Feed aggregator
AI can influence voters' minds. What does that mean for democracy?
Why is AI making computers and games consoles more expensive?
NASA’s Nancy Grace Roman Space Telescope Completed
Two technicians look up at NASA’s Nancy Grace Roman Space Telescope after its inner and outer segments were connected at the agency’s Goddard Space Flight Center in Greenbelt, Maryland on Nov. 25, 2025. This marked the end of Roman’s construction. After final testing, the telescope will move to the launch site at NASA’s Kennedy Space Center in Florida for launch preparations in summer 2026. Roman — named after Dr. Nancy Grace Roman, NASA’s first chief astronomer — is slated to launch by May 2027, but the team is on track for launch as early as fall 2026.
See more photos of the completed observatory.
Image credit: NASA/Jolearra Tshiteya
NASA Sets Coverage for Astronaut Jonny Kim, Crewmates Return
NASA astronaut Jonny Kim, accompanied by Roscosmos cosmonauts Sergey Ryzhikov and Alexey Zubritsky, is preparing to depart the International Space Station aboard the Soyuz MS-27 spacecraft and return to Earth.
Kim, Ryzhikov, and Zubritsky will undock from the station’s Prichal module at 8:41 p.m. EST on Monday, Dec. 8, headed for a parachute-assisted landing at 12:04 a.m. on Tuesday, Dec. 9 (10:04 a.m. local time in Kazakhstan), on the steppe of Kazakhstan, southeast of the city of Dzhezkazgan.
Watch NASA’s live coverage of the crew’s return on NASA+, Amazon Prime, and the agency’s YouTube channel. Learn how to stream NASA content through a variety of online platforms, including social media.
The space station change of command ceremony will begin at 10:30 a.m. Sunday, Dec. 7, on NASA+ and the agency’s YouTube channel. Rzyhikov will hand over station command to NASA astronaut Mike Fincke for Expedition 74, which begins at the time of Soyuz MS-27 undocking.
Kim and his crewmates are completing a 245-day mission aboard the station. At the conclusion of their mission, they will have orbited Earth 3,920 times and traveled nearly 104 million miles. This was the first flight for Kim and Zubritsky to the orbiting laboratory, while Ryzhikov is ending his third trip to space.
After landing, the three crew members will fly by helicopter to Karaganda, Kazakhstan, where recovery teams are based. Kim will board a NASA aircraft and return to Houston, while Ryzhikov and Zubritsky will depart for their training base in Star City, Russia.
NASA’s coverage is as follows (all times Eastern and subject to change based on real-time operations):
Sunday, Dec. 7:
10:30 a.m. – Expedition 73/74 change of command ceremony begins on NASA+ Amazon Prime, and YouTube.
Monday, Dec. 8:
4:45 p.m. – Farewells and hatch closing coverage begins on NASA+, Amazon Prime, and YouTube.
5:10 p.m. – Hatch closing
8:15 p.m. – Undocking coverage beings on NASA+, Amazon Prime, and YouTube.
8:41 p.m. – Undocking
10:30 p.m. – Deorbit and landing coverage begins on NASA+, Amazon Prime, and YouTube.
11:10 p.m. – Deorbit burn
Tuesday, Dec. 9:
12:04 a.m. – Landing
For more than 25 years, people have lived and worked continuously aboard the International Space Station, advancing scientific knowledge and making research breakthroughs that are not possible on Earth. The station is a critical testbed for NASA to understand and overcome the challenges of long-duration spaceflight and to expand commercial opportunities in low Earth orbit. As commercial companies concentrate on providing human space transportation services and destinations as part of a robust low Earth orbit economy, NASA is focusing its resources on deep space missions to the Moon as part of the Artemis campaign in preparation for future human missions to Mars.
Learn more about International Space Station research and operations at:
-end-
Josh Finch / Jimi Russell
Headquarters, Washington
202-358-1100
joshua.a.finch@nasa.gov / james.j.russell@nasa.gov
Sandra Jones / Joseph Zakrzewski
Johnson Space Center, Houston
281-483-5111
sandra.p.jones@nasa.gov / joseph.a.zakrzewski@nasa.gov
Volcano eruption may have led to the Black Death coming to Europe
NASA Completes Nancy Grace Roman Space Telescope Construction
NASA’s next big eye on the cosmos is now fully assembled. On Nov. 25, technicians joined the inner and outer portions of the Nancy Grace Roman Space Telescope in the largest clean room at the agency’s Goddard Space Flight Center in Greenbelt, Maryland.
NASA’s Nancy Grace Roman Space Telescope is now fully assembled following the integration of its two major segments on Nov. 25 at the agency’s Goddard Space Flight Center in Greenbelt, Md. The mission is slated to launch by May 2027, but the team is on track for launch as early as fall 2026.Credit: NASA/Jolearra Tshiteya“Completing the Roman observatory brings us to a defining moment for the agency,” said NASA Associate Administrator Amit Kshatriya. “Transformative science depends on disciplined engineering, and this team has delivered—piece by piece, test by test—an observatory that will expand our understanding of the universe. As Roman moves into its final stage of testing following integration, we are focused on executing with precision and preparing for a successful launch on behalf of the global scientific community.”
After final testing, Roman will move to the launch site at NASA’s Kennedy Space Center in Florida for launch preparations in summer 2026. Roman is slated to launch by May 2027, but the team is on track for launch as early as fall 2026. A SpaceX Falcon Heavy rocket will send the observatory to its final destination a million miles from Earth.
