-segment solid rocket boosters that provide more than 75% of thrust for SLS to go to the Moon are based on the same four-segment design that powered 135 shuttle missions to low Earth orbit. His experience from his time with the shuttle led him to deputy chief engineer for the SLS Boosters Office.

Just as for Artemis I, Bevill will be standing by and serving as the “assistant coach” for Artemis II as the SLS rocket, once again, takes flight and sends the first crewed Artemis mission around the Moon. “SLS has been the crowning jewel of my career, and I consider myself blessed to be a part of NASA’s history,” Bevill said.

SLS is part of NASA’s backbone for deep space exploration, along with the Orion spacecraft, advanced spacesuits and rovers, the Gateway in orbit around the Moon, and commercial human landing systems. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single launch.

› Back to Top

NASA Names Finalists to Help Deal with Dust in Human Lander Challenge

NASA selected 12 finalist teams to compete in the next round of the Human Lander Challenge (HuLC) competition. In 2023, NASA invited undergraduate and graduate students from accredited colleges and universities in the United States to propose innovative solutions to manage the lunar dust a spacecraft stirs up when landing on the Moon.

NASA’s Artemis campaign will establish a long-term human presence on and around the Moon for the benefit of all, and one of the challenges the agency and its partners must address is the particularly dusty aspect of landing on the lunar surface. These university-level teams will spend the next several months continuing to develop their concepts for managing or preventing the cloud of dust created when using rocket engines to land on unprepared surfaces like the Moon. This effect is called plume surface interaction and can damage assets NASA plans to establish on the Moon’s surface, like habitats and scientific experiments.

“Each team brings a unique perspective and I’m excited to see the cumulation of each team’s extensive research and concept development at the 2024 Forum,” said Jamshid Samareh, lead for the technology identification and assessment team at NASA’s Langley Research Center. “Their proposed system-level designs showcase the brilliance and dedication of the Artemis Generation to our collective mission. I am confident their work will propel us closer to the Moon and hopefully inspire future advancements in space exploration.”

The 2024 HuLC Finalist Teams are:

  • Colorado School of Mines
    • “Prudent Landers – FAST”
    • Advisor: Mark Florida, Dr. Angel Abbud-Madrid, David Purcell
  • Embry-Riddle Aeronautical University
    • “Plume Additive for Reducing Surface Ejecta and Cratering (PARSEC)”
    • Advisor: Dr. Siwei Fan
  • Embry-Riddle Aeronautical University
    • “Ceramic Research Advancement Technology at Embry-Riddle (C.R.A.T.E.R.)”
    • Advisor: Seetha Raghavan
  • Ohio Northern University
    • “HuLC Smash”
    • Dr. Louis DiBerardino
  • Texas A&M University
    • “Maroon Moon: Preliminary Surface Stabilization to Mitigate Lunar Plume Surface Interaction”
    • Advisor: John F. Connolly, Dr. Jean-Louis Briaud
  • Texas A&M University
    • “Synthetic Orbital Landing Area for Crater Elimination (SOLACE)”
    • Advisor: Dr. Helen Reed
  • Texas State University
    • “Numerical Simulation and Physical Validation of Regolith Ejecta During Plume Surface Interaction”
    • Advisor: Dr. Bin Xiao
  • The College of New Jersey
    • “TCNJ Adaptable Regolith Retention Program (TARRP)”
    • Advisor: Mohammed Alabsi
  • University of California San Diego
    • “Microwave Lunar Sintering of Nanophase Iron Enriched Lunar Regolith for the Creation of a Lunar Landing Pad”
    • Advisor: Dr. Amy Eguchi, Dr. Zahra Sadeghizadeh, Dr. Ross Turner
  • University of Colorado Boulder (Graduate Team)
    • “Lunar Surface Assessment Tool (LSAT): A Simulation of Lunar Dust Dynamics for Risk Analysis”
    • Advisor: James Nabity
  • University of Illinois Urbana-Champaign
    • “HINDER: Holistic Integration of Navigational Dynamics for Erosion Reduction”
    • Advisor: Laura Villafane Roca
  • University of Michigan
    • “ARC-LIGHT: Algorithm for Robust Characterization of Lunar surface Imaging for Ground Hazards and Trajectory”
    • Advisor: Mirko Gamba, Chris Ruf

The finalist selection process involved a rigorous assessment of each team’s proposal package submission, consisting of a 5–7-page concept proposal and a two-minute summary video. The judging panel made up of subject matter experts from NASA’s Human Landing System Program considered factors such as feasibility, innovation, and adherence to NASA’s safety standards. Each team will receive a $7,000 stipend award to facilitate further development of their proposed concept and their full participation in the 2024 HuLC Forum in Huntsville in June. The 12 finalists will make final presentations to a panel of NASA and industry experts at the onsite HuLC Forum. The top three winning teams will share a prize purse of $18,000.

The Human Lander Challenge is sponsored by NASA’s Human Landing System Program and managed by the National Institute of Aerospace.

NASA’s Marshall Space Flight Center manages the Human Landing System Program.

Through Artemis, NASA will land the first woman, first person of color, and its first international partner astronaut on the Moon, paving the way for a long-term, sustainable lunar presence to explore more of the lunar surface than ever before and prepare for future astronaut missions to Mars.

For full competition details, visit the Human Lander Challenge website.

› Back to Top

Chandra: Stunning Echo of 800-year-old Explosion

In the year 1181 a rare supernova explosion appeared in the night sky, staying visible for 185 consecutive days. Historical records show that the supernova looked like a temporary ‘star’ in the constellation Cassiopeia shining as bright as Saturn.

Ever since, scientists have tried to find the supernova’s remnant. At first it was thought that this could be the nebula around the pulsar – the dense core of a collapse star – named 3C 58. However closer investigations revealed that the pulsar is older than supernova 1181.

Pa 30 is a nearly circular nebula with a central star in the constellation Cassiopeia. It is pictured here combining images from several telescopes. This composite image uses data across the electromagnetic spectrum and shows a spectacular new view of the supernova remnant.X-ray: (Chandra) NASA/CXC/U. Manitoba/C. Treyturik, (XMM-Newton) ESA/C. Treyturik; Optical: (Pan-STARRS) NOIRLab/MDM/Dartmouth/R. Fesen; Infrared: (WISE) NASA/JPL/Caltech/; Image Processing: Univ. of Manitoba/Gilles Ferrand and Jayanne English

In the last decade, another contender was discovered; Pa 30 is a nearly circular nebula with a central star in the constellation Cassiopeia. It is pictured here combining images from several telescopes. This composite image uses data across the electromagnetic spectrum and shows a spectacular new view of the supernova remnant. This allows us to marvel at the same object that appeared in our ancestors’ night sky more than 800 years ago.

