"For the sage, time is only of significance in that within it the steps of becoming can unfold in clearest sequence."

— I Ching

NASA

The Marshall Star for September 18, 2024

NASA - Breaking News - Wed, 09/18/2024 - 6:21pm
18 Min Read The Marshall Star for September 18, 2024 Marshall Welcomes NASA Chief Scientist for Climate, Science Town Hall

NASA Chief Scientist and Senior Climate Advisor Kate Calvin, center left, joins team members at the agency’s Marshall Space Flight Center for a Climate and Science Town Hall on Sept. 17 in Activities Building 4316. Calvin took part in a question-and-answer session during her visit that was live streamed agencywide. Joining her in the session were, from left, Rahul Ramachandran, research scientist and senior data science strategist for the Science Research and Project Division at Marshall; Marshall Earth Science Branch Chief Andrew Molthan; Marshall Chief Scientist Renee Weber; Marshall Center Director Joseph Pelfrey; and Marshall Science and Technology Office Manager Julie Bassler, who moderated the panel. (NASA/Krisdon Manecke)

Molthan answers a question during the Climate Town Hall. Topics discussed during the town hall included the response by NASA and Marshall to climate change, the effects of climate change on NASA and Marshall objectives, and how NASA and Marshall are helping organizations around the world respond to climate change. (NASA/Krisdon Manecke)

› Back to Top

Space Station Payload Operations Director at Marshall Carries on Family Legacy

By Celine Smith

Jacob Onken remembers his father, Jay Onken, waking him up one morning at 3 a.m. when he was 9 years old to watch the International Space Station fly overhead. At the time, his dad was a POD – a payload operations director – at NASA’s Marshall Space Flight Center leading flight controllers who support science experiments aboard the orbiting laboratory 24 hours a day, 365 days a year.

Jacob Onken is a second-generation payload operations director at NASA’s Marshall Space Flight Center. His father, Jay Onken, also served in the role in 1999. The father and son are the first family members at Marshall to both hold that position. NASA/Danielle Burleson

Now, the younger Onken has started a new chapter in his career as a POD at Marshall, following in his father’s footsteps. The father and son are the first family members to serve in this role at Marshall. Onken said that happened by chance, despite growing up NASA-adjacent.

Jacob Onken began his aerospace career with an internship at Teledyne Brown Engineering while earning a bachelor’s degree in computer science at Auburn University in Alabama. The internship took him to Marshall’s Payload Operations Integration Center – a place his father had worked and often taken him when he was younger. Colleagues warmly remembered the veteran POD and welcomed to the role.

After graduating with a bachelor’s degree in computer science in 2018, Onken worked as a contractor with Teledyne for NASA. As a data management coordinator (DMC) he sat console and learned to operate data and video systems aboard the space station.

“I really found myself out here, and I loved it,” he said. “Working in space flight operations is insanely cool and beneficial to humanity.”

A young Jacob Onken smiles for a family photo while visiting Marshall with his father, Jay Onken, and sister, Elizabeth Onken, in 1998. Photo courtesy of Jacob Onken

After training for over a year, he earned his DMC certification and later was assigned as the lead DMC for space station Expeditions 62 and 63. He later served as the DMC training lead, preparing new flight controllers for certification. In this role, he trained 13 DMCs for certification, using a people-based leadership approach he learned from his father.

Well before the space station flew, Jay Onken was an aerospace engineer whose early career assignments included orbit analysis for the space shuttle and attitude selection for several Spacelab missions. He later was one of the first flight directors for NASA’s Chandra X-Ray Observatory, and following its launch, joined the first group of space station PODs. 

He went on to become the director of Marshall’s Mission Operations Laboratory in 2005, deputy chief engineer for the Space Launch System in 2014, and director of Marshall’s Space Systems Department in 2016. He retired in 2018 and died in 2021 after battling cancer.

Jacob Onken continues Jay Onken’s legacy. Colleagues say he embodies similar traits. He often reflects on his father’s advice.

From left, Jacob Onken during his payload operations director (POD) certification ceremony with former PODs Carrie Olsen, Sam Digesu, Pat Patterson, and Tina Melton in the Payload Operations Center at Marshall. NASA/Craig Cruzen

“I was lucky to have my dad, who understood the environment that I was working in,” he said. “I knew his work meant a lot to him. We were always close, but we got even closer. Bonding over the same things was special.”

In 2022, Onken became the DMC flight operations lead, supporting real-time console and planning operations for that team. In 2023, he joined the Operations Directors Office. After another rigorous training curriculum, he completed his POD certification in January 2024.

“It’s rewarding and heartwarming to know that the future of space flight operations is in good hands with the new generation,” said Craig Cruzen, the POD training lead who oversaw Onken’s instruction and certification.

Onken leads a team that communicates with astronauts about the scientific experiments they’re performing on the space station and ensures their safety from the ground.

As a payload operations director at NASA’s Marshall Space Flight Center, Jacob Onken leads flight controllers in the International Space Station Payload Operations and Integration Team, following in his father’s footsteps. Onken and his father, Jay Onken, are the first family members to both serve in the role at Marshall. (NASA)

“My role requires teamwork, trust, and communication,” he said. “I ask myself, ‘How can we work together effectively to get the job done?’”

While he holds the same position his father held, the space station has evolved, becoming a convergence of science, technology, and innovation. “Jay Onken was a POD when the International Space Station was just beginning,” said former POD Carrie Olsen, now manager of NASA’s Next Gen STEM K-12 education project and a family friend to the Onkens. “The challenge the space station faced back then was its newness,” Olsen explained. “We were still figuring out how to best work with Johnson Space Center, scientists around the world, international partners, and the space station program.”

Though Marshall had a rich operations history working programs like Apollo, Space Shuttle, Skylab, and Chandra, the space station was truly unlike anything that had come before.

“Jay’s leadership qualities and integrity helped to build trust across the organization and the agency. This allowed Marshall’s operations team to excel and be recognized as the premier space station science operations center across the globe,” said his former colleague Sam Digesu, currently technical manager of the Payload and Mission Operations Division. “Jacob is on the that same path.”

Jacob Onken says one of his career goals is to support payload operations on the lunar surface for the Artemis missions. “My dad was around when it started, and hopefully, I’m around to see it through.”

› Back to Top

NASA Hosts Observe the Moon Night at U.S. Space & Rocket Center

The Science Wizard, David Hagerman, right center, entertains the crowd with one of his shows Sept. 14 during Observe the Moon Night at the U.S. Space & Rocket Center in Huntsville. The free public event was part of International Observe the Moon Night, a worldwide celebration encouraging observation, appreciation, and understanding of the Moon and its connection to NASA exploration and discovery. NASA’s Planetary Missions Program Office hosted the event at the rocket center. The Planetary Missions Program Office is located at NASA’s Marshall Space Flight Center. (NASA/Lane Figueroa)

Audience members react during one of Hagerman’s demonstrations at Observe the Moon Night. (NASA/Lane Figueroa)

Attendees visit a NASA display during the Observe the Moon Night event. (NASA/Daniel Horton)

› Back to Top

‘Legacy of the Invisible’ Event to Celebrate Marshall’s Contributions to Astrophysics

The public is invited to join NASA’s Marshall Space Flight Center for a special celebration of art and astronomy in downtown Huntsville on Sept. 20 from 6 to 8 p.m. The event will include a dedication of Huntsville’s newest art installation, “No Straight Lines,” by local artist Float. 

The celebratory event, “Legacy of the Invisible,” will take place at the corner of Clinton Avenue and Washington Street, coinciding with the 25th anniversary of NASA’s Chandra X-ray Observatory. Attendees will have a chance to meet and hear from NASA experts, as well as meet Float, the artist behind “No Straight Lines,” which aims to honor Huntsville’s rich scientific legacy in astrophysics and highlight the groundbreaking discoveries made possible by Huntsville scientists and engineers.

Enjoy live music, art vendors, food, and more.

Learn more about Chandra’s 25th Anniversary.

› Back to Top

SLS Program Manager John Honeycutt Delivers Keynote at National Space Club Breakfast

John Honeycutt, front center, manager of NASA’s SLS (Space Launch System) Program at the agency’s Marshall Space Flight Center, delivers the keynote address at the National Space Club Breakfast on Sept. 17 in Huntsville. Honeycutt provided a detailed presentation to the audience with insight into the operations, accomplishments, and future goals for the SLS Program. The SLS rocket is a powerful, advanced launch vehicle for a new era of human exploration beyond Earth’s orbit. “All elements of the SLS Block I for the first crewed lunar mission of the 21st century are either complete and ready for stacking or are nearing completion,” Honeycutt said. “For more than 60 years, this town – this community – has led the effort to explore space. We aren’t done. SLS and Artemis are the next chapter in that legacy. Led and enabled by folks in this room, at Marshall, and here in North Alabama, we will launch missions to the Moon that will re-write history books, lead to scientific discoveries, and pave the way to Mars.” (NASA/Serena Whitfield)

› Back to Top

NASA’s Lunar Challenge Participants to Showcase Innovations During Awards

NASA‘s Watts on the Moon Challenge, designed to advance the nation’s lunar exploration goals under the Artemis campaign by challenging United States innovators to develop breakthrough power transmission and energy storage technologies that could enable long-duration Moon missions, concludes Sept. 20 at the Great Lakes Science Center in Cleveland, Ohio.

The Sun rises above the Flight Research Building at NASA’s Glenn Research Center in Cleveland.Credit: NASA

“For astronauts to maintain a sustained presence on the Moon during Artemis missions, they will need continuous, reliable power,” said Kim Krome-Sieja, acting program manager, Centennial Challenges at NASA’s Marshall Space Flight Center. “NASA has done extensive work on power generation technologies. Now, we’re looking to advance these technologies for long-distance power transmission and energy storage solutions that can withstand the extreme cold of the lunar environment.”

The technologies developed through the Watts on the Moon Challenge were the first power transmission and energy storage prototypes to be tested by NASA in an environment that simulates the extreme cold and weak atmospheric pressure of the lunar surface, representing a first step to readying the technologies for future deployment on the Moon. Successful technologies from this challenge aim to inspire, for example, new approaches for helping batteries withstand cold temperatures and improving grid resiliency in remote locations on Earth that face harsh weather conditions.

During the final round of competition, finalist teams refined their hardware and delivered a full system prototype for testing in simulated lunar conditions at NASA’s Glenn Research Center. The test simulated a challenging power system scenario where there are six hours of solar daylight, 18 hours of darkness, and the user is three kilometers from the power source.

“Watts on the Moon was a fantastic competition to judge because of its unique mission scenario,” said Amy Kaminski, program executive, Prizes, Challenges, and Crowdsourcing, Space Technology Mission Directorate at NASA Headquarters. “Each team’s hardware was put to the test against difficult criteria and had to perform well within a lunar environment in our state-of-the-art thermal vacuum chambers at NASA Glenn.”

Each finalist team was scored based on Total Effective System Mass (TESM), which determines how the system works in relation to its mass. At the awards ceremony, NASA will award $1 million to the top team who achieves the lowest TESM score, meaning that during testing, that team’s system produced the most efficient output-to-mass ratio. The team with the second lowest mass will receive $500,000. The awards ceremony stream live on NASA Glenn’s YouTube channel and NASA Prize’s Facebook page.