“With Roman’s construction complete, we are poised at the brink of unfathomable scientific discovery,” said Julie McEnery, Roman’s senior project scientist at NASA Goddard. “In the mission’s first five years, it’s expected to unveil more than 100,000 distant worlds, hundreds of millions of stars, and billions of galaxies. We stand to learn a tremendous amount of new information about the universe very rapidly after Roman launches.”
NASA’s Nancy Grace Roman Space Telescope will survey vast swaths of sky during its five-year primary mission. During that time, scientists expect it to see an incredible number of new objects, including stars, galaxies, black holes and planets outside our solar system, known as exoplanets. This infographic previews some of the discoveries scientists anticipate from Roman’s data deluge. Credit: NASA’s Goddard Space Flight CenterObserving from space will make Roman very sensitive to infrared light — light with a longer wavelength than our eyes can see — from far across the cosmos. Pairing its crisp infrared vision with a sweeping view of space will allow astronomers to explore myriad cosmic topics, from dark matter and dark energy to distant worlds and solitary black holes, and conduct research that would take hundreds of years using other telescopes.
“Within our lifetimes, a great mystery has arisen about the cosmos: why the expansion of the universe seems to be accelerating. There is something fundamental about space and time we don’t yet understand, and Roman was built to discover what it is,” said Nicky Fox, associate administrator, Science Mission Directorate, NASA Headquarters in Washington. “With Roman now standing as a complete observatory, which keeps the mission on track for a potentially early launch, we are a major step closer to understanding the universe as never before. I couldn’t be prouder of the teams that have gotten us to this point.”
Double vision
Roman is equipped with two instruments: the Wide Field Instrument and the Coronagraph Instrument technology demonstration.
The coronagraph will demonstrate new technologies for directly imaging planets around other stars. It will block the glare from distant stars and make it easier for scientists to see the faint light from planets in orbit around them. The Coronagraph aims to photograph worlds and dusty disks around nearby stars in visible light to help us see giant worlds that are older, colder, and in closer orbits than the hot, young super-Jupiters direct imaging has mainly revealed so far.
“The question of ‘Are we alone?’ is a big one, and it’s an equally big task to build tools that can help us answer it,” said Feng Zhao, the Roman Coronagraph Instrument manager at NASA’s Jet Propulsion Laboratory in Southern California. “The Roman Coronagraph is going to bring us one step closer to that goal. It’s incredible that we have the opportunity to test this hardware in space on such a powerful observatory as Roman.”
The coronagraph team will conduct a series of pre-planned observations for three months spread across the mission’s first year-and-a-half of operations, after which the mission may conduct additional observations based on scientific community input.
The Wide Field Instrument is a 288-megapixel camera that will unveil the cosmos all the way from our solar system to near the edge of the observable universe. Using this instrument, each Roman image will capture a patch of the sky bigger than the apparent size of a full moon. The mission will gather data hundreds of times faster than NASA’s Hubble Space Telescope, adding up to 20,000 terabytes (20 petabytes) over the course of its five-year primary mission.
“The sheer volume of the data Roman will return is mind-boggling and key to a host of exciting investigations,” said Dominic Benford, Roman’s program scientist at NASA Headquarters.
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
Over the course of several hours, technicians meticulously connected the inner and outer segments of NASA’s Nancy Grace Roman Space Telescope, as shown in this time-lapse. Next, Roman will undergo final testing prior to moving to the launch site at NASA’s Kennedy Space Center in Florida for launch preparations in summer 2026.Credit: NASA/Sophia RobertsSurvey trifecta
Using the Wide Field Instrument, Roman will conduct three core surveys which will account for 75% of the primary mission. The High-Latitude Wide-Area Survey will combine the powers of imaging and spectroscopy to unveil more than a billion galaxies strewn across a wide swath of space and time. Astronomers will trace the evolution of the universe to probe dark matter — invisible matter detectable only by how its gravity affects things we can see — and trace the formation of galaxies and galaxy clusters over time.
The High-Latitude Time-Domain Survey will probe our dynamic universe by observing the same region of the cosmos repeatedly. Stitching these observations together to create movies will allow scientists to study how celestial objects and phenomena change over time periods of days to years. That will help astronomers study dark energy — the mysterious cosmic pressure thought to accelerate the universe’s expansion — and could even uncover entirely new phenomena that we don’t yet know to look for.
Roman’s Galactic Bulge Time-Domain Survey will look inward to provide one of the deepest views ever of the heart of our Milky Way galaxy. Astronomers will watch hundreds of millions of stars in search of microlensing signals — gravitational boosts of a background star’s light caused by the gravity of an intervening object. While astronomers have mainly discovered star-hugging worlds, Roman’s microlensing observations can find planets in the habitable zone of their star and farther out, including worlds like every planet in our solar system except Mercury. Microlensing will also reveal rogue planets—worlds that roam the galaxy untethered to a star — and isolated black holes. The same dataset will reveal 100,000 worlds that transit, or pass in front of, their host stars.
The remaining 25% of Roman’s five-year primary mission will be dedicated to other observations that will be determined with input from the broader scientific community. The first such program, called the Galactic Plane Survey, has already been selected.