X-ray observations by ESA’s XMM-Newton (blue) show the full extent of the nebula and NASA’s Chandra X-ray Observatory (cyan) pinpoints its central source. The nebula is barely visible in optical light but shines bright in infrared light, collected by NASA’s Wide-field Infrared Space Explorer (red and pink). Interestingly, the radial structure in the image consists of heated sulfur that glows in visible light, observed with the ground-based Hiltner 2.4 m telescope at the MDM Observatory (green) in Arizona, USA, as do the stars in the background by Pan-STARRS (white) in Hawaii, USA.

Studies of the composition of the different parts of the remnant have led scientists to believe that it was formed in a thermonuclear explosion, and more precisely a special kind of supernova called a sub-luminous Type Iax event. During this event two white dwarf stars merged, and typically no remnant is expected for this kind of explosion. But incomplete explosions can leave a kind of ‘zombie’ star, such as the massive white dwarf star in this system. This very hot star, one of the hottest stars in the Milky Way (about 200 000 degrees Celsius), has a fast stellar wind with speeds up to 16,000 km/h. The combination of the star and the nebula makes it a unique opportunity for studying such rare explosions.

NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.

Read more from NASA’s Chandra X-ray Observatory.

› Back to Top

Europa Clipper Survives and Thrives in ‘Outer Space’ on Earth

In less than six months, NASA is set to launch Europa Clipper on a 1.6-billion-mile voyage to Jupiter’s ocean moon Europa. From the wild vibrations of the rocket ride to the intense heat and cold of space to the punishing radiation of Jupiter, it will be a journey of extremes. The spacecraft was recently put through a series of hard-core tests at the agency’s Jet Propulsion Laboratory to ensure it’s up to the challenge.

Called environmental testing, the battery of trials simulates the environment that the spacecraft will face, subjecting it to shaking, chilling, airlessness, electromagnetic fields, and more.

Europa Clipper is seen in the 25-Foot Space Simulator at JPL in February, before the start of thermal vacuum testing. A battery of tests ensures that the NASA spacecraft can withstand the extreme hot, cold, and airless environment of space. NASA/JPL-Caltech

“These were the last big tests to find any flaws,” said JPL’s Jordan Evans, the mission’s project manager. “Our engineers executed a well-designed and challenging set of tests that put the system through its paces. What we found is that the spacecraft can handle the environments that it will see during and after launch. The system performed very well and operates as expected.”

The most recent environmental test for Europa Clipper was also one of the most elaborate, requiring 16 days to complete. The spacecraft is the largest NASA has ever built for a planetary mission and one of the largest ever to squeeze into JPL’s historic 85-foot-tall, 25-foot-wide thermal vacuum chamber (TVAC). Known as the 25-foot Space Simulator, the chamber creates a near-perfect vacuum inside to mimic the airless environment of space.

At the same time, engineers subjected the hardware to the high temperatures it will experience on the side of Europa Clipper that faces the Sun while the spacecraft is close to Earth. Beams from powerful lamps at the base of the Space Simulator bounced off a massive mirror at its top to mimic the heat the spacecraft will endure.

To simulate the journey away from the Sun, the lamps were dimmed and liquid nitrogen filled tubes in the chamber walls to chill them to temperatures replicating space. The team then gauged whether the spacecraft could warm itself, monitoring it with about 500 temperature sensors, each of which had been attached by hand.

TVAC marked the culmination of environmental testing, which included a regimen of tests to ensure the electrical and magnetic components that make up the spacecraft don’t interfere with one another.

NASA’s Europa Clipper is seen being lifted into the Space Simulator at JPL in February. Thermal vacuum testing, which lasted 16 days, ensures that the spacecraft will withstand the harsh conditions of space.NASA/JPL-Caltech

The orbiter also underwent vibration, shock, and acoustics testing. During vibration testing, the spacecraft was shaken repeatedly – up and down and side to side – the same way it will be jostled aboard the SpaceX Falcon Heavy rocket during liftoff. Shock testing involved pyrotechnics to mimic the explosive jolt the spacecraft will get when it separates from the rocket to fly its mission. Finally, acoustic testing ensured that Europa Clipper can withstand the noise of launch, when the rumbling of the rocket is so loud it can damage the spacecraft if it’s not sturdy enough.

“There still is work to be done, but we’re on track for an on-time launch,” Evans said. “And the fact that this testing was so successful is a huge positive and helps us rest more easily.”

Later this spring, the spacecraft will be shipped to NASA’s Kennedy Space Center. There, teams of engineers and technicians will carry out final preparations with eyes on the clock. Europa Clipper’s launch period opens Oct. 10.

After liftoff, the spacecraft will zip toward Mars, and in late February 2025, it will be close enough to use the Red Planet’s gravitational force for added momentum. From there, the solar-powered spacecraft will swing back toward Earth to get another slingshot boost – from our own planet’s gravitational field – in December 2026.

Then it’s on to the outer solar system, where Europa Clipper is set to arrive at Jupiter in 2030. The spacecraft will orbit the gas giant while it flies by Europa 49 times, dipping as close as 16 miles from the moon’s surface to gather data with its powerful suite of science instruments. The information gathered will tell scientists more about the moon’s watery interior.

A timelapse video shows engineers and technicians moving NASA’s Europa Clipper spacecraft into the 85-foot-tall Space Simulator at the agency’s Jet Propulsion Laboratory in Southern California. The spacecraft underwent thermal vacuum testing in the chamber in February 2024 and passed with flying colors.
Credit: NASA/JPL-Caltech

Europa Clipper’s main science goal is to determine whether there are places below the surface of Jupiter’s icy moon, Europa, that could support life. The mission’s three main science objectives are to determine the thickness of the moon’s icy shell and its surface interactions with the ocean below, to investigate its composition, and to characterize its geology. The mission’s detailed exploration of Europa will help scientists better understand the astrobiological potential for habitable worlds beyond our planet.

Managed by Caltech in Pasadena, California, JPL leads the development of the Europa Clipper mission in partnership with the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland, for NASA’s Science Mission Directorate. APL designed the main spacecraft body in collaboration with JPL and NASA’s Goddard Space Flight Center.

The Planetary Missions Program Office at NASA’s Marshall Space Flight Center executes program management of the Europa Clipper mission.

Learn more about Europa.

› Back to Top

NASA Sets Coverage for Astronaut Loral O’Hara, Crewmates Return

Three crew members are scheduled to begin their return to Earth on April 5, from the International Space Station. NASA will provide live coverage of their departure from the orbital complex and landing.

NASA astronaut and Expedition 70 Flight Engineer Loral O’Hara uses a portable glovebag to replace components on a biological printer, the BioFabrication Facility, that is testing the printing of organ-like tissues in microgravity.NASA

NASA astronaut Loral O’Hara, Roscosmos cosmonaut Oleg Novitskiy, and spaceflight participant Marina Vasilevskaya of Belarus will depart from the station’s Rassvet module in the Roscosmos Soyuz MS-24 spacecraft at 10:55 p.m. CDT April 5, and will head for a parachute-assisted landing on the steppe of Kazakhstan, southeast of the town of Dzhezkazgan, at 2:18 a.m. April 6.