The Watts on the Moon Challenge is a NASA Centennial Challenge led by NASA Glenn. NASA Marshall manages Centennial Challenges, which are part of the agency’s Prizes, Challenges, and Crowdsourcing program in the Space Technology Mission Directorate. NASA has contracted HeroX to support the administration of this challenge.

› Back to Top

Technicians Work to Prepare Europa Clipper for Propellant Loading

NASA’s Europa Clipper mission moves closer to launch as technicians worked Sept. 11 inside the Payload Hazardous Servicing Facility to prepare the spacecraft for upcoming propellant loading at the agency’s Kennedy Space Center. 

Technicians work to complete operations before propellant load occurs ahead of launch for NASA’s Europa Clipper spacecraft inside the Payload Hazardous Servicing Facility at the agency’s Kennedy Space Center on Sept. 11.NASA/Kim Shiflett

The spacecraft will explore Jupiter’s icy moon Europa, which is considered one of the most promising habitable environments in the solar system. The mission will research whether Europa’s subsurface ocean could hold the conditions necessary for life. Europa could have all the “ingredients” for life as we know it: water, organics, and chemical energy.

Europa Clipper’s launch period opens Oct. 10. It will lift off on a SpaceX Falcon Heavy rocket from Kennedy’s Launch Complex 39A. The spacecraft then will embark on a journey of nearly six years and 1.8 billion miles before reaching Jupiter’s orbit in 2030.

The spacecraft is designed to study Europa’s icy shell, underlying ocean, and potential plumes of water vapor using a gravity science experiment alongside a suite of nine instruments including cameras, spectrometers, a magnetometer, and ice-penetrating radar. The data Europa Clipper collects could improve our understanding of the potential for life elsewhere in the solar system.

Managed by Caltech in Pasadena, California, NASA’s Jet Propulsion Laboratory leads the development of the Europa Clipper mission in partnership with APL for NASA’s Science Mission Directorate. APL designed the main spacecraft body in collaboration with JPL and NASA’s Goddard Space Flight Center. The Planetary Missions Program Office at NASA’s Marshall Space Flight Center executes program management of the Europa Clipper mission.

Learn more about the mission here.

› Back to Top

Marshall to Present 2024 Small Business Awards Sept. 19

NASA’s Marshall Space Flight Center will host its annual Small Business Industry and Advocate Awards ceremony Sept. 19. The awards recognize small businesses and small business champions from government and industry for their outstanding achievements in fiscal year 2024.

The ceremony will take place during the 38th meeting of Marshall’s Small Business Alliance, from 8 a.m. to 12:30 p.m. CDT at the U.S. Space & Rocket Center’s Davidson Center for Space Exploration in Huntsville. The event will also highlight new opportunities for small businesses to take part in NASA’s procurement processes. Afterward, attendees will have the open opportunity to network with NASA officials, prime contractors, and other members of Marshall’s small business community. Exhibitors will provide valuable information to support their business.

NASA speakers include:

  • Dwight Deneal, assistant administrator, Office of Small Business Programs, NASA Headquarters
  • Joseph Pelfrey, center director, NASA Marshall
  • John Cannaday, director, Office of Procurement, NASA Marshall
  • Davey Jones, strategy lead, NASA Marshall
  • David Brock, small business specialist, Office of Small Business Programs, NASA Marshall

For 17 years, the Marshall Small Business Alliance has aided small businesses in pursuit of NASA procurement and subcontracting opportunities. Its primary focus is to inform, educate, and advocate on behalf of the small business community. At each half day meeting, businesses will gain valuable insight to guide them in their marketing endeavors.

Learn more about Marshall’s small business initiatives.

› Back to Top

Printed Engines Propel Next Industrial Revolution

In the fall of 2023, NASA hot fire tested an aluminum 3D printed rocket engine nozzle. Aluminum is not typically used for 3D printing because the process causes it to crack, and its low melting point makes it a challenging material for rocket engines. Yet the test was a success.

Printing aluminum engine parts could save significant time, money, and weight for future spacecraft. Elementum 3D Inc., a partner on the project, is now making those benefits available to the commercial space industry and beyond.

A rocket engine nozzle 3D printed from Elementum 3D’s A6061 RAM2 aluminum alloy undergoes hot fire testing at NASA’s Marshall Space Flight Center.Credit: NASA

The hot fire test was the culmination of a relationship between NASA and Elementum that began shortly after the company was founded in 2014 to make more materials available for 3D printing. Based in Erie, Colorado, the company infuses metal alloys with particles of other materials to alter their properties and make them amenable to additive manufacturing. This became the basis of Elementum’s Reactive Additive Manufacturing (RAM) process.

NASA adopted the technology, qualifying the RAM version of a common aluminum alloy for 3D printing. The agency then awarded funding to Elementum 3D and another company to print the experimental Broadsword rocket engine, demonstrating the concept’s viability.

Meanwhile, a team at NASA’s Marshall Space Flight Center was working to adapt an emerging technology to print larger engines. In 2021, Marshall awarded an Announcement of Collaborative Opportunity to Elementum 3D to modify an aluminum alloy for printing in what became the Reactive Additive Manufacturing for the Fourth Industrial Revolution project.

The project also made a commonly used aluminum alloy available for large-scale 3D printing. It is already used in large satellite components and could be implemented into microchip manufacturing equipment, Formula 1 race car parts, and more. The alloy modified for the Broadsword engine is already turning up in brake rotors and lighting fixtures. These various applications exemplify the possibilities that come from NASA’s collaboration and investment in industry. 

Read more here.

› Back to Top

Hubble Finds More Black Holes than Expected in Early Universe

With the help of NASA’s Hubble Space Telescope, an international team of researchers led by scientists in the Department of Astronomy at Stockholm University has found more black holes in the early universe than has previously been reported. The new result can help scientists understand how supermassive black holes were created.

This is a new image of the Hubble Ultra Deep Field. The first deep imaging of the field was done with Hubble in 2004. The same survey field was observed again by Hubble several years later, and was then reimaged in 2023. By comparing Hubble Wide Field Camera 3 near-infrared exposures taken in 2009, 2012, and 2023, astronomers found evidence for flickering supermassive black holes in the hearts of early galaxies. The survey found more black holes than predicted. NASA, ESA, Matthew Hayes (Stockholm University); Acknowledgment: Steven V.W. Beckwith (UC Berkeley), Garth Illingworth (UC Santa Cruz), Richard Ellis (UCL); Image Processing: Joseph DePasquale (STScI)

Currently, scientists do not have a complete picture of how the first black holes formed not long after the big bang. It is known that supermassive black holes, that can weigh more than a billion suns, exist at the center of several galaxies less than a billion years after the big bang.

“Many of these objects seem to be more massive than we originally thought they could be at such early times – either they formed very massive or they grew extremely quickly,” said Alice Young, a PhD student from Stockholm University and co-author of the study  published in The Astrophysical Journal Letters.

Black holes play an important role in the lifecycle of all galaxies, but there are major uncertainties in our understanding of how galaxies evolve. In order to gain a complete picture of the link between galaxy and black hole evolution, the researchers used Hubble to survey how many black holes exist among a population of faint galaxies when the universe was just a few percent of its current age.

Initial observations of the survey region were re-photographed by Hubble after several years. This allowed the team to measure variations in the brightness of galaxies. These variations are a telltale sign of black holes. The team identified more black holes than previously found by other methods.

The new observational results suggest that some black holes likely formed by the collapse of massive, pristine stars during the first billion years of cosmic time. These types of stars can only exist at very early times in the universe, because later-generation stars are polluted by the remnants of stars that have already lived and died. Other alternatives for black hole formation include collapsing gas clouds, mergers of stars in massive clusters, and “primordial” black holes that formed (by physically speculative mechanisms) in the first few seconds after the big bang. With this new information about black hole formation, more accurate models of galaxy formation can be constructed.

“The formation mechanism of early black holes is an important part of the puzzle of galaxy evolution,” said Matthew Hayes from the Department of Astronomy at Stockholm University and lead author of the study. “Together with models for how black holes grow, galaxy evolution calculations can now be placed on a more physically motivated footing, with an accurate scheme for how black holes came into existence from collapsing massive stars.”

Astronomers are also making observations with NASA’s James Webb Space Telescope to search for galactic black holes that formed soon after the big bang, to understand how massive they were and where they were located.

The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center manages the telescope and mission operations. Lockheed Martin Space, based in Denver, Colorado, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, Maryland, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.

NASA’s Marshall Space Flight Center was the lead field center for the design, development, and construction of the space telescope.

› Back to Top

Categories: NASA

NASA Deputy Administrator Talks Future of Agency in Silicon Valley

NASA - Breaking News - Wed, 09/18/2024 - 4:34pm
NASA Deputy Administrator Pam Melroy (left) and Center Director at NASA’s Ames Research Center Eugene Tu (right) hear from Ames employees Sept. 16, 2024.NASA/Brandon Torres Navarrete

NASA Deputy Administrator Pam Melroy spent time at NASA’s Ames Research Center in California’s Silicon Valley, on Sept. 16, 2024, engaging with center leaders and employees to discuss strategies that could drive meaningful changes to ensure NASA remains the preeminent institution for research, technology, and engineering, and to lead science, aeronautics, and space exploration for humanity. Melroy’s visit also provided an opportunity to meet with early- and mid-career employees, who shared their perspectives and feedback.

Categories: NASA

NASA Shares Hidden Figures Congressional Gold Medal Remarks

NASA - Breaking News - Wed, 09/18/2024 - 3:48pm
On Sept. 18, 2024, five Congressional Gold Medals were awarded to women who contributed to the space race, including the NASA mathematicians who helped land the first astronauts on the Moon under the agency’s Apollo Program.Credit: NASA

NASA Administrator Bill Nelson released his remarks as prepared for Wednesday’s Hidden Figures Congressional Gold Medal ceremony in Washington. The awards recognized the women who contributed to the space race, including the NASA mathematicians who helped land the first astronauts on the Moon under the agency’s Apollo Program.

“Good afternoon.

“The remarkable things that NASA achieves…and that America achieves…build on the pioneers who came before us.

“People like the women of Mercury, Gemini, and Apollo.

“People like Mary Jackson. Dr. Christine Darden. Dorothy Vaughan. Katherine Johnson.

“Thanks to all the Members of Congress who made today possible. The late Congresswoman Eddie Bernice Johnson, who we miss, and who led the effort in 2019 alongside Senator Chris Coons to bring these medals to life. Thanks to the champions for the legislation, then-Senator Kamala Harris, Senators Lisa Murkowski and Shelley Moore Capito, and Congressman Frank Lucas.

“The women we honor today made it possible for Earthlings to lift beyond the bounds of Earth, and for generations of trailblazers to follow.

“We did not come this far only to come this far.

“We continue this legacy, as one member of the audience here with us does every single day – the remarkable Andrea Mosie.

“Andrea, who has worked at NASA for nearly 50 years, is the lead processor for the Apollo sample program. She oversees the Moon rocks and lunar samples NASA brought back from Apollo, 842 pounds of celestial science! These samples are national treasures. So is Andrea.

“The pioneers we honor today, these Hidden Figures – their courage and imagination brought us to the Moon. And their lessons, their legacy, will send us back to the Moon… and then…imagine – just imagine – when we leave our footprints on the red sands of Mars.

“Thanks to these people who are part of our NASA family, we will continue to sail on the cosmic sea to far off cosmic shores.”