Because Roman’s observations will enable such a wide range of science, the mission will have a General Investigator Program designed to support astronomers to reveal scientific discoveries using Roman data. As part of NASA’s commitment to Gold Standard Science, NASA will make all of Roman’s data publicly available with no exclusive use period. This ensures multiple scientists and teams can use data at the same time, which is important since every Roman observation will address a wealth of science cases.
NASA’s freshly assembled Nancy Grace Roman Space Telescope will revolutionize our understanding of the universe with its deep, crisp, sweeping infrared views of space. The mission will transform virtually every branch of astronomy and bring us closer to understanding the mysteries of dark energy, dark matter, and how common planets like Earth are throughout our galaxy. Roman is on track for launch by May 2027, with teams working toward a launch as early as fall 2026. Credit: NASA’s Goddard Space Flight CenterRoman’s namesake — Dr. Nancy Grace Roman, NASA’s first chief astronomer — made it her personal mission to make cosmic vistas readily accessible to all by paving the way for telescopes based in space.
“The mission will acquire enormous quantities of astronomical imagery that will permit scientists to make groundbreaking discoveries for decades to come, honoring Dr. Roman’s legacy in promoting scientific tools for the broader community,” said Jackie Townsend, Roman’s deputy project manager at NASA Goddard. “I like to think Dr. Roman would be extremely proud of her namesake telescope and thrilled to see what mysteries it will uncover in the coming years.”
The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory in Southern California; Caltech/IPAC in Pasadena, California; the Space Telescope Science Institute in Baltimore; and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems Inc. in Boulder, Colorado; L3Harris Technologies in Rochester, New York; and Teledyne Scientific & Imaging in Thousand Oaks, California.
To learn about the Roman Space Telescope, visit:
By Ashley Balzer
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Media contact:
Claire Andreoli
NASA’s Goddard Space Flight Center, Greenbelt, Md.
301-286-1940
NASA Software Raises Bar for Aircraft Icing Research
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater) Researchers at NASA’s Glenn Research Center in Cleveland used the Glenn Icing Computational Environment (GlennICE) software to create 3D computational models of this advanced air mobility rotor and study propeller icing issues. The physical model of this rotor was installed and tested in the Icing Research Tunnel in 2023 as part of an icing evaluation study, which also sought to validate the computational models. Credit: NASA/Jordan CochranWhen flying in certain weather conditions, tiny freezing water droplets floating in the air can pose a risk to aircraft. If not taken into consideration, these water droplets can accumulate on an aircraft as ice and pose a safety risk.
But NASA software tools such as Glenn Icing Computational Environment (GlennICE) are working to keep passengers and pilots safe.
NASA developed GlennICE, a new NASA software code, to transform the way we explore, understand, and prevent ice buildup on aircraft wings and engines, as well as control surfaces like rudders and elevators.
Owing to decades of world-class NASA research, engineers nationwide can now use GlennICE to design aircraft in such a way that ice buildup will either occur rarely or pose very little risk.
Named for NASA’s Glenn Research Center in Cleveland, GlennICE is part of NASA’s work to provide the aviation industry with computational tools, including design software, to improve aircraft safety and enable innovation. For icing research and modeling, NASA computer codes have become the industry standard over the past several decades. And GlennICE builds on this work, performing highly advanced digital modeling of water and ice particles in just about any atmospheric condition you can imagine.
With updated capabilities and a streamlined user experience, GlennICE will enable users to advance the state of the art – particularly researchers working on complex, unusual future aircraft designs.
“The legacy codes are well formulated to handle simulations of traditional tube-and-wing shaped aircraft,” said Christopher Porter, lead for GlennICE’s development. “But now, we have new vehicles with new designs that present icing research challenges. This requires a more advanced tool, and that’s where GlennICE comes in.”
So far, dozens of industry partners as well as other government agencies have started using GlennICE, which is available on NASA’s software catalog.
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
Timelapse video of an ice accretion on the 65% common research model. Credit: NASA/Jordan Cochran Ice buildup: not coolThough based on legacy NASA codes such as LEWICE 3D, GlennICE is a whole different ballgame. The new toolkit can be tailored to unique situations and is compatible with other software tools. In other words, it is more configurable, and much less time consuming for researchers to set up and use.
This streamlined process, along with its more-advanced ability to model icing, allows GlennICE to easily tackle 21st-century concepts such as supersonic planes, advanced air mobility drones and other aircraft, unconventionally shaped wings, open-rotor turbofan designs, or new configurations for conventional aircraft such as radar domes.
But how does this simulation process work?
“Imagine an aircraft flying through a cloud,” Porter said. “Some of those water and ice droplets hit the aircraft and some of them don’t. GlennICE simulates these droplets and exactly where they will end up, both on the aircraft and not.”
When these water droplets hit the aircraft, they attach, freeze, and start to gather even more droplets that do the same. The software simulates exactly where this will occur, and what shape the ice will take over time.
“We’re not just dealing with the airplane, but the physics of the air and water as well,” Porter said.
Because it’s designed for simulating droplets, researchers have expressed interest in using GlennICE to simulate other conditions involving sand and ash. These substances, when ingested by aircraft engines, can pose separate risks that aeronautical engineers work to prevent.