Coverage will begin at 7 p.m. on April 5 with farewells and the Soyuz hatch closure on NASA+, NASA Television, the NASA appYouTube, and the agency’s website. Learn how to stream NASA TV through a variety of platforms including social media.

O’Hara is completing a mission spanning 204 days in space that covered 3,264 orbits of the Earth and 86.5 million miles. Novitskiy and Vasilevskaya launched with NASA astronaut Tracy C. Dyson to the station aboard the Soyuz MS-25 spacecraft on March 23. Dyson will remain aboard the station for a six-month research mission.

After landing, the three crew members will fly on a helicopter from the landing site to the recovery staging city of Karaganda, Kazakhstan. O’Hara then will depart back to Houston.

The HOSC (Huntsville Operations Support Center) at NASA’s Marshall Space Flight Center provides engineering and mission operations support for the space station, the Commercial Crew Program, and Artemis missions, as well as science and technology demonstration missions. The Payload Operations Integration Center within the HOSC operates, plans, and coordinates the science experiments onboard the space station 365 days a year, 24 hours a day.

› Back to Top

Categories: NASA

NASA Selects Companies to Advance Moon Mobility for Artemis Missions

NASA - Breaking News - Wed, 04/03/2024 - 4:06pm
An artist’s concept design of NASA’s Lunar Terrain Vehicle.NASA

NASA has selected Intuitive Machines, Lunar Outpost, and Venturi Astrolab to advance capabilities for a lunar terrain vehicle (LTV) that Artemis astronauts will use to travel around the lunar surface, conducting scientific research during the agency’s Artemis campaign at the Moon and preparing for human missions to Mars.

The awards leverage NASA’s expertise in developing and operating rovers to build commercial capabilities that support scientific discovery and long-term human exploration on the Moon. NASA intends to begin using the LTV for crewed operations during Artemis V.

“We look forward to the development of the Artemis generation lunar exploration vehicle to help us advance what we learn at the Moon,” said Vanessa Wyche, director of NASA’s Johnson Space Center in Houston. “This vehicle will greatly increase our astronauts’ ability to explore and conduct science on the lunar surface while also serving as a science platform between crewed missions.”

NASA will acquire the LTV as a service from industry. The indefinite-delivery/indefinite-quantity, milestone-based Lunar Terrain Vehicle Services contract with firm-fixed-price task orders has a combined maximum potential value of $4.6 billion for all awards. 

Artist concept of Lunar Outpost’s Lunar Dawn lunar terrain vehicle.Credit: Lunar Outpost Artist concept of Intuitive Machines’ Moon RACER lunar terrain vehicle.Credit: Intuitive Machines Artist concept of Venturi Astrolab’s FLEX lunar terrain vehicle.Credit: Astrolab

Each provider will begin with a feasibility task order, which will be a year-long special study to develop a system that meets NASA’s requirements through the preliminary design maturity project phase. The agency will issue a subsequent request for task order proposal to eligible provider(s) for a demonstration mission to continue developing the LTV, deliver it to the surface of the Moon, and validate its performance and safety ahead of Artemis V. NASA anticipates making an award to only one provider for the demonstration. NASA will issue additional task orders to provide unpressurized rover capabilities for the agency’s moonwalking and scientific exploration needs through 2039.

The LTV will be able to handle the extreme conditions at the Moon’s South Pole and will feature advanced technologies for power management, autonomous driving, and state of the art communications and navigation systems. Crews will use the LTV to explore, transport scientific equipment, and collect samples of the lunar surface, much farther than they could on foot, enabling increased science returns.

Between Artemis missions, when crews are not on the Moon, the LTV will operate remotely to support NASA’s scientific objectives as needed. Outside those times, the provider will have the ability to use their LTV for commercial lunar surface activities unrelated to NASA missions.

“We will use the LTV to travel to locations we might not otherwise be able to reach on foot, increasing our ability to explore and make new scientific discoveries,” said Jacob Bleacher, chief exploration scientist in the Exploration Systems Development Mission Directorate at NASA Headquarters in Washington. “With the Artemis crewed missions, and during remote operations when there is not a crew on the surface, we are enabling science and discovery on the Moon year around.”

NASA provided technical requirements, capabilities, and safety standards needed for LTV development and operations, and the selected companies have agreed to meet the key agency requirements. The contract request for proposal required each provider to propose a solution to provide end-to-end services, including LTV development, delivery to the Moon, and execution of operations on the lunar surface.

Through Artemis, NASA will send astronauts – including the first woman, first person of color, and its first international partner astronaut – to explore the Moon for scientific discovery, technology evolution, economic benefits, and to build the foundation for crewed missions to Mars. Advanced rovers, along with the agency’s SLS (Space Launch System) rocket and Orion spacecraft, commercial human landing systems and next-generation spacesuits, and Gateway are NASA’s foundation for deep space exploration.

Learn more about NASA’s Artemis campaign at:

https://www.nasa.gov/artemis

-end-

Kathryn Hambleton
Headquarters, Washington
202-358-1100
kathryn.a.hambleton@nasa.gov

Victoria Ugalde / Nilufar Ramji
Johnson Space Center, Houston
281-483-5111
victoria.d.ugalde@nasa.gov / nilufar.ramji@nasa.gov

Share Details Last Updated Apr 03, 2024 LocationNASA Headquarters Related Terms
Categories: NASA

Scientists Pursue the Total Solar Eclipse with NASA Jet Planes

NASA - Breaking News - Wed, 04/03/2024 - 2:30pm

5 min read

Scientists Pursue the Total Solar Eclipse with NASA Jet Planes

The April 8, 2024, total solar eclipse will produce stunning views across North America. While anyone along the eclipse path with a clear sky will see the spectacular event, the best view might be 50,000 feet in the air, aboard NASA’s WB-57 jet planes. That’s where a trio of NASA-funded teams are sending their scientific instruments to take measurements of the eclipse.

Two teams will image the Sun’s outer atmosphere – the corona – and a third will measure the ionosphere, the upper electrically charged layer of Earth’s atmosphere. This information will help scientists better understand the structure and temperature of the corona, the effects of the Sun on Earth’s atmosphere, and even aid in the search of asteroids that may orbit near the Sun.

The April 8, 2024 total solar eclipse will produce stunning views across North America. While anyone along the eclipse path with a clear sky will see the spectacular event, the best view might be 50,000 feet in the air, aboard NASA’s WB-57 jet planes. That’s where a trio of NASA-funded teams are sending their scientific instruments to take measurements of the eclipse. Credit: NASA

During a total solar eclipse, the Moon perfectly blocks the bright face of the Sun, casting a small swath of Earth in darkness. With the Sun’s main light masked, the much dimmer solar corona becomes visible to the naked eye. This provides scientists a unique opportunity to study this mysterious region of the Sun. The brief blocking of sunlight also allows scientists to study how the Sun’s light affects Earth’s atmosphere.