For more information about NASA missions, visit:

https://www.nasa.gov

-end-

Meira Bernstein / Cheryl Warner
Headquarters, Washington
202-358-1600
meira.b.bernstein@nasa.gov / cheryl.m.warner@nasa.gov

Share Details Last Updated Sep 18, 2024 EditorJessica TaveauLocationNASA Headquarters Related Terms
Categories: NASA

Giant Leaps Start at Johnson for NASA’s SpaceX Crew-9 Commander Nick Hague

NASA - Breaking News - Wed, 09/18/2024 - 3:41pm

As the hub of human spaceflight, NASA’s Johnson Space Center in Houston holds a variety of unique responsibilities and privileges. Those include being the home of NASA’s astronaut corps.

One of those astronauts – Nick Hague – is now preparing to launch to the International Space Station along with Roscosmos cosmonaut Aleksandr Gorbunov on the ninth rotational mission under NASA’s Commercial Crew Program. This will be the third launch and second mission to the space station for Hague, who was selected as a NASA astronaut in 2013 and has spent 203 days in space.

NASA’s SpaceX Crew-9 Commander Nick Hague smiles and gives two thumbs up during the crew equipment interface test at SpaceX’s Dragon refurbishing facility at Kennedy Space Center in Florida.SpaceX

Hague was born and raised in Kansas but has crisscrossed the country for college and career. He earned degrees from the United States Air Force Academy in Colorado and the Massachusetts Institute of Technology in Cambridge, and he attended the U.S. Air Force Test Pilot School at Edwards Air Force Base in California. Hague’s military career has taken him to New Mexico, Colorado, Virginia, and Washington, D.C., and included a five-month deployment to Iraq. Hague transferred from the Air Force to the U.S. Space Force in 2020 after serving as the Space Force’s director of test and evaluation at the Pentagon.

No stranger to new places, Hague vividly recalls making his first trip to Johnson when he was interviewing to join NASA’s astronaut corps. “I had no idea what to expect, and it was a bit overwhelming. I knew everyone was watching me and judging me,” he said. “Luckily, even though I wasn’t selected then, I got another chance a few years later. It’s a pretty magical place.”

Hague completed his astronaut training in July 2015 as part of NASA’s 21st astronaut class. He was the first astronaut from that group to be assigned to a mission, which launched in October 2018 but was aborted shortly after takeoff. His next spaceflight occurred in 2019, when he joined three of his classmates – NASA astronauts Jessica Meir, Christina Koch, and Andrew Morgan – aboard the International Space Station for Expeditions 59 and 60.

NASA astronaut Nick Hague suits up for spacewalk training in the Neutral Buoyancy Laboratory. NASA/James Blair

Hague has made many memories at Johnson, but one that stands out is his experience working onsite amid the 2013 government shutdown. “I’m active-duty military so I still came to work,” he explained. “I remember being onsite and the center being completely empty. Being able to ride around an empty campus on the free-range bikes – it was peaceful and surreal.” It was also a preview of what many Johnson employees experienced during the pandemic and how NASA maintains round-the-clock support for spaceflight operations regardless of extenuating circumstances.

Hague now looks ahead to another journey to low Earth orbit. NASA and SpaceX officials currently plan to launch the Crew-9 mission no earlier than Wednesday, Sept. 25. The crew will lift off from Launch Complex 40 from the Cape Canaveral Space Force Station in Florida aboard a SpaceX Falcon 9 rocket and Dragon spacecraft.

Roscosmos cosmonaut Aleksandr Gorbunov (left) and NASA astronaut Nick Hague during a visit to Kennedy Space Center for training. SpaceX

Hague and Gorbonov will become members of the Expedition 72 crew aboard the station. They will join NASA astronauts Butch Wilmore, Suni Williams, and Don Pettit, and Roscosmos cosmonauts Alexey Ovchinin and Ivan Vagner, and will spend about six months conducting scientific research in microgravity and completing a range of operational activities before returning home.

More details about the mission and crew can be found by following the Crew-9 blog@commercial_crew on X, or commercial crew on Facebook. You can also follow @astrohague on X and Instagram.

Categories: NASA

Hubble Examines a Busy Galactic Center

NASA Image of the Day - Wed, 09/18/2024 - 3:40pm
This NASA/ESA Hubble Space Telescope image features the spiral galaxy IC 4709 located around 240 million light-years away in the southern constellation Telescopium. Hubble beautifully captures its faint halo and swirling disk filled with stars and dust bands.
Categories: Astronomy, NASA

Hubble Examines a Busy Galactic Center

NASA - Breaking News - Wed, 09/18/2024 - 3:39pm
ESA/Hubble & NASA, M. Koss, A, Barth

This NASA/ESA Hubble Space Telescope image features the spiral galaxy IC 4709 located around 240 million light-years away in the southern constellation Telescopium. Hubble beautifully captures its faint halo and swirling disk filled with stars and dust bands. The compact region at its core might be the most remarkable sight. It holds an active galactic nucleus (AGN).

If IC 4709’s core just held stars, it wouldn’t be nearly as bright. Instead, it hosts a gargantuan black hole, 65 million times more massive than our Sun. A disk of gas spirals around and eventually into this black hole, crashing together and heating up as it spins. It reaches such high temperatures that it emits vast quantities of electromagnetic radiation, from infrared to visible to ultraviolet light and X-rays. A lane of dark dust, just visible at the center of the galaxy in the image above, obscures the AGN in IC 4709. The dust lane blocks any visible light emission from the nucleus itself. Hubble’s spectacular resolution, however, gives astronomers a detailed view of the interaction between the quite small AGN and its host galaxy. This is essential to understanding supermassive black holes in galaxies much more distant than IC 4709, where resolving such fine details is not possible.

This image incorporates data from two Hubble surveys of nearby AGNs originally identified by NASA’s Swift telescope. There are plans for Swift to collect new data on these galaxies. Swift houses three multiwavelength telescopes, collecting data in visible, ultraviolet, X-ray, and gamma-ray light. Its X-ray component will allow SWIFT to directly see the X-rays from IC 4709’s AGN breaking through the obscuring dust. ESA’s Euclid telescope — currently surveying the dark universe in optical and infrared light — will also image IC 4709 and other local AGNs. Their data, along with Hubble’s, provides astronomers with complementary views across the electromagnetic spectrum. Such views are key to fully research and better understand black holes and their influence on their host galaxies.

Categories: NASA

NASA, US Department of Education to Launch STEM Project in Washington

NASA - Breaking News - Wed, 09/18/2024 - 1:15pm
Students are recognized for their hard work in STEM-related extended-day programs at their school through a partnership with NASA’s Langley Research Center in Hampton, Virginia.Credit: NASA

Media are invited to the kickoff event of a collaboration between NASA and the U.S. Department of Education at 4 p.m. EDT Monday, Sept. 23, at the Wheatley Education Campus in Washington. The interagency project, 21st Century Community Learning Centers, aims to engage students in science, technology, engineering, and math (STEM) education during after-school hours.

During the event, media will have the opportunity to learn about the STEM collaboration, hear remarks from leadership, and have one-on-one interviews with NASA and Education Department officials upon request. Additionally, students will have the opportunity to engage in educational activities, as well as participate in an engineering design challenge.

Officials providing remarks at the event include:

  • Kris Brown, deputy associate administrator, NASA’s Office of STEM Engagement, Headquarters in Washington
  • Cindy Marten, deputy secretary, U.S. Department of Education

Media interested in covering the event must RSVP no later than Friday, Sept. 20, to Abbey Donaldson: abbey.a.donaldson@nasa.gov.

Through the project, NASA’s Glenn Research Center in Cleveland and the Education Department will align resources to provide STEM activities, professional development, and funding for after-school programs nationwide. NASA will offer staff training, continuous program support, and opportunities for students to engage with NASA scientists and engineers. The initiative also will include student activities that demonstrate practical applications of STEM concepts.

In May 2023, NASA and the Education Department signed a Memorandum of Understanding, strengthening the collaboration between the two agencies, and expanding efforts to increase access to high-quality STEM and space education to students and schools across the nation. NASA Glenn signed a follow-on Space Act Agreement in 2024 to support the 21st Century Community Learning Centers.

Learn more about how NASA’s Office of STEM Engagement is inspiring the next generation of explorers at:

https://www.nasa.gov/stem

-end-

Abbey Donaldson
Headquarters, Washington
202-269-1600
abbey.a.donaldson@nasa.gov

Share Details Last Updated Sep 18, 2024 EditorJessica TaveauLocationNASA Headquarters Related Terms
Categories: NASA

Rob Gutro: Clear Science in the Forecast

NASA - Breaking News - Wed, 09/18/2024 - 10:00am

Rob Gutro has never been one to stay idle. From his start working at a paper factory as a teenager, Rob navigated his way to NASA’s Goddard Space Flight Center where he serves as the deputy news chief in the Office of Communications until he retires in October 2024.

Rob Gutro serves as deputy news chief at NASA’s Goddard Space Flight Center.Photo courtesy of Rob Gutro

In this role, Rob manages all the media products, like news stories and videos, that come out of Goddard. He also edits content, creates detailed reports, and coordinates media requests, leaning on decades of experience in communications to help the Goddard newsroom run smoothly.

But his path to NASA was neither paved nor linear. It took a strong will and unflagging passion to overcome obstacles along the way and rise to his current role.

Weathering the Journey 

Rob began working at a young age, first at a paper factory, then a bank, and then a law office. But none of these jobs were ever his end goal.

“I loved music as a teenager and always wanted to work on the radio,” Rob says. So he got a degree in radio and television from Northeast Broadcasting School in Boston. “I went straight into radio broadcasting and continued that part-time for 20 years.”

He started out hosting a weekend radio show, but didn’t intend for it to be a career for financial reasons. So he completed another degree, this time in English and business at Suffolk University in Boston. 

“I knew that to do the type of broadcasting I wanted to do, I needed to learn how to write so I could explain things via stories and reporting,” Rob says. “And I was particularly fascinated by the weather, so I wanted to be able to communicate broadly about that.”

He then worked for the USDA as a writer and editor for a year before joining NOAA as a writer in the 1990s. The highlight of his NOAA career was a work detail he did for the National Hurricane Center during hurricane season in 1993. He enjoyed it so much he eventually decided to go back to school again, earning a degree in meteorology from Western Kentucky University in Bowling Green. “I call it my third degree burn,” he jokes.

During the program, he refined his broadcasting skills and immersed himself in the science behind the weather and forecasting. He was focusing on what he loved, though it wasn’t an easy journey.

“When I went back to school for meteorology I was working two jobs and making minimum wage, living off of ramen noodles and tuna fish every day because that was all I could afford,” Rob says. “But I was determined!”

Upon graduation, he began working for a private weather company doing marketing and writing. Rob balanced multiple jobs, including a part-time radio gig, while continually applying to The Weather Channel. After eight years of applications, he was finally hired as a radio broadcast meteorologist! “I loved being on the air with The Weather Channel and doing radio broadcasts,” Rob says. 

“I think the key to everything is persistence and patience,” Rob says. “My advice to everybody is no matter what your goal is, keep pursuing it because eventually it will happen!”

Navigating NASA 

Rob’s desire to understand climate change and return to Maryland brought him to NASA. He became an Earth science writer at NASA Goddard in 2000. By 2005, he was the manager of the Earth science news team, and in 2009 he began working with the James Webb Space Telescope team and also obtained his current role of deputy news chief.