Glenn Icing Computational Environment (GlennICE) simulated ice accretions (blue) on the High Lift Common Research Model (gray). Credit: NASA/Thomas Ozoroski World-class researchIcing research is fundamental to aviation safety, and NASA fulfils a key role in ensuring pilots and passengers fly more safely and ice-free. The agency’s wind tunnels, for instance, have world-class icing research capabilities not commonly found in aeronautics research.
Paired with wind tunnel testing, GlennICE offers a holistic set of capabilities to researchers. While wind tunnels can verify and validate data with real-world models and conditions, tools like GlennICE can fill gaps in research not easily achieved with wind tunnels.
“Some environments we need to test in are impractical with wind tunnels because of the tunnel size required and complex physics involved,” Porter said. “But with GlennICE, we can do these tests digitally. For example, we can model all the icing conditions noted in new regulations.”
The GlennICE development falls under NASA’s Transformative Aeronautics Concept and Advanced Air Vehicles programs. Those programs supported GlennICE to further NASA’s work on computational tool development for aerospace design. More about the history of icing research at NASA is available on the agency’s website.
About the AuthorJohn GouldAeronautics Research Misson DirectorateRead More Share Details Last Updated Dec 04, 2025 Related Terms Explore More 8 min read NASA Completes Nancy Grace Roman Space Telescope Construction Article 12 hours ago 5 min read Student Art Murals at Johnson Celebrate 25 Years of Humanity in Space Article 1 day ago 5 min read NASA Astronaut Jonny Kim Advances Research Aboard Space Station Article 2 days ago Keep Exploring Discover More Topics From NASAMissions
Humans in Space
Climate Change
Solar System
#773: What Would You Do With $1 Billion For Astronomy?
We are powerless fans of space exploration. But what if some fool gave us the authority and funding to make our space dreams a reality? Someone asked us what we’d do with a billion dollars. What missions? Which telescopes? But what if we had more? 100 Billion! A trillion! All the monies! You keep asking, and this week we answer you! Come hear what Fraser and Pamela would do if they were given complete control over $1billion that had to be used for astronomy.
Show Notes- What if we had $100B or even $1 trillion to explore the cosmos?
- Ground-based observatories: big science at surprisingly low cost
- Pamela’s dream: VLT North or Vera Rubin North in the Canary Islands
- Funding the Breakthrough Starshot interstellar mission
- Fixing the grant system: fully funding 50–100 researchers for a decade
- A $100M lunar interferometer mission to study stellar surfaces
- Affordable rover missions and rideshares to the Moon and Mars
- Solar sails: low-cost missions for asteroids and deep space exploration
- The value of small missions as testbeds for future breakthroughs
- Investing in next-generation planet hunters: “super PLATO / mini Kepler”
- Follow-up to Gaia using infrared to map hidden stars and brown dwarfs
- Ultimate wish list:
- Radio telescope on Moon’s far side
- New orbital Great Observatories
- Successor to Chandra for high-energy universe
- Nulling interferometers to find Earth-like worlds
- Solar gravitational lens telescope for megapixel exoplanet imaging
- Importance of Mars Sample Return for life detection
- Fleets of robotic telescopes for public education and research
Fraser Cain:
Astronomy Cast, Episode 773 What Would We Do With a Billion Dollars? Welcome to Astronomy Cast, our weekly, facts-based journey through the Cosmos, where we help you understand not only what we know, but how we know what we know. I’m Fraser Cain, I’m the publisher of Universe Today.
With me, as always, is Dr. Pamela Gay, a Senior Scientist for the Planetary Science Institute and the Director of CosmoQuest. Hey Pamela, so this is me talking from the past to us, because at the time that now everyone is listening to this, I am still traveling and we have no idea how I’m doing.
Dr. Pamela Gay:
You have gone to the land of UTC plus seven?
Fraser Cain:
Yes, I am in the future.
Dr. Pamela Gay:
Leaving me behind?
Fraser Cain:
Yeah, yeah. So, yeah, I’m working on my tan, I am walking in the jungle. Who knows what’s happening?
I hope it went well. And you? Who knows how you’re doing?
So there’s no point asking how we’re doing, because we would just be projecting into the future to try and imagine. So we’ll move on. We are powerless fans of space exploration, but what if some fool gave us the authority and funding to make our space dreams a reality?
Someone asked us what we do with a billion dollars. What missions? Which telescopes?
But what if we had more? A hundred billion, a trillion, all the monies. Okay, so it’s funny, when you had originally pitched this episode, I, in my mind, was ten billion dollars.
I thought you’d said ten million dollars. I’m like, okay, yeah, ten million, you know, that’s something to sink my teeth into. And you’re like, okay, so remember, it’s like one billion dollars.
I’m like, what? Yeah, yeah. That’s not any money.
Right. I can’t, I could barely eat lunch on a billion dollars. So fine.
So let’s kind of give people a sense of what you can buy for a billion dollars. What are some missions that would cost roughly a billion dollars?
Dr. Pamela Gay:
So I don’t know about missions, but the one that made me happy was the VLT is about nine hundred million to build. And I would love to replicate the VLT, the Very Large Telescope, in the Northern Hemisphere, have another one of these four massive mirrors with satellite mirrors that can do interferometry, that have all these amazing different instruments on board. And let’s just be prepared to do equal science at the highest resolutions possible.
Fraser Cain:
So the construction of Vera Rubin was about five hundred and seventy million. So you could buy a North, a Vera Rubin North for that budget. The Extremely Large Telescope was a little over a billion euros.