In the past, solar eclipses have driven numerous scientific discoveries. For this solar eclipse, NASA is funding several scientific experiments – including the three using the WB-57s – to make measurements during the eclipse. NASA’s WB-57s fly much higher than commercial aircraft. This altitude allows the jets to fly above clouds – meaning no chance of missing the eclipse due to bad weather. Additionally, the height puts the jets above most of Earth’s atmosphere, which allows for the cameras to take crisper images and capture wavelengths, such as infrared light, that don’t make it to the ground. Since the planes can travel at 460 miles per hour, they’re also able to extend the time they spend in the Moon’s shadow. While the eclipse will last no more than four and a half minutes at any point on the ground, the planes will see an eclipse that lasts about 25 percent longer, over 6 minutes and 22 seconds.

This map shows the path of the 2024 total solar eclipse. The dark path across the continent is the path of totality. By flying along this path, the WB-57s will extend the amount of time they spend in totality.NASA/Scientific Visualization Studio/Michala Garrison; Eclipse Calculations By Ernie Wright, NASA Goddard Space Flight Center

“By extending the duration of totality, we’re increasing the duration of how much data we can acquire,” said Shadia Habbal, a researcher at the University of Hawaii who leads of one of the WB-57 eclipse experiments.

Habbal’s experiment will fly spectrometers – which record specific wavelengths of light and cameras. The instruments will measure the temperature and chemical composition of the corona and coronal mass ejections, which are large bursts of solar material. With this data, scientists aim to better understand the structure of the corona and identify the source of the solar wind, the constant stream of particles emitted by the Sun.

Habbal hopes the results of their study will help differentiate between different competing models of how the corona is heated. “This light is our best probe short of sticking a thermometer in the corona,” Habbal said.

NASA/ESA’s Solar and Heliospheric Observatory (SOHO) captured this video of a coronal mass ejection on March 13, 2023. NASA/ESA/SOHO

For another team, led by Amir Caspi at the Southwest Research Institute in Boulder, Colorado, it’s not their first time chasing eclipses by plane. Caspi led a previous trailblazing experiment with the WB-57s during the 2017 total solar eclipse that crossed America from sea to sea. Images taken from the jet were used to study the structure of the corona.

That time was the first the jets had ever been used to study an eclipse. This time, an improved camera setup will allow measurements in more wavelengths from infrared to visible light that will hopefully reveal new information about structures in the middle and lower corona. The observations, taken with a high-resolution, high-speed camera, could also help study a dust ring that circles the Sun and help search for asteroids that may orbit near the Sun.

“There isn’t a lot of data of the Sun at some of the wavelengths we’ll be studying,” Caspi said.  “We don’t know what we’ll find, so it’s extra exciting to be making these measurements.”

A third experiment will study the effects of the Moon’s shadow on the ionosphere using an instrument called an ionosonde, which was designed at JHU APL. An ionosonde functions like a simple radar. The device sends out high-frequency radio signals and listens for their echoes rebounding off the ionosphere, which allows the researchers to measure how charged the ionosphere is.

“The eclipse basically serves as a controlled experiment,” said Bharat Kunduri, leader of the ionosphere project and a research assistant professor at Virginia Tech in Blacksburg, Virginia. “It gives us an opportunity to understand how changes in solar radiation can impact the ionosphere, which can in turn impact some of these technologies like radar and GPS that we rely on in our daily lives.”

By Mara Johnson-Groh
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Share Details Last Updated Apr 03, 2024 Related Terms Explore More 5 min read That Starry Night Sky? It’s Full of Eclipses Article 1 day ago 4 min read Scientists Use NASA Data to Predict Solar Corona Before Eclipse Article 1 day ago 2 min read Solar Eclipse Resources

A spectacular eclipse will sweep across North America on April 8, 2024! Enjoy these free…

Article 2 days ago
Keep Exploring Discover Related Topics

Missions

Humans in Space

Climate Change

Solar System

Categories: NASA

Carving a Path

NASA - Breaking News - Wed, 04/03/2024 - 2:25pm
NASA/Woody Hoburg

These aren’t highways in this picture taken on Aug. 15, 2023; they’re paths carved by glaciers as they move through the Karakoram mountain range north of the Himalayas.

Crew aboard the International Space Station take photos of Earth, recording how the planet changes over time due to human activity and natural events. This allows scientists to monitor disasters and direct response on the ground and study a number of phenomena, from the movement of glaciers to urban wildlife.

Image Credit: NASA/Woody Hoburg

Categories: NASA

NASA Receives 13 Nominations for the 28th Annual Webby Awards

NASA - Breaking News - Wed, 04/03/2024 - 12:44pm

6 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Since it began in 1958, NASA has been charged by law with spreading the word about its work “to the widest extent practicable.” From typewritten press releases to analog photos and film, NASA has effectively moved into social media and other online communications. NASA’s broad reach across digital platforms has been recognized by the International Academy of Digital Arts and Sciences (IADAS), which gave NASA 13 nominations for the academy’s Webby Awards this year. 

At NASA, we share the secrets of the universe through every platform and media there is. These nominations—for websites, podcasts, social media, apps and virtual experiences—showcase the breadth and depth of the NASA digital team, as they inspire the next generation to reach for the stars.

Marc Etkind

NASA Associate Administrator for Communications

Public Voting Opportunities

Voting for the Webby People’s Voice Awards—chosen by the public—is open now through Thursday, April 18. Voting links for each category are listed below.

28th Annual Webby Nominees Apps

Space Images
NASA, NASA Jet Propulsion Laboratory, Caltech
Apps & Software-General Apps | Education, Science & Reference

The Space Images app provides stunning new images of space, planets, Mars, asteroids, stars, galaxies, and cutting-edge space technology as they are released each week from NASA’s Jet Propulsion Laboratory.

Campaigns

NASA: Message in a Bottle
NASA Jet Propulsion Laboratory
Advertising, Media & PR-PR Campaigns | Best Community Engagement

NASA’s Message in a Bottle campaign invited people around the world to sign their names to a poem written by the U.S. Poet Laureate Ada Limón. The poem connects the two water worlds — Earth, yearning to reach out and understand what makes a world habitable, and Europa, waiting with secrets yet to be explored. The campaign was a special collaboration, uniting art and science, by NASA, the U.S. Poet Laureate, and the Library of Congress.

Podcasts

NASA’s Curious Universe
Podcasts-Shows | Science & Education

As an official NASA podcast, Curious Universe brings you mind-blowing science and space adventures you won’t find anywhere else. Explore the cosmos alongside astronauts, scientists, engineers, and other top NASA experts who are achieving remarkable feats in science, space exploration, and aeronautics. Learn something new about the wild and wonderful universe we share. All you need to get started is a little curiosity. NASA’s Curious Universe is an official NASA podcast hosted by Padi Boyd and Jacob Pinter.