Rob and Lynn to the rescue! One of the highlights of Rob’s career at NASA was working with Lynn Jenner for more than 20 years. Together, the duo –– photographed here at a work party –– managed web pages about hurricanes and fires.Courtesy of Rob Gutro

“My degrees have served me well at NASA because I work with the media, I write, and I have to understand science,” Rob says. 

His favorite NASA project was the now-retired NASA hurricane page, which he wrote content for and kept updated every single day for the 15 years it was active. The media frequently used NASA imagery shared on the hurricane page, and people worldwide used the information to make decisions about their safety during hurricanes.

“I’ll never forget one experience, where a woman in the Philippines asked if she should evacuate her mother from a nursing home on the island of Visayas,” Rob says. “I said yes, because the island was going to be inundated by an eight-foot storm surge.” So she did, and two weeks later she emailed Rob again saying the entire nursing home was flooded to the roof — her mother would have likely drowned if she’d stayed.

On to the Next Chapter

As busy as his work life has been — Rob had three jobs at any given time until he was 40 years old — his off duty hours haven’t been idle either. In January 2025, he’s publishing his twelfth book, and has another six already mostly written.

“I’m retiring from NASA soon and will focus on my books, continuing the fundraising lectures for animal rescues that I’ve done for the last decade, and teaching paranormal courses in night school for two adult education programs,” Rob says. “And my husband and I have three dogs to keep us busy — they are the joy of my life!”

Rob’s three dogs, as pictured on a 2023 Christmas card. Photo courtesy of Rob Gutro

Reflecting on his career, Rob singles out blogging as one of the most effective tools he’s used over the years. 

“Whether you want to write a book or science articles, one of the easiest ways to begin is by starting a blog and writing about things you like,” he says. That’s one key to his productivity, as he says, “Whatever you write can always be repurposed, and if you’re constantly leaning into things you’re passionate about, you’ll eventually end up exactly where you’re meant to be.”

By Ashley Balzer
NASA’s Goddard Space Flight Center in Greenbelt, Md.

Categories: NASA

NASA’s Webb Provides Another Look Into Galactic Collisions

NASA - Breaking News - Wed, 09/18/2024 - 10:00am
4 Min Read NASA’s Webb Provides Another Look Into Galactic Collisions

This composite image of Arp 107 reveals a wealth of information about the star-formation and how these two galaxies collided hundreds of million years ago (full image below).

Credits:
NASA, ESA, CSA, STScI

Smile for the camera! An interaction between an elliptical galaxy and a spiral galaxy, collectively known as Arp 107, seems to have given the spiral a happier outlook thanks to the two bright “eyes” and the wide semicircular “smile.” The region has been observed before in infrared by NASA’s Spitzer Space Telescope in 2005, however NASA’s James Webb Space Telescope displays it in much higher resolution. This image is a composite, combining observations from Webb’s MIRI (Mid-Infrared Instrument) and NIRCam (Near-Infrared Camera).

Image A: Arp 107 (NIRCam and MIRI Image) This composite image of Arp 107, created with data from the James Webb Space Telescope’s NIRCam (Near-Infrared Camera) and MIRI (Mid-Infrared Instrument), reveals a wealth of information about the star-formation and how these two galaxies collided hundreds of million years ago. NASA, ESA, CSA, STScI

NIRCam highlights the stars within both galaxies and reveals the connection between them: a transparent, white bridge of stars and gas pulled from both galaxies during their passage. MIRI data, represented in orange-red, shows star-forming regions and dust that is composed of soot-like organic molecules known as polycyclic aromatic hydrocarbons. MIRI also provides a snapshot of the bright nucleus of the large spiral, home to a supermassive black hole.

Image B: Arp 107 (MIRI Image) This image of Arp 107, shown by Webb’s MIRI (Mid-Infrared Instrument), reveals the supermassive black hole that lies in the center of the large spiral galaxy to the right. This black hole, which pulls much of the dust into lanes, also display’s Webb’s characteristic diffraction spikes, caused by the light that it emits interacting with the structure of the telescope itself. NASA, ESA, CSA, STScI

The spiral galaxy is classified as a Seyfert galaxy, one of the two largest groups of active galaxies, along with galaxies that host quasars. Seyfert galaxies aren’t as luminous and distant as quasars, making them a more convenient way to study similar phenomena in lower energy light, like infrared.

This galaxy pair is similar to the Cartwheel Galaxy, one of the first interacting galaxies that Webb observed. Arp 107 may have turned out very similar in appearance to the Cartwheel, but since the smaller elliptical galaxy likely had an off-center collision instead of a direct hit, the spiral galaxy got away with only its spiral arms being disturbed. 

The collision isn’t as bad as it sounds. Although there was star formation occurring before, collisions between galaxies can compress gas, improving the conditions needed for more stars to form. On the other hand, as Webb reveals, collisions also disperse a lot of gas, potentially depriving new stars of the material they need to form.

Webb has captured these galaxies in the process of merging, which will take hundreds of millions of years. As the two galaxies rebuild after the chaos of their collision, Arp 107 may lose its smile, but it will inevitably turn into something just as interesting for future astronomers to study.

Arp 107 is located 465 million light-years from Earth in the constellation Leo Minor.

Video: Tour the Arp 107 Image Video tour transcript
Credit: NASA, ESA, CSA, STScI, Danielle Kirshenblat (STScI)

The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).

Downloads

Right click any image to save it or open a larger version in a new tab/window via the browser’s popup menu.

View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.

Media Contacts

Laura Betz – laura.e.betz@nasa.gov, Rob Gutrorob.gutro@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Matthew Brownmabrown@stsci.edu, Christine Pulliamcpulliam@stsci.edu
Space Telescope Science Institute, Baltimore, Md.

Related Information

Video: What happens when galaxies collide?

Interactive: Explore “Interacting Galaxies: Future of the Milky Way”

Other images: Hubble’s view of Arp 107 and Spitzer’s view of Arp 107

Video: Galaxy Collisions: Simulations vs. Observations

Article: More about Galaxy Evolution

Video: Learn more about galactic collisions

More Webb News

More Webb Images

Webb Science Themes

Webb Mission Page

Related For Kids

What is a galaxy?

What is the Webb Telescope?

SpacePlace for Kids

En Español

¿Qué es una galaxia?

Ciencia de la NASA

NASA en español 

Space Place para niños

Keep Exploring Related Topics

James Webb Space Telescope

Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


Galaxies


Galaxies Stories


Universe

Share

Details

Last Updated

Sep 17, 2024

Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov

Related Terms
Categories: NASA

NASA Astronaut Tracy C. Dyson’s Scientific Mission aboard Space Station

NASA - Breaking News - Wed, 09/18/2024 - 9:00am

4 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA astronaut Tracy C. Dyson smiles for a portrait in the vestibule between the Kibo laboratory module and the Harmony module aboard space station.NASA

NASA astronaut Tracy C. Dyson is returning home after a six-month mission aboard the International Space Station. While on orbit, Dyson conducted an array of experiments and technology demonstrations that contribute to advancements for humanity on Earth and the agency’s trajectory to the Moon and Mars. 

Here is a look at some of the science Dyson conducted during her mission: 

Heart-Shaped Bioprints  NASA

NASA astronaut Tracy C. Dyson operates the BioFabrication Facility for the Redwire Cardiac Bioprinting Investigation, which 3D prints cardiovascular tissue samples. In microgravity, bio inks used for 3D printing are less likely to settle and retain their shape better than on Earth. Cardiovascular disease is currently the number one cause of death in the United States, and findings from this space station investigation could one day lead to 3D-printed organs such as hearts for patients awaiting transplants. 

Wicking in Weightlessness  NASA

NASA astronaut Tracy C. Dyson handles hardware for the Wicking in Gel-Coated Tubes (Gaucho Lung) experiment. This study uses a tube lined with various gel thicknesses to simulate the human respiratory system. A fluid mass known as a liquid plug is then observed as it either blocks or flows through the tube. Data regarding the movement and trailing of the liquid plug allows researchers to design better drug delivery methods to address respiratory ailments. 

Programming for Future Missions  NASA NASA

NASA astronaut Tracy C. Dyson runs student-designed software on the free-flying Astrobee robot. This technology demonstration is part of Zero Robotics, a worldwide competition that engages middle school students in writing computer code to address unique specifications. Winning participants get to run their software on an actual Astrobee aboard the space station. This educational opportunity helps inspire the next generation of technology innovators.     

Robo-Extensions NASA

As we venture to the Moon and Mars, astronauts may rely more on robots to ensure safety and preserve resources. Through the Surface Avatar study, NASA astronaut Tracy C. Dyson controls a robot on Earth’s surface from a computer aboard station. This technology demonstration aims to toggle between manipulating multiple robots and “diving inside” a specific bot to control as an avatar. This two-way demonstration also evaluates how robot operators respond their robotic counterparts’ efficiency and general output. Applications for Earth use include exploration of inhospitable zones and search and rescue missions after disasters.  

Capturing Earth’s Essence NASA

For Crew Earth Observations, astronauts take pictures of Earth from space for research purposes. NASA astronauts Suni Williams (left) and Tracy C. Dyson (right) contribute by aiming handheld cameras from the space station’s cupola to photograph our planet. Images help inform climate and environmental trends worldwide and provide real-time natural disaster assessments. More than four million photographs have been taken of Earth by astronauts from space.  

Multi-faceted Crystallization Processor  NASA

NASA astronaut Tracy C. Dyson holds a cassette for Pharmaceutical In-Space Laboratory – 04 (ADSEP-PIL-04), an experiment to crystallize the model proteins lysozyme and insulin. Up to three cassettes with samples can be processed simultaneously in the Advanced Space Experiment Processor (ADSEP), each at an independent temperature. Because lysozyme and insulin have well-documented crystal structures, they can be used to evaluate the hardware’s performance in space. Successful crystallization with ADSEP could lead to production and manufacturing of versatile crystals with pharmaceutical applications.  

Cryo Care   NASA

NASA astronauts Tracy C. Dyson and Matthew Dominick preserve research samples in freezers aboard the space station. Cryopreservation is essential for maintaining the integrity of samples for a variety of experiments, especially within the field of biology. The orbiting laboratory has multiple freezer options with varying subzero temperatures. Upon return, frozen samples are delivered back to their research teams for further analysis.    

Welcoming New Science  NASA

NASA astronaut Tracy C. Dyson is pictured between the Unity module and Northrop Grumman’s Cygnus spacecraft in preparation for depressurization and departure from the International Space Station. On long-duration missions, visiting vehicles provide necessities for crew daily living as well as new science experiments and supplies for ongoing research. This vehicle brought experiments to test water recovery technology, produce stem cells in microgravity, study the effects of spaceflight on microorganism DNA, and conduct science demonstrations for students.   

Diana Garcia 

International Space Station Research Communications Team

NASA’s Johnson Space Center 

Keep Exploring Discover More Topics

Latest News from Space Station Research

Humans in Space

Station Science 101

Expedition 71

Expedition 71 began on April 5, 2024 and ends in September 2024. This crew will explore neuro-degenerative diseases and therapies,…

Categories: NASA

Reinventing the Clock: NASA’s New Tech for Space Timekeeping

NASA - Breaking News - Wed, 09/18/2024 - 8:00am
5 Min Read Reinventing the Clock: NASA’s New Tech for Space Timekeeping The Optical Atomic Strontium Ion Clock is a higher-precision atomic clock that is small enough to fit on a spacecraft. Credits: NASA/Matthew Kaufman

Here on Earth, it might not matter if your wristwatch runs a few seconds slow. But crucial spacecraft functions need accuracy down to one billionth of a second or less. Navigating with GPS, for example, relies on precise timing signals from satellites to pinpoint locations. Three teams at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, are at work to push timekeeping for space exploration to new levels of precision.