So I don’t know what that is in U.S. dollars, maybe 1.3. So kind of in that. So you can build a second Extremely Large Telescope. So ground-based observatories are surprisingly affordable.
And it’s not surprising to me that that your instinct was to go after a ground-based observatory because I had the exact same instinct, which is that like Vera Rubin North, please, right? Or Extremely Large Telescope North. And this was in the works, right?
The 30 meter telescope was going to be built in Hawaii as a counter to the Southern Hemisphere’s telescope. And so the future of that is uncertain. Maybe it’ll end up in the Canary Islands.
So I would probably build either the Extremely Large Telescope North or the Vera Rubin North and put them on the Canary Islands.
Dr. Pamela Gay:
And so that hopefully we can figure out how to do some savings. And I was like, so what could we do with like 100 million left over?
Fraser Cain:
We could fully fund Breakthrough Starshot. That’s the amount of money that they were intending to spend on Breakthrough Starshot. Yeah, it was $100 million.
That’s how much Yuri Milner had set aside. And then in the end, they only actually gave a handful of million. And so never actually funded Breakthrough Starshot.
But that was the plan. Now, that wouldn’t get you to another star system, but it would allow a lot of people to do interesting work for a decade on interstellar spacecraft.
Dr. Pamela Gay:
Speaking of people doing interesting work, one of the things I looked up is, again, we are not going to consider like endowments or anything like that. We are earmarking money to go to specific things. And so…
Fraser Cain:
So not just general outreach, development of quantum, quantum, quantumness.
Dr. Pamela Gay:
Well, one thing I considered is right now, researchers have, for every grant we get, in general, you are limited to two months of salary per grant, which means for someone like me, you need at least, if you’re super lucky, six grants to be full-time employed. Most of the time, you have to have even more than that, because you get two weeks here, you get two months there, and it works out to… You’re never really full-time employed is what it actually works out to.
But the dream for all of us is to be able to just focus on thinking, experimenting, doing research, and not having to spend all this time just constantly asking for money that you’re probably never going to get. So you could, for $100 million, fund 50 to 100 people, depending on what stage in their career they’re at, for 10 years. And by just saying, okay, we’re going to take a bunch of people at different stages in their career, doing completely different types of science, and we’re just going to say, go.
We are funding you.
Fraser Cain:
So you gave a really wonderful and elaborate explanation of what you would do if you were going to break the rules of how we would set up this.
Dr. Pamela Gay:
I said we’re not going to endow. So I’m saying we’re giving them 10 years- That sounds like an endowment. Endowment lasts forever and requires you to only spend 3% to 5% of the amount of money to do the process.
Fraser Cain:
A 10-year endowment, okay. So what about space? Because it gets really hard to spend money in space.
So I’ll give you sort of the example that I want, which is that I would like an interferometer on the moon. And so when you look at the budget of, say, the Blue Ghost Lander, these NASA lunar COTS missions are in the $70 million-ish range. So for $100 million, I think you could do this mission that I did an interview about this, that you would land on the moon with an optical telescope, and then there would be a rover that would be attached to the telescope.
It would drive out about 100 meters away from the telescope, and then it would have a telescope on board. And it would point up in the sky, and then you would be able to resolve features on the surfaces of stars, because the interferometer allows you to see bright objects, but with a very large baseline. And so we could resolve the surface of Betelgeuse.
We could resolve the surface features of other stars. We could separate binary stars into their separate pieces. So I think that’s $100 million.
And so then that got me thinking, like, okay, so if you could have lunar landers that would do really interesting things, things that would really push things forward, at $100 million a pop, you could do a lot of really interesting missions, you know?
Dr. Pamela Gay:
So to give some perspective, the Viper rover, which is extraordinarily complex, was developed across two different programs, actually, and over a decade. It’s estimated that its total cost will come in around $500 to $800 million, depending on what all you include in the costing. And that’s as complicated as it gets.
So yeah, we should totally be able to do, like… Do you remember the little, tiny first rover that they put on Mars that found the blueberries?
Fraser Cain:
I’m trying to remember what it was called. Well, the blueberries were found by Spirit and Opportunity. I think it was Spirit.
I thought they were found…
Dr. Pamela Gay:
Are you thinking… The ones that had the yoga bear?
Fraser Cain:
Yeah, you’re thinking of the little rover that was attached to the Mars Pathfinder.
Dr. Pamela Gay:
Oh, yeah.
Fraser Cain:
Yeah, I think the rover was actually called Pathfinder.
Dr. Pamela Gay:
No? No, it was…
Fraser Cain:
No, the mission was Pathfinder.
Dr. Pamela Gay:
Sojourner.
Fraser Cain:
Sojourner, that’s it.
Dr. Pamela Gay:
Yeah.
Fraser Cain:
And its job was just to test, can you drive around on Mars? It didn’t find anything but rocks.
Dr. Pamela Gay:
Yeah, so Pathfinder and Sojourner, Pathfinder with Sojourner. That size Tonka truck version, RC robot version of a rover, that’s nowadays something that we can consider doing. And the chipsets are so powerful and so small.
Fraser Cain:
Yeah, so there was a 10 kilogram rover on the Japanese Hakuto-R mission. And that’s the kind of scale that we’re talking about. And so it was designed to land on the moon and then and roam around under solar power and explore.