NASA’s Curious Universe: Suiting Up for Space
Podcasts-Individual Episodes | Science & Education

Spacesuits are more than just garments – in the airless vacuum of space or on the freezing surface of the moon, they keep astronauts alive. In this episode of NASA’s Curious Universe podcast, we explore how NASA engineers like Amy Ross and Paromita Mitra contributed to the development of the next generation of spacesuits.

Social

Hubble’s Servicing Mission 1
Social-Social Content Series | Education & Science

Shortly after its 1990 deployment, NASA discovered a flaw in the observatory’s primary mirror that affected the clarity of the telescope’s early images. Fortunately, Hubble’s design allowed astronauts to perform repairs, replace parts, and update its technology with new instruments while in orbit. Servicing Mission 1 was the first opportunity to install corrective optics that counteracted the primary mirror’s flaw, add new instruments, and conduct planned maintenance on the telescope.

NASA Social Media
Social-Features | Best Overall Social Presence, Brand

NASA’s flagship social media accounts host dynamic conversations about what’s new with America’s space agency, and why it matters. Spanning 15 social media platforms, these accounts reach more than 200 million people around the world.

NASA’s First Asteroid Sample Return Mission
Social-Social Campaigns | Education & Science

Science fiction became reality on Sept. 24, 2023 when NASA’s OSIRIS-REx spacecraft delivered rocks older than our own planet to the Utah desert, rocks that contain clues to the early solar system and the origins of life. The accompanying social media campaign and in-person, behind-the-scenes NASA Social event gave the public an inside look into NASA’s first mission to deliver an asteroid sample to Earth.

Annular Solar Eclipse
NASA, ADNET Systems Inc.
Social-Social Campaigns | Events & Live Streams

On Oct. 14, 2023, audiences across the web joined us live as a “ring of fire” eclipse. Visible in parts of the United States, Mexico, and many countries in South and Central America, millions of people in the Western Hemisphere experienced this eclipse.

Video

OSIRIS-REx Asteroid Sample Return (Official 4K NASA Live Stream)
Video-General Video | Events & Live Streams

Live coverage of OSIRIS-REx, the first U.S. mission to collect a sample from an asteroid, as it returned to Earth on Sept. 24, 2023, to drop off material from asteroid Bennu. The spacecraft didn’t land, but continued on to a new mission, OSIRIS-APEX, to explore asteroid Apophis. Meanwhile, scientists hope the Bennu sample OSIRIS-REx dropped into the Utah desert will offer clues to whether asteroids colliding with Earth billions of years ago brought water and other key ingredients for life here.

Virtual Experiences

NASA’s Immersive Earth
Artificial Intelligence (AI), Metaverse & Virtual-General Virtual Experiences | Science & Education

NASA created the Earth Information Center with founding partners FEMA, EPA, NOAA, USAID, USDA and USGS. The Earth Information Center draws data from research conducted by NASA’s centers and government and industry partners. The interactive physical exhibit is located inside NASA Headquarters in Washington, where visitors are invited to see how our planet is changing in six key areas: sea level rise and coastal impacts, health and air quality, wildfires, greenhouse gases, sustainable energy, and agriculture.

Websites

NASA.gov
Websites and Mobile Sites-General Desktop & Mobile Sites | Government & Associations

The new NASA web experience serves as an ever-expanding yet consolidated homebase for information about the agency’s missions and research, climate data, Artemis updates, and more. The updated nasa.gov and science.nasa.gov websites provide a connected, topic-driven experience, with a common search engine, integrated navigation, and optimized publishing capabilities in a modernized and secure set of web tools.

NASA+ Streaming Service
Websites and Mobile Sites-General Desktop & Mobile Sites | Television, Film & Streaming

Through the ad-free, no cost, and family-friendly streaming service, users gain access to the agency’s Emmy Award-winning live coverage and views into NASA’s missions through collections of original video series, including new series debuting on the streaming service. NASA+ also streams live event coverage, where people everywhere can watch in real-time as the agency launches science experiments and astronauts to space, and ultimately, the first woman and person of color to the Moon.

Hubble’s Inside the Image
NASA, Origin Films
Video-Video Series & Channels | Science & Education

In this ongoing series, astronomers explain the history and high-level science behind some of Hubble’s most beautiful, groundbreaking, and iconic images.

About the Webby Awards

Established in 1996, The Webbys is presented by the International Academy of Digital Arts and Sciences (IADAS)—a 3000+ member judging body comprised of leading Internet experts, business figures, luminaries, visionaries and creative celebrities. The Webbys honors excellence in nine major media types: websites and mobile sites, video, advertising, media and public relations, apps and software, social, podcasts, games and Metaverse, virtual and artificial Intelligence (AI).

The Webby Awards presents two honors in every category—The Webby Award and The Webby People’s Voice Award. Members of the International Academy of Digital Arts and Sciences (IADAS) select the nominees for both awards in each category, as well as the Winners of The Webby Awards. The Webby People’s Voice is awarded by the voting public.

Categories: NASA

Rock Sampled by NASA’s Perseverance Embodies Why Rover Came to Mars

NASA - Breaking News - Wed, 04/03/2024 - 11:55am
The 21st rock core captured by NASA’s Perseverance has a composition that would make it good at trapping and preserving signs of microbial life, if any was once present. The sample – shown being taken here – was cored from “Bunsen Peak” on March 11, the 1,088th Martian day, or sol, of the mission.NASA/JPL-Caltech

The 24th sample taken by the six-wheeled scientist offers new clues about Jezero Crater and the lake it may have once held.

Analysis by instruments aboard NASA’s Perseverance Mars rover indicate that the latest rock core taken by the rover was awash in water for an extended period of time in the distant past, perhaps as part of an ancient Martian beach. Collected on March 11, the sample is the rover’s 24th – a tally that includes 21 sample tubes filled with rock cores, two filled with regolith (broken rock and dust), and one with Martian atmosphere.

“To put it simply, this is the kind of rock we had hoped to find when we decided to investigate Jezero Crater,” said Ken Farley, project scientist for Perseverance at Caltech in Pasadena, California. “Nearly all the minerals in the rock we just sampled were made in water; on Earth, water-deposited minerals are often good at trapping and preserving ancient organic material and biosignatures. The rock can even tell us about Mars climate conditions that were present when it was formed.”

The presence of these specific minerals is considered promising for preserving a rich record of an ancient habitable environment on Mars. Such collections of minerals are important for guiding scientists to the most valuable samples for eventual return to Earth with the Mars Sample Return campaign.