  • One team develops highly precise quantum clock synchronization techniques to aid essential spacecraft communication and navigation.
  • Another Goddard team is working to employ the technique of clock synchronization in space-based platforms to enable telescopes to function as one enormous observatory.
  • The third team is developing an atomic clock for spacecraft based on strontium, a metallic chemical element, to enable scientific observations not possible with current technology.

The need for increasingly accurate timekeeping is why these teams at NASA Goddard, supported by the center’s Internal Research and Development program, hone clock precision and synchronization with innovative technologies like quantum and optical communications.

Syncing Up Across the Solar System

“Society requires clock synchronization for many crucial functions like power grid management, stock market openings, financial transactions, and much more,” said Alejandro Rodriguez Perez, a NASA Goddard researcher. “NASA uses clock synchronization to determine the position of spacecraft and set navigation parameters.”

If you line up two clocks and sync them together, you might expect that they will tick at the same rate forever. In reality, the more time passes, the more out of sync the clocks become, especially if those clocks are on spacecraft traveling at tens of thousands of miles per hour. Rodriguez Perez seeks to develop a new way of precisely synchronizing such clocks and keeping them synced using quantum technology.

Work on the quantum clock synchronization protocol takes place in this lab at NASA’s Goddard Space Flight Center in Greenbelt, Md.NASA/Matthew Kaufman

In quantum physics, two particles are entangled when they behave like a single object and occupy two states at once. For clocks, applying quantum protocols to entangled photons could allow for a precise and secure way to sync clocks across long distances.

The heart of the synchronization protocol is called spontaneous parametric down conversion, which is when one photon breaks apart and two new photons form. Two detectors will each analyze when the new photons appear, and the devices will apply mathematical functions to determine the offset in time between the two photons, thus synchronizing the clocks.

While clock synchronization is currently done using GPS, this protocol could make it possible to precisely synchronize clocks in places where GPS access is limited, like the Moon or deep space.

Syncing Clocks, Linking Telescopes to See More than Ever Before

When it comes to astronomy, the usual rule of thumb is the bigger the telescope, the better its imagery.

“If we could hypothetically have a telescope as big as Earth, we would have incredibly high-resolution images of space, but that’s obviously not practical,” said Guan Yang, an optical physicist at NASA Goddard. “What we can do, however, is have multiple telescopes in various locations and have each telescope record the signal with high time precision. Then we can stich their observations together and produce an ultra-high-res image.”

The idea of linking together the observations of a network of smaller telescopes to affect the power of a larger one is called very long baseline interferometry, or VLBI.

For VLBI to produce a whole greater than the sum of its parts, the telescopes need high-precision clocks. The telescopes record data alongside timestamps of when the data was recorded. High-powered computers assemble all the data together into one complete observation with greater detail than any one of the telescopes could achieve on its own. This technique is what allowed the Event Horizon Telescope’s network of observatories to produce the first image of a black hole at the center of our galaxy.

The Event Horizon Telescope (EHT) — a planet-scale array of eight ground-based radio telescopes forged through international collaboration — was designed to capture images of a black hole. Although the telescopes making up the EHT are not physically connected, they are able to synchronize their recorded data with atomic clocks.EHT Collaboration

Yang’s team is developing a clock technology that could be useful for missions looking to take the technique from Earth into space which could unlock many more discoveries.

An Optical Atomic Clock Built for Space Travel

Spacecraft navigation systems currently rely on onboard atomic clocks to obtain the most accurate time possible. Holly Leopardi, a physicist at NASA Goddard, is researching optical atomic clocks, a more precise type of atomic clock.

While optical atomic clocks exist in laboratory settings, Leopardi and her team seek to develop a spacecraft-ready version that will provide more precision.

The team works on OASIC, which stands for Optical Atomic Strontium Ion Clock. While current spacecraft utilize microwave frequencies, OASIC uses optical frequencies.

The Optical Atomic Strontium Ion Clock is a higher-precision atomic clock that is small enough to fit on a spacecraft.NASA/Matthew Kaufman

“Optical frequencies oscillate much faster than microwave frequencies, so we can have a much finer resolution of counts and more precise timekeeping,” Leopardi said.

The OASIC technology is about 100 times more precise than the previous state-of-the-art in spacecraft atomic clocks. The enhanced accuracy could enable new types of science that were not previously possible.

“When you use these ultra-high precision clocks, you can start looking at the fundamental physics changes that occur in space,” Leopardi said, “and that can help us better understand the mechanisms of our universe.”

The timekeeping technologies unlocked by these teams, could enable new discoveries in our solar system and beyond.

More on cutting-edge technology development at NASA Goddard

By Matthew Kaufman, with additional contributions from Avery Truman
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Share Details Last Updated Sep 18, 2024 EditorRob GarnerContactRob Garnerrob.garner@nasa.govLocationGoddard Space Flight Center Related Terms
Categories: NASA

<p><a href="https://apod.nasa.gov/apod

APOD - Tue, 09/17/2024 - 8:00pm

A natural border between


Categories: Astronomy, NASA

Measuring Moon Dust to Fight Air Pollution

NASA - Breaking News - Tue, 09/17/2024 - 4:39pm

3 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) While astronaut Gene Cernan was on the lunar surface during the Apollo 17 mission, his spacesuit collected loads of lunar dust. The gray, powdery substance stuck to the fabric and entered the capsule causing eye, nose, and throat irritation dubbed “lunar hay fever.” Credit: NASACredit: NASA

Moon dust, or regolith, isn’t like the particles on Earth that collect on bookshelves or tabletops – it’s abrasive and it clings to everything. Throughout NASA’s Apollo missions to the Moon, regolith posed a challenge to astronauts and valuable space hardware.

During the Apollo 17 mission, astronaut Harrison Schmitt described his reaction to breathing in the dust as “lunar hay fever,” experiencing sneezing, watery eyes, and a sore throat. The symptoms went away, but concern for human health is a driving force behind NASA’s extensive research into all forms of lunar soil.

The need to manage the dust to protect astronaut health and critical technology is already beneficial on Earth in the fight against air pollution.

Working as a contributor on a habitat for NASA’s Next Space Technologies for Exploration Partnerships (NextSTEP) program, Lunar Outpost Inc. developed an air-quality sensor system to detect and measure the amount of lunar soil in the air that also detects pollutants on Earth. 

Originally based in Denver, the Golden, Colorado-based company developed an air-quality sensor called the Space Canary and offered the sensor to Lockheed Martin Space for its NextSTEP lunar orbit habitat prototype. After the device was integrated into the habitat’s environmental control system, it provided distinct advantages over traditional equipment.

Rebranded as Canary-S (Solar), the sensor is now meeting a need for low-cost, wireless air-quality and meteorological monitoring on Earth. The self-contained unit, powered by solar energy and a battery, transmits data using cellular technology. It can measure a variety of pollutants, including particulate matter, carbon monoxide, methane, sulfur dioxide, and volatile organic compounds, among others. The device sends a message up to a secure cloud every minute, where it’s routed to either Lunar Outpost’s web-based dashboard or a customer’s database for viewing and analysis.

The oil and gas industry uses the Canary-S sensors to provide continuous, real-time monitoring of fugitive gas emissions, and the U.S. Forest Service uses them to monitor forest-fire emissions.

“Firefighters have been exhibiting symptoms of carbon monoxide poisoning for decades. They thought it was just part of the job,” explained Julian Cyrus, chief operating officer of Lunar Outpost. “But the sensors revealed where and when carbon monoxide levels were sky high, making it possible to issue warnings for firefighters to take precautions.”

The Canary-S sensors exemplify the life-saving technologies that can come from the collaboration of NASA and industry innovations. 

Read More Share Details Last Updated Sep 17, 2024 Related Terms Explore More 2 min read Printed Engines Propel the Next Industrial Revolution

Efforts to 3D print engines produce significant savings in rocketry and beyond

Article 6 days ago
2 min read Tech Today: Flipping NASA Tech and Sticking the Landing 

NASA tech adds gecko grip to phone accessory

Article 1 month ago
2 min read Tech Today: Space Age Swimsuit Reduces Drag, Breaks Records

SpeedoUSA worked with Langley Research Center to design a swimsuit with reduced surface drag.

Article 2 months ago
Keep Exploring Discover Related Topics

Technology Transfer and Spinoffs News

Humans in Space

Climate Change

Solar System

Categories: NASA

NASA Selects Lunar Relay Contractor for Near Space Network Services

NASA - Breaking News - Tue, 09/17/2024 - 4:32pm
Credit: NASA

NASA has awarded a contract to Intuitive Machines, LLC of Houston, to support the agency’s lunar relay systems as part of the Near Space Network, operated by the agency’s Goddard Space Flight Center in Greenbelt, Maryland.

This Subcategory 2.2 GEO to Cislunar Relay Services is a new firm-fixed-price, multiple award, indefinite-delivery/indefinite-quantity task order contract. The contract has a base period of five years with an additional 5-year option period, with a maximum potential value of $4.82 billion. The base ordering period begins Tuesday, Oct. 1, 2024, through Sept. 30, 2029, with the option period potentially extending the contract through Sept. 30, 2034.

Lunar relays will play an essential role in NASA’s Artemis campaign to establish a long-term presence on the Moon. These relays will provide vital communication and navigation services for the exploration and scientific study of the Moon’s South Pole region. Without the extended coverage offered by lunar relays, landing opportunities at the Moon’s South Pole will be significantly limited due to the lack of direct communication between potential landing sites and ground stations on Earth.

The lunar relay award also includes services to support position, navigation, and timing capabilities, which are crucial for ensuring the safety of navigation on and around the lunar surface. Under the contract, Intuitive Machines also will enable NASA to provide communication and navigation services to customer missions in the near space region.

The initial task award will support the progressive validation of lunar relay capabilities/services for Artemis. NASA anticipates these lunar relay services will be used with human landing systems, the LTV (lunar terrain vehicle), and CLPS (Commercial Lunar Payload Services) flights.

As lunar relay services become fully operational, they will be integrated into the Near Space Network’s expanding portfolio, enhancing communications and navigation support for future lunar missions. By implementing these new capabilities reliance on NASA’s Deep Space Network will be reduced.

NASA’s goal is to provide users with communication and navigation services that are secure, reliable, and affordable, so that all NASA users receive the services required by their mission within their latency, accuracy, and availability requirements.

This is another step in NASA partnering with U.S. industry to build commercial space partners to support NASA missions, including NASA’s long-term Moon to Mars objectives for interoperable communications and navigation capabilities. This award is part of the Space Communications and Navigation (SCaN) Program and will be executed by the Near Space Network team at NASA Goddard.

For information about NASA and agency programs, visit:

https://www.nasa.gov

-end-

Joshua Finch
Headquarters, Washington
202-358-1100
joshua.a.finch@nasa.gov

Tiernan Doyle
Headquarters, Washington
202-358-1600
tiernan.doyle@nasa.gov

Share Details Last Updated Sep 17, 2024 LocationNASA Headquarters Related Terms
Categories: NASA

NASA Selects Lockheed Martin to Develop Lightning Mapper for NOAA

NASA - Breaking News - Tue, 09/17/2024 - 4:05pm
Credit: NASA

NASA, on behalf of the National Oceanic and Atmospheric Administration (NOAA), has selected Lockheed Martin Corp. of Littleton, Colorado, to develop a lightning mapping instrument as part of NOAA’s Geostationary Extended Observations (GeoXO) satellite program.