And so we could put… You could do a fancier version, maybe you’re at 120 million, 150 million for your lander on the moon, and you’ve got rovers and telescopes and all kinds of stuff.
Dr. Pamela Gay:
And there’s other things that you can start doing, like ride shares of tiny things. One of the things we’d love to be able to do is really understand the weather across the surface of Mars. And there’s this absolutely giggle worthy program being worked on in the Netherlands called Tumbleweed Rover.
It’s just this giant ball of infrastructure with sails and it rolls all over the place. And according to wind tunnel tests, Martian gravity and wind, they should be able to go up like 30 degree inclines with this thing.
Fraser Cain:
That’d be cool.
Dr. Pamela Gay:
And so you can start imagining you can ride share tumbling rovers to Mars. You can use the lawn dart approach that was explored for Venus by the Russians about a decade ago, except start looking at Mars because there’s things to ride share with to Mars. And as you go over, you just deploy all these literally lawn dart type things with little tiny antennas.
So they keep their orientation thanks to center of mass, hit the ground, dive into the ground, leave the antenna sticking out and just monitor the weather.
Fraser Cain:
So this idea of ride shares, I 100% agree with you. So one mission that I was really excited about was the NEA Scout, the Near Earth Asteroid Scout mission. And this was going to be a solar sail, was on the Artemis 1 mission.
It was in the ring, the docking ring between the upper and lower stages. And unfortunately, because that rocket didn’t launch, a lot of the batteries died on the missions that were inside of it. But the idea was great.
It was $25 million to build a solar sail mission that would have gone to an asteroid. Like people say, oh, like NASA wastes money. That was amazing for the budget.
And so imagine, like for me, the theme is really about that there are a bunch of really exciting and interesting technologies. Solar sails are probably at the very top of the list that we just do not have enough practice with. And so I would want to see a real emphasis on solar sail type missions because then they’ll have an application across many different spacecraft.
You could just put a solar sail on the deep space gateway to keep its orientation. You could put a solar sail as just a backup on other missions that might’ve been able to save missions. All right.
I’m going to give you sort of another sort of direction that I would want to go with my billion dollars. And that is, you know, that NASA’s test mission was actually relatively inexpensive. And this is a planet hunting mission that’s found hundreds, we’ll probably find thousands of planets by the time it’s done.
It was, its budget was like 400 million. And then the upcoming European Space Agency’s PLATO mission, which is going to be a much fancier version with like 24 separate cameras. It’s in the 500 million euro range.
So 600-ish million dollars, so there’s some room to spare. And I would love to see a fancier version of PLATO because we lost Kepler before we could get that discovery of an Earth-sized world orbiting around a sun-like star. But is there a kind of a mid-range, super PLATO, mini Kepler that would get us that detection of the Earth-sized world orbiting around a sun-like star?
Dr. Pamela Gay:
Yeah. You and I, I love the fact that we looked in completely different directions because like that’s the kind of thing where I’d love to see a return of small PI-led missions. And one of the awesome things that we get to see the plans for is the NIAC stuff where they’re testing all sorts of like absolutely wild ideas.
And we’re at a point where solar panels are so powerful now, or they generate so much power nowadays, where chipsets are so small and so capable nowadays, where CCDs and CMOS chips, depending on which technology you’re going with, are so sensitive. We can do things that we never even dreamed of. And there are technologies waiting to be tested and combined.
Like if I were allowed to find engineers and play to my heart’s delight, one of the things I haven’t seen, and maybe you have because you see a lot more of these than I do. I would love to see something that is brought up to speed using solar sails on the inner solar system and then has an ion drive that continues to accelerate them as they hit the higher speeds. So you can imagine you’re sending outer solar system tiny things out there, just big enough to be able to send back a good signal, come up to speed with the solar sail, drop the solar sail, send the ion drive into activity, keep accelerating, keep going, and just do the thing that Don did with a kickstart to get you going.
Fraser Cain:
Your recommendation about NASA NIAC, I am a gigantic fan of NIAC. I report on pretty much every single story that they, everything that they fund and their total budget. I mean, they give you just a couple of hundred thousand dollars per project for the phase one, more like 700,000 for phase two, maybe a million, a little bit over a million for phase three, that every year, NASA’s NIAC’s total budget is, I don’t know, $10 million?
Like almost nothing compared to the rest of the, of the NASA financing. And yet they are the ideas of the future that are being considered. I would, can you imagine if you just expanded and expanded it so that you were, they had a really great pipeline that you were essentially, so it’s this idea of, of removing the risk that you don’t want to take on a new technology if you think it’s going to add too much technical risk to your mission.
And so, um, we need a way to de-risk really great ideas in a practical way to demonstrate that they work in space and that then these missions can then be considered down the road and they won’t increase the budget. When you think about a lot of the risks that were included in James Webb, they ballooned its budget. If they knew ahead of time which technologies were safe to work in space, which ones would be easy to use and so on, probably would have brought their costs down.
So, so I would love to see some kind of fancy NIAC that does, does a sort of ideas of the future and de-risking great ideas to bring down or bring up their technological readiness level for future missions.
Dr. Pamela Gay:
And one of the things that’s getting reflected in what both of us are suggesting is due to budget constraints, we’re seeing both NASA and the National Science Foundation quite often ask what major things need supported. So we see the National Science Foundation and I think it’s the Department of Energy funding Vera Rubin Observatory and a bunch of these big cameras. We see NASA funding James Webb Space Telescope and TESS and Europa Clipper and flagship projects that you can never imagine a small university doing, whereas ESCAPADE is one of the few smaller missions that has been funded.