Edge of the Crater’s Rim

Nicknamed “Bunsen Peak” for the Yellowstone National Park landmark, the rock – about 5.6 feet wide and 3.3 feet high (1.7 meters by 1 meter) – intrigued Perseverance scientists because the outcrop stands tall amid the surrounding terrain and has an interesting texture on one of its faces. They were also interested in Bunsen Peak’s vertical rockface, which offers a nice cross-section of the rock and, because it’s not flat-lying, is less dusty and therefore easier for science instruments to investigate.

Meet the 24th Martian sample collected by NASA’s Mars Perseverance rover – “Comet Geyser,” a sample taken from a region of Jezero Crater that is especially rich in carbonate, a mineral linked to habitability.

Before taking the sample, Perseverance scanned the rock using the rover’s SuperCam spectrometers and the X-ray spectrometer PIXL, short for Planetary Instrument for X-ray Lithochemistry. Then the rover used the rotor on the end of its robotic arm to grind (or abrade) a portion of the surface and scanned the rock again. The results: Bunsen Peak looks to be composed of about 75% carbonate grains cemented together by almost pure silica.

“The silica and parts of the carbonate appear microcrystalline, which makes them extremely good at trapping and preserving signs of microbial life that might have once lived in this environment,” said Sandra Siljeström, a Perseverance scientist from the Research Institutes of Sweden (RISE) in Stockholm. “That makes this sample great for biosignature studies if returned to Earth. Additionally, the sample might be one of the older cores collected so far by Perseverance, and that is important because Mars was at its most habitable early in its history.” A potential biosignature is a substance or structure that could be evidence of past life but may also have been produced without the presence of life.

The Bunsen Peak sample is the third that Perseverance has collected while exploring the “Margin Unit,” a geologic area that hugs the inner edge of Jezero Crater’s rim.

This mosaic shows a rock called “Bunsen Peak” where NASA’s Perseverance Mars rover extracted its 21st rock core and abraded a circular patch to investigate the rock’s composition.NASA/JPL-Caltech/ASU/MSSS Perseverance’s CacheCam captured this image of the rover’s latest cored sample – taken from an intriguing rock called “Bunsen Peak” – on March 11. NASA/JPL-Caltech

“We’re still exploring the margin and gathering data, but results so far may support our hypothesis that the rocks here formed along the shores of an ancient lake,” said Briony Horgan, a Perseverance scientist from Purdue University, in West Lafayette, Indiana. “The science team is also considering other ideas for the origin of the Margin Unit, as there are other ways to form carbonate and silica. But no matter how this rock formed, it is really exciting to get a sample.”

The rover is working its way toward the westernmost portion of the Margin Unit. At the base of Jezero Crater’s rim, a location nicknamed “Bright Angel” is of interest to the science team because it may offer the first encounter with the much older rocks that make up the crater rim. Once it’s done exploring Bright Angel, Perseverance will begin an ascent of several months to the rim’s top.

More About the Mission

A key objective for Perseverance’s mission on Mars is astrobiology, including caching samples that may contain signs of ancient microbial life. The rover will characterize the planet’s geology and past climate, pave the way for human exploration of the Red Planet, and be the first mission to collect and cache Martian rock and regolith.

Subsequent NASA missions, in cooperation with ESA (European Space Agency), would send spacecraft to Mars to collect these sealed samples from the surface and return them to Earth for in-depth analysis.

The Mars 2020 Perseverance mission is part of NASA’s Moon to Mars exploration approach, which includes Artemis missions to the Moon that will help prepare for human exploration of the Red Planet.

NASA’s Jet Propulsion Laboratory, which is managed for the agency by Caltech, built and manages operations of the Perseverance rover.

For more about Perseverance:

https://mars.nasa.gov/mars2020/

News Media Contacts

DC Agle
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-9011
agle@jpl.nasa.gov

Karen Fox / Charles Blue
NASA Headquarters, Washington
301-286-6284 / 202-802-5345
karen.c.fox@nasa.gov / charles.e.blue@nasa.gov

2024-036

Share Details Last Updated Apr 03, 2024 Related Terms Explore More 6 min read Scientists Pursue the Total Solar Eclipse with NASA Jet Planes

The April 8, 2024, total solar eclipse will produce stunning views across North America. While…

Article 5 hours ago
4 min read How NASA Spotted El Niño Changing the Saltiness of Coastal Waters Article 8 hours ago 4 min read NASA Partnerships Bring 2024 Total Solar Eclipse to Everyone

On Monday, April 8, NASA and its partners will celebrate the wonders of the total…

Article 1 day ago
Categories: NASA

How NASA Spotted El Niño Changing the Saltiness of Coastal Waters

NASA - Breaking News - Wed, 04/03/2024 - 11:20am
Rivers can flush rainwater over hundreds of miles to the sea, changing the makeup of coastal waters in ways that scientists are still discovering. In this satellite image from December 2023, a large, sediment-rich plume from the Mississippi River spreads down the Gulf Coast of Louisiana and Texas following winter rains.NASA/OB.DAAC

New findings have revealed a coastal realm highly sensitive to changes in runoff and rainfall on land.

After helping stoke record heat in 2023 and drenching major swaths of the United States this winter, the current El Niño is losing steam this spring. Scientists have observed another way that the climate phenomenon can leave its mark on the planet: altering the chemistry of coastal waters.

A team at NASA’s Jet Propulsion Laboratory in Southern California used satellite observations to track the dissolved salt content, or salinity, of the global ocean surface for a decade, from 2011 to 2022. At the sea surface, salinity patterns can tell us a lot about how freshwater falls, flows, and evaporates between the land, ocean, and atmosphere – a process known as the water cycle.

The JPL team showed that year-to-year-variations in salinity near coastlines strongly correlate with El Niño Southern Oscillation (ENSO), the collective term for El Niño and its counterpart, La Niña. ENSO affects weather around the world in contrasting ways. El Niño, linked to warmer-than-average ocean temperatures in the equatorial Pacific, can lead to more rain and snowfall than normal in the southwestern U.S., as well as drought in Indonesia. These patterns are somewhat reversed during La Niña.

During the exceptional El Niño event of 2015, for example, the scientists traced a particularly distinct global water cycle effect: Less precipitation over land led to a decrease in river discharge on average, which in turn led to notably higher salinity levels in areas as far as 125 miles (200 kilometers) from shore.

Instruments in space can track how salinity varies by region and season. Using NASA satellite data, this map shows how monsoon rains and freshwater flowing into the Bay of Bengal keep it far less salty than the Arabian Sea to the west. (Areas of low and high salinity are shown in blue and yellow, respectively.)NASA’s Scientific Visualization Studio The Amazon River delivers millions of gallons of water to the ocean every second – enough to change global average surface salinity. A plume of low salinity water is shown here in dark blue, drifting away from the river mouth on ocean currents. The blue blob to the northwest is the Orinoco River plume.NASA’s Scientific Visualization Studio

At other times, the opposite was found: Areas with higher-than-normal rainfall over land saw increased river discharge, reducing salinity near those coasts.