This cost-plus-award-fee contract is valued at approximately $297.1 million. It includes the development of two flight instruments as well as options for two additional units. The anticipated period of performance for this contract includes support for 10 years of on-orbit operations and five years of on-orbit storage, for a total of 15 years for each flight model. The work will take place at Lockheed Martin’s facilities in Sunnyvale, California, and Littleton, Colorado, NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and the agency’s Kennedy Space Center in Florida.

The GeoXO Lightning Mapper will detect, locate, and measure the intensity, duration, and extent of lightning flashes. The instrument will continue critical observations provided by the Geostationary Operational Environmental Satellites-R (GOES-R) Series Geostationary Lightning Mapper. Data from Lightning Mapper will be used to analyze severe storms, increase warning lead time for hazardous weather, and provide earlier indications of impending lightning strikes to the ground. The data will also be used for hurricane intensity prediction, wildfire detection and response, precipitation estimation, and to mitigate aviation hazards.

Forecasters need lightning information from geostationary orbit because the data are available where other sources are more limited, especially over oceans and in mountainous and rural areas. The data are also available more frequently than local radar and fill in radar coverage gaps.

The contract scope includes the tasks and deliverables necessary to design, analyze, develop, fabricate, integrate, test, verify, and evaluate the lightning mapper instrument in addition to supporting the launch; supplying and maintaining the instrument ground support equipment; and supporting mission operations at the NOAA Satellite Operations Facility in Suitland, Maryland.

The GeoXO Program is the follow-on to the GOES-R Series Program. The GeoXO satellite system will advance Earth observations from geostationary orbit. The mission will supply vital information to address major environmental challenges of the future in support of weather, ocean, and climate operations in the United States. The advanced capabilities from GeoXO will help address our changing planet and the evolving needs of the nation’s data users. Both NASA and NOAA are working to ensure these critical observations are in place by the early 2030s when the GOES-R Series nears the end of its operational lifetime.

Together, NOAA and NASA oversee the development, launch, testing, and operation of all the satellites in the GeoXO Program. NOAA funds and manages the program, operations, and data products. On behalf of NOAA, NASA and commercial partners develop and build the instruments and spacecraft and launch the satellites.

For more information on the GeoXO program, visit:

https://www.nesdis.noaa.gov/geoxo

-end-

Liz Vlock
Headquarters, Washington
202-358-1600
elizabeth.a.vlock@nasa.gov

Jeremy Eggers
Goddard Space Flight Center, Greenbelt, Md.
757-824-2958
jeremy.l.eggers@nasa.gov

John Leslie
NOAA’s National Environmental Satellite, Data, and Information Service
202-527-3504
nesdis.pa@noaa.gov

Share Details Last Updated Sep 17, 2024 EditorJessica TaveauLocationNASA Headquarters Related Terms
Categories: NASA

NASA Marshall to Present 2024 Small Business Awards Sept. 19

NASA - Breaking News - Tue, 09/17/2024 - 3:42pm

2 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) Credit: NASA

NASA’s Marshall Space Flight Center in Huntsville, Alabama, invites media to its annual Small Business Industry and Advocate Awards ceremony on Thursday, Sept. 19. The awards recognize small businesses and small business champions from government and industry for their outstanding achievements in fiscal year 2024.

The ceremony will take place during the 38th meeting of Marshall’s Small Business Alliance, from 8 a.m. to 12:30 p.m. CDT at the U.S. Space & Rocket Center’s Davidson Center for Space Exploration. The event will also highlight new opportunities for small businesses to take part in NASA’s procurement processes. Afterward, attendees will have the open opportunity to network with NASA officials, prime contractors, and other members of Marshall’s small business community. Exhibitors will provide valuable information to support their business.

NASA speakers include:

  • Dwight Deneal, assistant administrator, Office of Small Business Programs, NASA Headquarters
  • Joseph Pelfrey, center director, NASA Marshall
  • John Cannaday, director, Office of Procurement, NASA Marshall
  • Davey Jones, strategy lead, NASA Marshall
  • David Brock, small business specialist, Office of Small Business Programs, NASA Marshall

Media interested in covering the event should contact Molly Porter at molly.a.porter@nasa.gov or 256-424-5158 by 4:30 p.m. on Wednesday, Sept. 18.

About the Marshall Small Business Alliance

For 17 years, the Marshall Small Business Alliance has aided small businesses in pursuit of NASA procurement and subcontracting opportunities. Its primary focus is to inform, educate, and advocate on behalf of the small business community. At each half day meeting, businesses will gain valuable insight to guide them in their marketing endeavors.

To learn more about Marshall’s small business initiatives, visit:

https://doingbusiness.msfc.nasa.gov

Molly Porter
Marshall Space Flight Center, Huntsville, Ala.
256-424-5158
molly.a.porter@nasa.gov

Share Details Last Updated Sep 17, 2024 LocationMarshall Space Flight Center Related Terms Explore More 2 min read Printed Engines Propel the Next Industrial Revolution

Efforts to 3D print engines produce significant savings in rocketry and beyond

Article 6 days ago
22 min read The Marshall Star for September 11, 2024 Article 7 days ago 1 min read Gateway Space Station in 3D Article 1 week ago Keep Exploring Discover Related Topics

Missions

Humans in Space

Climate Change

Solar System

Categories: NASA

Johnson Space Center Ignites STEM Passion at Houston’s Japan Festival 

NASA - Breaking News - Tue, 09/17/2024 - 3:05pm

From Sept. 6-7, 2024, NASA’s Johnson Space Center brought the excitement of space exploration to the annual Japan Festival at Hermann Park in Houston.  

The lively cultural event featured traditional food, dance, martial arts, and more, while Johnson’s booth attracted attendees with interactive space exhibits and STEM (science, technology, engineering, and mathematics) activities.  

Johnson Space Center volunteers share NASA’s mission and student opportunities at the annual Japan Festival in Houston. NASA

Johnson employees passed along information about High School Aerospace Scholars (HAS), a NASA-unique program offering Texas high school juniors an opportunity to explore STEM fields.  

The program kicks off with an online course and, for top performers, culminates in an on-site summer experience at Johnson, where students can learn from NASA scientists and engineers. Program graduates may also apply for NASA internships and scholarships, including the Houston Livestock Show and Rodeo™ and Rotary National Award for Space Achievement scholarships. 

Attendees enjoy Johnson Space Center’s exhibit booth at Hermann Park in Houston. NASA/Johnnie Joseph

Festival attendees explored interactive displays, including models of the Space Launch System and Orion spacecraft, space food samples, and a real spacesuit glove and helmet. Johnson volunteers distributed NASA meatball stickers, mission stickers, and Artemis bookmarks with QR codes, offering students and space enthusiasts opportunities to dive deeper into STEM education and NASA’s missions. 

Johnson volunteers share NASA’s mission and student opportunities to festival attendees. NASA/Johnnie Joseph

NASA’s long-standing partnership with Japan was front and center as JAXA (Japan Aerospace Exploration Agency) set up a neighboring booth. JAXA astronaut Satoshi Furukawa delighted festival-goers by posing for photos, signing autographs, and visiting NASA’s booth to greet Johnson employees.  

The event highlighted the collaborative spirit of space exploration between NASA and its international partners, who are working together on missions around the Moon and beyond as part of the Artemis campaign. Japan, alongside other global partners, has committed to supporting the International Space Station through 2030. 

Festival attendees explore NASA’s booth, captivated by the space exhibits.NASA/Johnnie Joseph
Categories: NASA

Ocean Science Missions and Projects

NASA - Breaking News - Tue, 09/17/2024 - 2:53pm

5 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) Back to Ocean Science Landing Page

Internet of Animals

The Internet of Animals project combines animal tracking tags with remote sensing, to better understand habitat use and movement patterns. This kind of research enables more informed ecological management and conservation efforts, and broadens our understanding of how different ecosystems are reacting to a changing climate.
https://www.nasa.gov/nasa-earth-exchange-nex/new-missions-support/internet-of-animals/

FATE: dFAD Trajectory Tool

FATE will quantify dFAD (drifting fish aggregating devices) activity in relation to ocean currents, fish biomass, and animal telemetry at Palmyra Atoll, which is a U.S. Fish and Wildlife Service (USFWS) National Wildlife Refuge and is part of the U.S. Pacific Remote Islands Marine National Monument (PRIMNM) in the central Pacific Ocean. This innovative decision support tool will use NASA observations and numerical models to predict future dFAD trajectories and inform resource managers whether they should deploy tactical resources (boats, personnel) to monitor, intercept, or retrieve dFADs that have entered the MPA.

SeaSTAR

SeaSTAR aims to provide multi-spectral aerosol optical depth (AOD) and aerosol optical properties using a custom-built robotic sun/sky photometer. The instrument is designed to operate from a ship and is planned to deploy aboard the NOAA research vessel RV Shearwater in September 2024 to support the PACE-PAX airborne campaign.

PACE Validation Science Team Project: AirSHARP

Airborne asSessment of Hyperspectral Aerosol optical depth and water-leaving Reflectance Product Performance for PACE


The goal of AirSHARP is to provide high fidelity spatial coverage and spectral data for ocean color and aerosol products for validation of the PACE Ocean Color Instrument (OCI). Coastal influences on oceanic waters can produce high optical complexity for remote sensing especially in dynamic waters in both space and time. Dynamic coastal water features include riverine plumes (sediments and pollution), algal blooms, and kelp beds. Further, coastal California has a range of atmospheric conditions related to fires. We will accomplish validation of PACE products by combined airborne and field instrumentation for Monterey Bay, California.

Water2Coasts

Watersheds, Water Quality, and Coastal Communities in Puerto Rico

Water2Coasts is an interdisciplinary island landscape to coastal ocean assessment with socioeconomic implications. The goal of Water2Coasts is to conduct a multi-scale, interdisciplinary (i.e., hydrologic, remote sensing, and social) study on how coastal waters of east, and south Puerto Rico are affected by watersheds of varying size, land use, and climate regimes, and how these may in turn induce a variety of still poorly understood effects on coastal and marine ecosystems such as coral reefs and seagrass beds.

US Coral Reef Task Force (USCRTF)

The USCRTF was established in 1998 by Presidential Executive Order to lead U.S. efforts to preserve and protect coral reef ecosystems. The USCRTF includes leaders of Federal agencies, U.S. States, territories, commonwealths, and Freely Associated States. The USCRTF helps build partnerships, strategies, and support for on-the-ground action to conserve coral reefs. NASA ARC scientists are members of the Steering Committee, Watershed Working Group, and Disease and Disturbance Working Group, and lead the Climate Change Working Group to assist in the use of NASA remote sensing data and tools for coastal studies, including coral reef ecosystems. Data from new and planned hyperspectral missions will advance research in heavily impacted coastal ecosystems.