It’s coming out of the University of California, Berkeley. It has blue and gold, two separate things that will be heading off to Mars. But there’s very few of these smaller missions still getting done because resources are scarce.
And if you can fund something huge like Rubin, it revolutionizes the entire field. These smaller projects are test beds. They’re ideas that their children will revolutionize the entire field.
They’re just saying, hey, this is possible.
Fraser Cain:
Yeah.
Dr. Pamela Gay:
We’re currently killing the future by not investing in it. I’d like to have a future, please.
Fraser Cain:
Yes. Yeah. All right.
So another of my favorite missions is the Gaia mission. Oh, my favorite.
Dr. Pamela Gay:
Yeah.
Fraser Cain:
And it came in at about 600 million, so a little less than a billion dollars. And we learned so much about the Milky Way, about the cosmos from Gaia. And there’s another mission on the books that people are proposing, essentially a follow on to Gaia.
It would be an infrared version of Gaia. And so it would have that same level of astrometry to to measure the positions of all of the stars. But it would be looking more into the infrared.
So we’d be looking for the cooler objects, the red dwarfs, the brown dwarfs, maybe large exoplanets and looking for the motion of them. Because we still don’t have a great census of where all of the red dwarfs, brown dwarfs are, even though they’re the most common stars in the universe. So we’re still learning about that.
And so, you know, for my billion dollars, I could buy Gaia, too.
Dr. Pamela Gay:
And Gaia, it is my favorite space mission so far. What they did with its technology. Go find a video, humans.
It had a light train like nothing else that has ever existed. And I can only hope we learn from that technology and build more things, building on what was learned.
Fraser Cain:
Yeah. Yeah. That’s always makes me so sad when engineers come up with this absolutely brilliant idea.
With Gaia, the spacecraft had this CCD array and it had a telescope and it would slowly turn at the rate that it was depositing light onto the pixels on its camera system. And reading out those pixels. And then reading all those pixels.
Yeah. And it was perfectly tuned to make these measurements. It was a it’s a beautiful telescope.
And it’s so sad that it’s no longer operating.
Dr. Pamela Gay:
Yeah. And we could use something similar to that that also just worked brighter. One of the really stupid things in astronomy is we don’t actually know where Betelgeuse is.
It is, depending on the paper, between 410 light years and 640 light years. And we can measure the sucker’s angular size on the sky. And if we just knew where it was, we could like, there’s so much amazing physics we could do.
But it was too bright for Gaia. All right.
Fraser Cain:
So I think, you know, you get a sense, I think, from both of us that that there are these that there’s these scrappy ideas that are, you know, that there could be more funding to them, new forms of propulsion system, new ideas and so on. So let’s go the other way now. Let’s let’s if we had all the monies in the world, what would what would you want to see out there?
Dr. Pamela Gay:
If we had all the monies in the world, we definitely need a radio telescope on the far side of the moon. That that is a must, please.
Fraser Cain:
And, you know, a radio telescope on the far side of the moon gives us the ability to detect the hydrogen line from the dark ages of the universe. We essentially are able to scan this time when those first stars were forming and get that get a real sense of how the universe came together, which right now, you know, is outside the reach of James Webb.
Dr. Pamela Gay:
And it would be amazing if we could just start doing things like, can we please have an on orbit eight meter optical? Can we please have a bigger, more sensitive.
Fraser Cain:
Like LUVAR, we want 15, we want 20.
Dr. Pamela Gay:
OK, fine. But there was the great observatories that were built in the 80s and 90s. And Chandra’s still hanging out there doing its best.
And someday Chandra is going to stop. I want I want to have something on deck that is even better, more powerful, that takes us out into the high energy universe. I want a successor to Fermi out there ready to go.
I want to have the survey scope that has all the abilities that Swift has that it’s leveraging for gamma ray bursts to instead just be like, and now we are going to simultaneously observe this in optical infrared, gamma and X-ray, because why not?
Fraser Cain:
Yep. Yeah, so if money was like for me, if money was no object, I mean, the thing you mentioned, the 80 meter telescope, like we want to know whether there are Earth-sized worlds orbiting around Sun-like stars within the habitable zone.
Dr. Pamela Gay:
We need that.
Fraser Cain:
We want to find Earth 2.0. And you need a coronagraph, you need a whopping big telescope with a whopping big coronagraph or multiple spacecraft flying in formation to perform a nulling interferometer. So, you know, originally it was the Terrestrial Planet Finder, which I think we mourn once a year. Yeah, at least.
You know, we put flowers on its grave and feel sad about it. And the successor to that is the Large Interferometer for Exoplanets, which is being developed by the European Space Agency. It’s going to be expensive.
You know, maybe not web expensive, but in that kind of range. My other one is Mars Sample Return Mission, because Perseverance collected all of these samples that very likely the answer to, is there life on Mars, is in one of those samples waiting on the surface of Mars. We just have to bring them home.
Dr. Pamela Gay:
And at a certain point, we have to improve education. And there’s this amazing opportunity coming with the Rumen Observatory. It’s going to be spotting so many transient objects, things that flicker, flare and move in the night, that they have four different data repositories to handle the output.