“We’re able to show coastal salinity responding to ENSO on a global scale,” said lead author Severine Fournier, an ocean physicist at JPL.

The team found that salinity is at least 30 times more variable in these dynamic zones near coasts than in the open ocean. The link between rain, rivers, and salt is especially pronounced at the mouths of large river systems such as the Mississippi and Amazon, where freshwater plumes can be mapped from space as they gush into the ocean.

Salt as Signal

With global warming, researchers have been observing changes in the water cycle, including increases in extreme precipitation events and runoff. At the intersection of land and sea, coastal waters may be where the impacts are most detectable.

“Given the sensitivity to rainfall and runoff, coastal salinity could serve as a kind of bellwether, indicating other changes unfolding in the water cycle,” Fournier said.

She noted that some of the world’s coastal waters are not well studied, despite the fact that about 40% of the human population lives within about 60 miles (100 kilometers) of a coastline. One reason is that river gauges and other on-sitemonitors can be costly to maintain and cannot provide coverage of the whole planet, especially in more remote regions.

That’s where satellite instruments come in. Launched in 2011, the Aquarius mission made some of the first space-based global observations of sea surface salinity using extremely sensitive radiometers to detect subtle changes in the ocean’s microwave radiation emissions. Aquarius was a collaboration between NASA and Argentina’s space agency, CONAE (Comisión Nacional de Actividades Espaciales).

Today, two higher-resolution tools – the ESA (European Space Agency) Soil Moisture and Ocean Salinity (SMOS) mission and NASA’s Soil Moisture Active Passive (SMAP) mission – allow scientists to zoom to within 25 miles (40 kilometers) of coastlines.

Using data from all three missions, the researchers found that surface salinity in coastal waters reached a maximum global average (34.50 practical salinity units, or PSU) each March and fell to a minimum global average (34.34 PSU) around September. (PSU is roughly equal to parts per thousand grams of water.) River discharge, especially from the Amazon, drives this timing.

In the open ocean, the cycle is different, with surface salinity reaching a global average minimum (34.95 PSU) from February to April and a global average maximum (34.97 PSU) from July to October. The open ocean does not show as much variability between seasons or years because it contains a significantly larger volume of water and is less sensitive to river discharge and ENSO. Instead, changes are governed by planet-scale precipitation minus total global evaporation, plus other factors like large-scale ocean circulation.

The study was published in the journal Geophysical Research Letters.

NASA Analysis Sees Spike in 2023 Global Sea Level Due to El Niño NASA Analysis Finds Strong El Niño Could Bring Extra Floods This Winter News Media Contacts

Jane J. Lee / Andrew Wang
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-0307 / 626-379-6874
jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov

Written by Sally Younger

2024-035

Share Details Last Updated Apr 03, 2024 Related Terms Explore More 5 min read Rock Sampled by NASA’s Perseverance Embodies Why Rover Came to Mars Article 8 hours ago 9 min read Veronica T. Pinnick Put NASA’s PACE Mission through Its Paces Article 1 day ago 5 min read NASA’s Europa Clipper Survives and Thrives in ‘Outer Space’ on Earth Article 1 week ago
Categories: NASA

NASA Invites Media to Annual FIRST Robotics Competition in Rocket City

NASA - Breaking News - Wed, 04/03/2024 - 11:07am

2 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) Students from the Power Struck Girls Team 5965 – an all-girls FIRST Robotics team from the Academy of Our Lady high school in Marrero, Louisiana, and sponsored by NASA’s Stennis Space Center – make final engineering adjustments to their robot during the 2023 Rocket City Regional FIRST Robotics tournaments in Huntsville.NASA/Joel Wallace

The Rocket City Regional – Alabama’s annual For Inspiration and Recognition of Science and Technology (FIRST) Robotics Competition – is scheduled for Friday, April 5, through Saturday, April 6, at the Von Braun Center South Hall in Huntsville, Alabama, known as the Rocket City. This event is free for the public.

FIRST Robotics is a global robotics competition for students in grades 9-12. Teams are challenged to raise funds, design a team brand, hone teamwork skills, and build and program industrial-sized robots to play a difficult field game against competitors.

More than 1,000 high school students on 47 teams from 10 states and 4 countries will compete in a new robotics game called, “CRESCENDO.”

Opening ceremonies begin at 8:30 a.m. CDT followed by qualification matches on April 5 and April 6. The Friday awards ceremony will begin at 6 p.m., while the Saturday awards ceremony will begin at 2:30 p.m.

District and regional competitions – such as the Rocket City Regional – are held across the country during March and April, providing teams a chance to qualify for the 2024 FIRST Robotics Competition Championship events held in late April in Houston.

NASA and its Robotics Alliance Project provide grants for high school teams and support for FIRST Robotics competitions to address the critical national shortage of students pursuing STEM (Science, Technology, Engineering, and Mathematics) careers. This FIRST Robotics Competition, The Rocket City Regional, is supported by NASA’s Marshall Space Flight Center in Huntsville, Alabama, and NASA’s Office of STEM Engagement.

News media interested in covering this event should respond no later than 4 p.m. on Thursday, April 4 by contacting Taylor Goodwin at 256-544-0034 or taylor.goodwin@nasa.gov.

Learn more about the Rocket City Regional event.

Find more information about Marshall’s support for education programs:

https://www.nasa.gov/marshall/marshall-stem-engagement/

Taylor Goodwin
256-544-0034
Marshall Space Flight Center, Huntsville, Alabama
taylor.goodwin@nasa.gov

Share Details Last Updated Apr 03, 2024 EditorBeth RidgewayLocationMarshall Space Flight Center Related Terms Explore More 23 min read The Marshall Star for April 3, 2024 Article 3 hours ago 4 min read NASA Partnerships Bring 2024 Total Solar Eclipse to Everyone

On Monday, April 8, NASA and its partners will celebrate the wonders of the total…

Article 1 day ago
4 min read NASA Names Finalists to Help Deal with Dust in Human Lander Challenge Article 5 days ago Keep Exploring Discover Related Topics

Missions

Humans in Space

Climate Change

Solar System

Categories: NASA

NASA’s Webb Probes an Extreme Starburst Galaxy

NASA - Breaking News - Wed, 04/03/2024 - 10:00am
6 Min Read NASA’s Webb Probes an Extreme Starburst Galaxy The starburst galaxy M82 as observed by NASA’s Hubble Space Telescope and NASA’s James Webb Space Telescope. Credits: NASA, ESA, CSA, STScI, A. Bolatto (University of Maryland)

Amid a site teeming with new and young stars lies an intricate substructure.

A team of astronomers has used NASA’s James Webb Space Telescope to survey the starburst galaxy Messier 82 (M82). Located 12 million light-years away in the constellation Ursa Major, this galaxy is relatively compact in size but hosts a frenzy of star formation activity. For comparison, M82 is sprouting new stars 10 times faster than the Milky Way galaxy.