CyanoSCape

Cyanobacteria and surface phytoplankton biodiversity of the Cape freshwater systems

The diversity of phytoplankton is also found in freshwater systems. In Southern Africa, land use change and agricultural practices has hindered hydrological processes and compromised freshwater ecosystems. These impacts are compounded by increasingly variable rainfall and temperature fluctuations associated with climate change posing risks to water quality, food security, and aquatic biodiversity and sustainability. The goal of CyanoSCape is to utilize airborne hyperspectral data and field spectral and water sample data to distinguish phytoplankton biodiversity, including the potentially toxic cyanobacteria.

mCDR: Marine Carbon Dioxide Removal

The goals of this effort are to conduct literature review, analysis, and ocean simulation to provide scientifically vetted estimates of the impacts, risks, and benefits of various potential mCDR methods.

Ocean modeling Atlantic Meridional Overturning Circulation (AMOC) in a changing climate

The goals of this project are to build scientific understanding of the AMOC physics and its implications for biogeochemical cycles and climate, to assess the representation of AMOC in historical global ocean state estimates, and evaluate future needs for AMOC systems in a changing climate.

Elucidating the role of the ocean circulation in changing North Atlantic Ocean nutrients and biological productivity

This project will conduct analysis of NASA’s ECCO-Darwin ocean biogeochemical state estimate and historical satellite ocean color observations in order to understand the underlying causes for the sharp decline in biological productivity observed in the North Atlantic Ocean.

Integrated GEOS and ECCO Earth system modeling and data assimilation to advance seasonal-to-decadal prediction through improved understanding and representation of air-sea interactions

This analysis will build understanding of upper ocean, air-sea interaction, and climate processes by using data from the SWOT mission and ultra-high-resolution GEOS-ECCO simulations.

Back to Ocean Science Landing Page Share Details Last Updated Sep 17, 2024 Related Terms Keep Exploring Discover Related Topics

Missions

Humans in Space

Climate Change

Solar System

Categories: NASA

ICESat-2 Hosts Third Applications Workshop

NASA - Breaking News - Tue, 09/17/2024 - 2:07pm
Earth Observer

16 min read

ICESat-2 Hosts Third Applications Workshop

Introduction

The NASA Ice, Cloud, and land Elevation Satellite-2 mission (ICESat-2), launched September 15, 2018, continues the first ICESat mission, delivering invaluable global altimetry data. Notwithstanding its icy acronym, ICESat-2 can do more than measure ice – in fact, the expanded acronym hints at these wider applications. From vegetation to inland surface water to bathymetry, ICESat-2 has emerged as a more versatile mission than originally planned, thanks in part to the ingenuity of research scientists, the Science Team (ST), and users of the data – see Figure 1.

Figure 1. A word cloud designed to highlight terms that occur most frequently in all ICESat-2 publications since 2018. The larger the word, the more often it is used.Figure credit: Aimee Neeley

ICESat-2 was among the first NASA missions to develop an applications program that engages both scientists and potential users of the science data to accelerate user uptake. Throughout this program, ICESat-2 has demonstrated the value of Earth Observation data to end users, stakeholders, and decision makers. The ICESat-2 Early Adopter (EA; pre-launch) program, now the Applied User program (post-launch), was created to “promote applications research to provide a fundamental understanding of how ICESat-2 data products can be scaled and integrated into organizations, policy, business, and management activities to improve decision making efforts.” This article summarizes the workshop objectives met through plenary talks, lightning talks, an applied user panel, and a breakout session. The ICESat-2 Applications page contains more about the ICESat-2 Applications Program.

Motivation and Objectives

To meet Applications Program initiatives, the ICESat-2 Applications Team hosted its third Applications workshop June 3–4, 2024 at NASA’s Goddard Space Flight Center (GSFC) in a hybrid environment. A total of 113 participants registered for the workshop, representing multiple government agencies, including NASA Centers, non-profit organizations, and academic organizations – see Figure 2. Approximately 20 individuals attended the workshop in person with the majority participating online through the Webex platform. This workshop provided the space to foster collaboration and to encourage the conceptualization of applications not yet exploited.

Figure 2.  A ‘donut’ plot showing the proportion of ICESat-2 Applications Workshop attendees identified by institution. This information was provided during the online registration process.Figure credit: Aimee Neeley

The objectives of the Applications workshop were to:

  1. provide an overview of the mission status, data products, and support services from the National Snow and Ice Data Center (NSIDC);
  2. build partnerships among applied users, data producers, and end users;
  3. foster synergies with all participants, decision makers, and satellite operators;
  4. identify new potential applications or products from ICESat-2;
  5. review available tools for extracting ICESat-2 data; and
  6. understand the challenges faced by applied users, data users, and end users, and identify solutions.

The remainder of this article will summarize the meeting highlights. Rather than give a strict chronological survey, the report is organized around the meeting objectives listed above. Readers interested in more details can find the full agenda and slide decks from individual presentations mentioned in this summary on the ICESat-2 Workshop website.

Workshop Overview and Structure

The agenda of the 2024 ICESat-2 Applications workshop was intended to bring together end-users, including ICESat-2 applications developers, satellite operators, and decision makers from government and nongovernmental entities to discuss the current state and future needs of the community – see Figure 3.

On the morning of the first day, the workshop participants contributed to a plenary session and ICESat-2 data tool demonstrations. These presentations were intended to provide a broad overview of the ICESat-2 mission, data, science, and applications. Plenary talks during the afternoon session provided an overview of the Earth Science-to-Action initiative and measuring impacts of science. The afternoon also included lightning talks from participants and an Applied User Panel. The second day consisted of a plenary presentation and more lightning talks from participants. The workshop ended with a thematic breakout session with pre-constructed topics and a report out to create a forum for direct interaction between participants.

Figure 3. Graphic showing the different levels of data available from the NASA Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) mission.Figure credit: NASA, adapted from the National Snow and Ice Data Center (NSIDC) Distributed Active Archive Center’s  ICESat-2 page

Objective 1: Provide an overview of the status of the mission and current data products and support services from the NSIDC.

To fulfill the first meeting objective, the workshop included a series of overview presentations given by ICESat-2 team members about the status of the ICESat-2 mission and its data products, as well as a review of the NASA Applied Sciences Program.

Aimee Neeley [NASA Goddard Space Flight Center (GSFC)/Science Systems and Applications Inc. (SSAI)—ICESat-2 Mission Applications Lead] and Molly Brown [GSFC/University of Maryland—ICESat-2 Mission Applications Scientist] served as cohosts for the event. Neeley opened the first day with a brief overview of workshop goals, logistics, and the agenda. On the second day she gave a brief overview of the agenda for the day and opened it up for questions.

Thomas Neumann [GSFC—ICESat-2 Project Scientist and Deputy Director of Earth Sciences Division] provided an overview of the ICESat-2 measurement concepts, which includes activity of GPS positioning, pointing angle, altimetry measurements, and ground processing. He continued with an overview of the Advanced Topographic Laser Altimeter System (ATLAS) instrument, the wavelength and spatial resolution of the lasers, and the distributed data products. Neumann presented the mission outlook, with an expected lifespan until December 2035.

Walter Meier [University of Colorado, Boulder (UC, Boulder)—NSIDC DAAC Scientist] provided an overview of ICESat-2 data tools and services. He walked the audience through the ICESat-2 data website, as well as the instructional guides that are available for all the tools and services. Meier provided an overview of ICESat-2 standard data products – see Figure 3. Most of the products have a ~45-day latency while quick look data sets have an ~3-day latency. Future data sets include ATL24 and ATL25 and quick look data sets for ATL03, ATL20, and ATL25. Next, he described webinars and tutorials, access tools, and customization services for different users and workflows, including graphical user interfaces and programmatic tools in Earthaccess and the NSIDC website.

Helen Amanda Fricker [Scripps Institution of Oceanography, University of California (UC), San Diego—ICESat-2 ST Leader and Professor] provided an overview of the ST members and ST goals. Fricker described the ST goals to: 1) provide coordination between the team, project science office, and NASA headquarters; 2) use science talks, posters, and social events to stimulate collaboration within the ST and across disciplines; and 3) maintain the visibility of the ICESat-2 mission through publications, press releases, white papers, open science, and synergies with other missions. Next, Fricker shared the list of ST members that can be found on the ICESat-2 website. She concluded with an overview of a recent publication by Lori Magruder [University of Texas, Austin] and coauthors published in Nature Reviews.

Stephanie Schollaert Uz [NASA GSFC—Applied Sciences Manager] provided an overview of the NASA Applied Science Program, including the current NASA Earth Science Satellite missions that are monitoring Earth systems. The NASA Applied Science Programs “tackle challenges on our home planet in areas for which Earth science information can respond to the urgent needs of our time.” Earth science data products are used to “inform decisions and actions on management, policy and business.” Uz provided examples of applications using Earth science data, including economic activity, active fire mapping, food security, and monitoring air quality – see Figure 4.

Figure 4. Near real-time active fire mapping as well as air quality monitoring and forecasting are available via NASA’s Fire Information for Resource Management System (FIRMS).Figure credit: FIRMS U.S./Canada

Molly E. Brown [University of Maryland—ICESat-2 Mission Applications Scientist] began her presentation by defining the term application in the context of this workshop, which includes “innovative uses of mission data products in decision-making activities for societal benefit.” Brown stated that the ICESat-2 Mission Applications program “works to bring our data products into areas where they can help inform policy or decisions that benefit the public.” End users include the private sector, academia, and government agencies. Brown described the benefits of the program and strategies to extend ICESat-2 to new communities – see Figure 5. Brown concluded with an overview of recent publications and new research efforts to assess the impact of ICESat-2 data.

Figure 5. Strategies to extend ICESat-2 to new communities through activities and trainings such as those hosted by the Applied Remote Sensing Training (ARSET) program.Figure credit: Molly Brown

Mike Jasinski [NASA GSFC, Hydrological Sciences Laboratory—Assistant Chief for Science] provided an overview of ICESat-2 inland water standard and quick look data products, ATL13QL and ATL22QL. ICESat-2 covers approximately one million lakes each year. Jasinski also listed application areas for water resources decision support, including river elevation and discharge, lake and reservoir water balance and management, and validation of Surface Water and Ocean Topography (SWOT) data. He provided metrics for each data product and quick look product and the advantages and disadvantages of ATL13 and ATL22 data products.

Mary D. Ari [Centers for Disease Control and Prevention, Office of Science—Senior Advisor for Science] provided an overview of the Science Impact Framework (SIF). Ari explained that our partners and public need “evidence to support practice or policy or decision making, accountability for public finds, and research focus to advocate for research priority.” A major goal is to translate findings into practice or action. Next, she presented ways by which impact can be measured, including bibliometrics (quantitative) and value (qualitative). Ari further explained the Science Impact Framework (SIF), which includes five domains of scientific influence: disseminating science, creating awareness, catalyzing action, effecting change, and shaping the future – see Figure 6.

Figure 6. The Science Impact Framework, which allows the impact of scientific work to be quantified and to determine if the science we produce is being put into action.Figure credit: Mary Ari

Woody Turner [NASA Headquarters—ICESat-2 Program Applications Lead] provided an overview of NASA’s Earth Science to Action Strategy. Turner explained that NASA’s Earth Science to Action strategy is integral to the Earth Science Division’s 2024–2034 strategic plan. The overall strategy has two objectives: 1) observe, monitor, and understand the Earth System and 2) deliver trusted information to drive Earth resilience activities. He also summarized the “three key pillars” for this new Earth Action paradigm to 1) be user centered, 2) build bridges between research, technology, flight, data, and Earth Action elements, and 3) scale up existing efforts to get NASA data into the hands of end users. Lastly, Turner listed NASA’s core values, including safety, integrity, inclusion, teamwork, excellence, trustworthiness, innovation, and collaboration.