And this is where you start being like, OK, we are just going to build fleets of robotic telescopes. And there are here in the United States, 125,000 libraries between town libraries, university libraries and school libraries. And so 300 million people, 125,000 libraries, that’s basically one library per 3,000 people on the planet.
So let’s start assigning each of those libraries a telescope that school kids can use for science fair projects, that people with spare time can use to follow up objects and just increase public engagement in science in a way that is shared resources and scalable in a reasonable way.
Fraser Cain:
I feel like you’re not really spending all the monies. That’s not very much monies.
Dr. Pamela Gay:
And that’s the thing, we’re not even spending that much money right now.
Fraser Cain:
Yeah, yeah. So the one that is like the most ridiculous, probably in the hundred billion dollar range or more, would be the solar gravitational lens telescope.
Dr. Pamela Gay:
Yeah, this is Fraser’s thing that he brings up every year. And I just find it so remarkably ridiculous. Go ahead, explain this ridiculousness.
Fraser Cain:
Yeah, well, it just is that you send the spacecraft out to 500 AU from the sun, where the gravity of the sun forms a natural gravitational lens, gives you a telescope, the natural multiplier to your telescope. Yeah. And so you would be able to see a megapixel image of an Earth-sized world orbiting around a sun-like star, like literally see the mountains, forests, oceans, clouds, etc.
With a relatively modest telescope, you just have to get out there. And so.
Dr. Pamela Gay:
Yeah. And you have to get out there and stop.
Fraser Cain:
No, you don’t have to stop.
Dr. Pamela Gay:
Well, you need to enter orbit.
Fraser Cain:
No, no, you’re going to keep moving. You just keep moving. As long as you stay in the cone, you can, as long as you head down the cone that’s created, lining up the planet with the star, you could be at 10,000 AU and it’s still fine.
Dr. Pamela Gay:
Right. But the signal attenuation is a bit much.
Fraser Cain:
Yeah, this is like the engineering challenges of getting a signal. But I mean, we’re getting signals from the Voyagers. So getting a signal, like it’s several, I think the Voyagers are like 100 AU.
So this is five times farther than the Voyagers.
Dr. Pamela Gay:
25 times less signal.
Fraser Cain:
Yes, it’s harder. That’s why it’s a, did I not get to spend a hundred billion dollars or what? Fair.
A trillion dollars, whatever. But, but if we could, then we would, you know, and we had the targets, we had the candidates. So you’d need some other telescope, like the habitable planet finder first, then you would like, at night you would see their cities.
It’s crazy. What we could see. So we just need the solar gravitational lens telescope, please.
Dr. Pamela Gay:
Yes. For science.
Fraser Cain:
Yep. All right. That’s so, so if you’re ready to fund our ideas, let us know.
We’re ready to take over. Would we be co NASA?
Dr. Pamela Gay:
Yes.
Fraser Cain:
Chiefs?
Dr. Pamela Gay:
Sure.
Fraser Cain:
Yeah, we’d do that. That sounds good.
Dr. Pamela Gay:
Yes.
Fraser Cain:
All right. Thanks everyone. Thanks, Pamela.
Dr. Pamela Gay:
Thank you, Fraser. And thank you so much to all of our $10 and up patrons out there. You allow us to keep the humans that make this show go going.
So specifically from Avivah, Rich and Ali, I would like to thank the following humans. This show is made possible by our community on patreon.com slash astronomy cast. This week, we’d like to thank the following $10 and up patrons.
Alex Cohen, Andrew Palestra, Arctic Fox, Bore Andro-Lovesville, Benjamin Davies, Boogie Nett, Brian Kilby, Kami Rassian, Cooper, David, Davias Rosetta, Don Mundus, Elliot Walker, Father Prax, Frank Stewart, Gerhard Schweitzer, Gordon Dewis, Hal McKinney, James Signovich, Jean-Baptiste Lemontier, Jim McGean, Joanne Mulvey, John M, J.P. Sullivan, Katie Byrne, Kimberly Rake, Larry Dzot, Lou Zeeland, Mark Phillips, Matt Rucker, Michael Prashada, Michelle Cullen, Name, Olga, Paul Jarman, Philip Grant, R.J. Basque, Ron Thorson, Sam Brooks and his mom, Scott Bieber, Subhana, Stephen Coffey, The Big Squish Squash, Tiffany Rogers, Tricor, Wanderer M101, and Zach Kukindel. Thank you all so very much.
Fraser Cain:
All right. Thanks, Pamela. We’ll see you next week.
Dr. Pamela Gay:
Bye-bye.
Live ShowThe Gift of Warmth (and Whimsy)
An idea for the stubborn winter stargazer on your holiday list (especially if it's you!)
The post The Gift of Warmth (and Whimsy) appeared first on Sky & Telescope.
Ten Versions of Earth's Future Can Help Us Hunt for ET
Searching for technosignatures - signs of technology on a planet that we can see from afr - remains a difficult task. There are so many different factors to consider, and we only have the technological capabilities to detect a relatively small collection of them. A new paper, available in pre-print on arXiv but also accepted for publication into The Astrophysical Journal Letters, from Jacob Haqq-Misra of the Blue Marble Space Institute of Science and his co-authors explores some of those capabilities by using a framework they developed known as Project Janus that estimates what technology will look like on Earth 1,000 years from now in the hopes that we can test whether or not we can detect it on another planet.