Led by Alberto Bolatto at the University of Maryland, College Park, the team directed Webb’s NIRCam (Near-Infrared Camera) instrument toward the starburst galaxy’s center, attaining a closer look at the physical conditions that foster the formation of new stars.

“M82 has garnered a variety of observations over the years because it can be considered as the prototypical starburst galaxy,” said Bolatto, lead author of the study. “Both NASA’s Spitzer and Hubble space telescopes have observed this target. With Webb’s size and resolution, we can look at this star-forming galaxy and see all of this beautiful, new detail.”

Image: M82 observed by the Hubble and Webb Telescopes On the left is the starburst galaxy M82 as observed by NASA’s Hubble Space Telescope in 2006. The small box at the galaxy’s core corresponds to the area captured so far by the NIRCam (Near-Infrared Camera) instrument on NASA’s James Webb Space Telescope. The red filaments as seen by Webb are the polycyclic aromatic hydrocarbon emission, which traces the shape of the galactic wind. In the Hubble image, light at .814 microns is colored red, .658 microns is red-orange, .555 microns is green, and .435 microns is blue (filters F814W, F658N, F555W, and F435W, respectively). In the Webb image, light at 3.35 microns is colored red, 2.50 microns is green, and 1.64 microns is blue (filters F335M, F250M, and F164N, respectively). NASA, ESA, CSA, STScI, A. Bolatto (University of Maryland) A Vibrant Community of Stars

Star formation continues to maintain a sense of mystery because it is shrouded by curtains of dust and gas, creating an obstacle in observing this process. Fortunately, Webb’s ability to peer in the infrared is an asset in navigating these murky conditions. Additionally, these NIRCam images of the very center of the starburst were obtained using an instrument mode that prevented the very bright source from overwhelming the detector.

While dark brown tendrils of heavy dust are threaded throughout M82’s glowing white core even in this infrared view, Webb’s NIRCam has revealed a level of detail that has historically been obscured. Looking closer toward the center, small specks depicted in green denote concentrated areas of iron, most of which are supernova remnants. Small patches that appear red signify regions where molecular hydrogen is being lit up by a nearby young star’s radiation.

“This image shows the power of Webb,” said Rebecca Levy, second author of the study at the University of Arizona, Tucson. “Every single white dot in this image is either a star or a star cluster. We can start to distinguish all of these tiny point sources, which enables us to acquire an accurate count of all the star clusters in this galaxy.”

Finding Structure in Lively Conditions

Looking at M82 in slightly longer infrared wavelengths, clumpy tendrils represented in red can be seen extending above and below the galaxy’s plane. These gaseous streamers are a galactic wind rushing out from the core of the starburst.

One area of focus for this research team was understanding how this galactic wind, which is caused by the rapid rate of star formation and subsequent supernovae, is being launched and influencing its surrounding environment. By resolving a central section of M82, scientists could examine where the wind originates, and gain insight on how hot and cold components interact within the wind.

Webb’s NIRCam instrument was well-suited to trace the structure of the galactic wind via emission from sooty chemical molecules known as polycyclic aromatic hydrocarbons (PAHs). PAHs can be considered as very small dust grains that survive in cooler temperatures but are destroyed in hot conditions.

Much to the team’s surprise, Webb’s view of the PAH emission highlights the galactic wind’s fine structure – an aspect previously unknown. Depicted as red filaments, the emission extends away from the central region where the heart of star formation is located. Another unanticipated find was the similar structure between the PAH emission and that of hot, ionized gas.

“It was unexpected to see the PAH emission resemble ionized gas,” said Bolatto. “PAHs are not supposed to live very long when exposed to such a strong radiation field, so perhaps they are being replenished all the time. It challenges our theories and shows us that further investigation is required.”

Video: Tour of the M82 Image Credit: NASA’s Goddard Space Flight Center  Lighting a Path Forward

Webb’s observations of M82 in near-infrared light spur further questions about star formation, some of which the team hopes to answer with additional data gathered with Webb, including that of another starburst galaxy. Two other papers from this team characterizing the stellar clusters and correlations among wind components of M82 are almost finalized.

In the near future, the team will have spectroscopic observations of M82 from Webb ready for their analysis, as well as complementary large-scale images of the galaxy and wind. Spectral data will help astronomers determine accurate ages for the star clusters and provide a sense of timing for how long each phase of star formation lasts in a starburst galaxy environment. On a broader scale, inspecting the activity in galaxies like M82 can deepen astronomers’ understanding of the early universe.

“Webb’s observation of M82, a target closer to us, is a reminder that the telescope excels at studying galaxies at all distances,” said Bolatto. “In addition to looking at young, high-redshift galaxies, we can look at targets closer to home to gather insight into the processes that are happening here – events that also occurred in the early universe.”

These findings have been accepted for publication in The Astrophysical Journal.The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency.

Downloads

Right click the images in this article to open a larger version in a new tab/window.
Download full resolution images for this article from the Space Telescope Science Institute.
These findings have been accepted for publication in The Astrophysical Journal.

Media Contacts

Laura Betzlaura.e.betz@nasa.gov, Rob Gutrorob.gutro@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Christine Pulliamcpulliam@stsci.edu
Space Telescope Science Institute, Baltimore, Md.

Related Information

More about starburst galaxy M82

Galaxies Overview

Star Formation

More Webb News – https://science.nasa.gov/mission/webb/latestnews/

More Webb Images – https://science.nasa.gov/mission/webb/multimedia/images/

Webb Mission Page – https://science.nasa.gov/mission/webb/

Related For Kids

What Is a Galaxy?

What is the Webb Telescope?

SpacePlace for Kids

En Español

Ciencia de la NASA

NASA en español 

Space Place para niños

Keep Exploring Related Topics James Webb Space Telescope

Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…

Galaxies

Stars

Universe

Share Details Last Updated Apr 03, 2024 EditorStephen SabiaContactLaura Betzlaura.e.betz@nasa.gov Related Terms

Categories: NASA

Millions of Stars in Omega Centauri

APOD - Wed, 04/03/2024 - 4:00am

Globular star cluster


Categories: Astronomy, NASA

NASA Announces Summer 2023 Hottest on Record

Earth News - Thu, 09/14/2023 - 4:05pm
The summer of 2023 was Earth’s hottest since global records began in 1880, according to scientists at NASA’s Goddard Institute of Space Studies (GISS) in New York.
Categories: NASA

NASA: El verano de 2023 es el más caluroso en el registro

Earth News - Thu, 09/14/2023 - 12:03pm
El verano boreal de 2023 fue el más caluroso para la Tierra desde que se establecieron registros mundiales de temperaturas en 1880, según un análisis realizado por científicos del Instituto Goddard de Estudios Espaciales (GISS, por sus siglas en inglés) de la NASA en Nueva York.
Categories: NASA