Objective 2: Review available tools for extracting ICESat-2 data for a diverse community.

To achieve this objective, the meeting included a series of presentations in which each speaker described a different tool that is being used to download and analyze ICESat-2 data.

Jessica Scheick [University of New Hampshire] provided an overview of a set of Python tools, named icepyx, that can be used to obtain and manipulate ICESat-2 data. Scheick, who developed icepyx, described how the tools address challenges with ICESat-2 data. Lastly, she performed a live demonstration of icepyx.

Tyler Sutterley [Applied Physics Laboratory/University of Washington] presented a live demonstration of Sliderule, an ICESat-2 plugin module that uses an application programming interface (API) to “query a set of ATL03 input granules for photon heights and locations based on a set of photon-input parameters that select the geographic and temporal extent of the request.”

Joanna D. Millstein [Colorado School of Mines] provided an overview of CryoCloud, which is a “JupyterHub built for NASA cryosphere communities in collaboration with 2i2c.” The goal of CryoCloud is to create a “simple and cost-effective managed cloud environment for training and transitioning new users to cloud workflows and determining community best practices.” CryoCloud makes it possible to “process data faster, minimize downloading and democratize science.” The CryoCloud GitHub provides access to a Slack channel, trainings and tutorials, and community office hours.

Mikala Beig [UC, Boulder—NSIDC User Services] provided and overview of OpenAltimetry, a platform for visualizing and downloading surface elevation data from ICESat and ICESat-2. OpenAltimetry was developed to alleviate the challenges faced by researchers, including the “steep learning curves and heavy demands on computational resources” necessary to download and manipulate large volumes of data. The strengths of OpenAltimetry include fostering user engagement, lowering technical hurdles for visualizing data, and allowing deeper data exploration. Lastly, Beig demonstrated the platform for the audience – see Figure 7.

Figure 7. Searching ICESat-2 tracks in OpenAltimetry, a map-based data visualization and discovery tool for altimetry data.Figure credit: Mikala Beig

Objectives 3 and 4: Foster synergies between all participants; Identify new potential applications or products from ATLAS data not currently under investigation.

To meet these two meeting objectives, workshop organizers scheduled a round of lightning talks, where a series of presenters gave five-minute presentations on their research or activities. The talks are distilled below. The reader is directed online to find formal presentation titles and additional information. There was also an applied user panel and a breakout session to facilitate synergies between participants and identify new applications.

Younghyun Koo [Lehigh University/ Cooperative Institute for Research in Environmental Science (CIRES)] described a method to filter landfast ice (or sea ice “fastened” to the coastline) for accurate examination of thermodynamic and dynamic sea ice features using the ICESat-2 ATL10 data product – see Figure 8.

Chandana Gangodagamage [OeilSatPrincipal Investigator] described the company’s efforts to track freshwater in the Congo River for the purposes of water resources management and other water-related applications that require river bathymetry data.

Daniel Scherer [Technischen Universität München (TUM), Germany] provided an overview of the ICESat-2 River Surface Slope (IRIS), a global reach-scale water surface slope dataset that provides average and extreme water slopes from ICESat-2 observations. The data can be dowloaded from Zenodo.

Louise Croneborg-Jones [Water In SightChief Executive Officer] described her company’s effort to use satellite data and mobile and cloud technology to digitize river and rainfall observation at scale in Malawi. Water In Sight has emphasized getting local communities involved in monitoring water resources to increase observations of water levels for conservation.

Ravindra Duddu [Vanderbilt University] provided an overview on a project called Modeling Antarctic Iceshelf Calving and Stability (MAGICS), which involves using computation, data, and machine learning to map the rift and crevasse configurations of ice shelves in Antarctica to better understand calving events.

Shawn Serbin [GSFC] discussed use of harmonized above ground products from ICESat-2 and other earth observing platforms, including Global Ecosystem Dynamics Investigation (GEDI), Soil Moisture Active Passive (SMAP), and Moderate Resolution Imaging Spectroradiometer (MODIS), for terrestrial ecosystem carbon cycle reanalysis and near-term, iterative forecasting for North America and the globe.

Wengi Ni-Meister [Hunter College of the City University of New York—ICESat-2 Early Adopter] summarized an effort to retrieve canopy and background reflectivity ratio from ICESat-2 data and use it for the retrieval of vegetation cover and snow distribution in boreal forests.

Morgaine McKibben [GSFC–Plankton, Aerosol, Clouds, ocean Ecosystem (PACE) Applications Lead] provided an overview of NASA’s PACE mission, suggesting possible synergies between ICESat-2 and PACE with the intent of opening the door for further discussion on collaboration between the two missions.  (To learn more about planned applications for PACE, see  Preparing for Launch and Assessing User Readiness: The 2023 PACE Applications Workshop. (Also published in The Earth Observer, Nov–Dec 2023, 35:6, 25–32.)

Anthony Campbell [GSFC/ University of Maryland, Baltimore County] discussed his group’s research into using ICESat-2 data to monitor changes in coastal wetland migration, including coastal elevation and canopy height.

Brian A Campbell [NASA’s Wallops Flight Facility (WFF)—ICESat-2 Mission Education Lead] described the Global Learning and Observations to Benefit the Environment (GLOBE) program’s network of citizen scientists who collect several different kinds of data using the GLOBE Observer app. He highlighted one data type with particular relevance to ICESat-2. GLOBE Trees – see Figure 8 – equips citizen scientists with the tools to take tree height measurements using their mobile devices. These observations could then be compared to data from NASA satellite missions.

Figure 8. NASA’s Global Learning and Observations to Benefit the Environment (GLOBE) has developed an app called GLOBE Trees that allows users take measurements of tree height data using a mobile device. Those data can then be uploaded, and scientists can use them to validate satellite tree height measurement (e.g., from ICESat-2/ATLAS).Figure credit: Brian Campbell

Caio Hamamura [University of Florida/School of Forest, Fisheries & Geomatics Sciences—Postdoctoral Associate] summarized a literature review his team had conducted of studies using ICESat-2 data for land and vegetation applications as well as results of an assessment of the current capability and limitations of ICESat-2 data for land and vegetation applications – see Figure 9.

Figure 9. Illustration of the ATL18 canopy height product at 1 km (~0.6 mi) spatial resolution at the global scale. The height values represent the median of all ATL18 height estimates within a given grid size of 1 km.Figure credit: Jordan Borak and Ciao Hamamura

Jacob Comer [Cultural Site Research and Management Foundation] summarized results from an evaluation of the use of ICESat-2 data for archaeological prospection and documentation of archaeological sites – particularly in the Federal States of Micronesia.

Juradana M. Iqrah [University of Texas at San Antonio] described her group’s effort to obtain high resolution sea ice classification and freeboard information from ICESat-2 ATL03 observations to understand the impact of global warming on the melting and retreat of polar sea ice cover.

Michael MacFerrin [National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Information (NCEI)—Coastal Digital Elevation (DEM) Model Team] provided an overview of the NOAA/CIRES ICESat-2 Validation of Elevations Reporting Tool (IVERT) tool, which is used to generate land-based validation statistics of digital elevation models (DEM) anywhere in the word using the ATL03 and ATL08 datasets – see Figure 10.

Figure 10. Digital Elevation Model output before and after Hurricane Michael in Florida, October 2018.Figure credit: Michael MacFerrin

Gretchen Imahori [NOAA National Geodetic Survey, Remote Sensing Division] presented an overview of satellite derived bathymetry using ICESat-2 data, including the new Level 3 (L3) bathymetry data product (ATL24) that will be available later in 2024 – see Figure 11.

Figure 11. Bathymetry data from ICESat-2 have been used across a wide variety of morphologies [some of which are illustrated in the photos above] and disciplines. Figure credit: Gretchen Imahori and the ICESat-2 bathymetry working group

Objectives 5 and 6: Understand the challenges faced by applied, data users, and end users and identify solutions. Build partnerships between applied users, data producers, and end users.

To achieve these two objectives, planners organized an applied user panel and a breakout session as means to foster conversation among participants. The applied user panel consisted of five panelists– three participating virtually and two in-person. The presenters in the session shared their responses to three prepared discussion prompts: 1) an introduction of ICESat-2 data products; 2) use of ICESat-2 data products for their application; and 3) potential data latency impacts. The conversation was brief, but it provided a unique opportunity to hear from experienced applied users.

A breakout session consisted of pre-planned discussion prompts through two virtual breakout groups and one in-person group. Group One discussed questions that covered examination of ice crevassing and rifting, community tools for shallow water mapping, and slope measurement bias and uncertainties. Group Two discussed a variety of current and potential surface water applications, identified challenges using ICEat-2 data, and developed suggestions to increase the accessibility and usability of ICESat-2 data products. Group Three covered a gamut of topics, including potential products for Alaskan and Canadian communities, increased accessibility to products, and applications through central cloud storage systems, central repositories and detailed documentation, and the desire for future topic-specific workshops and focus sessions.

Conclusion

The 2024 NASA ICESat-2 Applications Workshop was the third in a series of workshops – with the first workshop occurring in 2012, six years prior to launch. The EA program was transitioned to the Applied User program, which deployed a post-launch program per the NASA Early Adopter Handbook “that acts as a continuation of the Early Adopter program to engage with Communities of Practice and Potential.” This workshop provided the space to foster collaboration and conceptualization of applications not yet exploited that may be developed using ICESat-2 data products. The workshop met its objectives and created an environment that fostered collaboration between participants. The workshop was a success, and participants requested another one focused on a thematic topic. Updates, future workshops, and other events will be posted on the ICESat-2 ‘Get Involved’ page.

Aimee Renee Neeley
NASA’s Goddard Space Flight Center/Science Systems and Applications, Inc.

aimee.neeley@nasa.gov

Share Details Last Updated Sep 17, 2024 Related Terms
Categories: NASA

El pódcast en español de la NASA regresa con una nueva temporada

NASA - Breaking News - Tue, 09/17/2024 - 2:01pm
Diseño del pódcast Universo curioso de la NASA, el primer pódcast en español de la agencia, que vuelve con una segunda temporada en septiembre de 2024. Créditos: NASA / Krystofer Kim

Read this news release in English here.

Para celebrar el Mes de la Herencia Hispana, la NASA publica nuevos contenidos para Universo curioso de la NASA, el primer pódcast en español de la agencia, que inicia ahora su segunda temporada. La temporada de cinco semanas comienza el martes, con nuevos episodios disponibles semanalmente.

Escucha el avance de la segunda temporada de Universo curioso de la NASA. 

En cada episodio, Universo curioso destaca las contribuciones de la fuerza laboral hispana y latina de la NASA al trabajo de la agencia en el ámbito de la exploración de la Tierra y el espacio en beneficio de todos.

“Mediante el pódcast Universo curioso de la NASA, estamos entusiasmados de contar la historia de los esfuerzos de la NASA para que el espacio esté al alcance de más gente de todo el mundo”, dijo Tonya McNair, administradora asociada adjunta de la Dirección de Misiones de Operaciones Espaciales de la NASA en Washington. “En la segunda temporada, escucharán a trabajadores hispanos y latinos de la NASA, como la directora de vuelo Diana Trujillo y el astronauta Marcos Berríos, que ayudan a dirigir algunas de las misiones de exploración espacial más vitales de la agencia e inspiran al mundo a través del descubrimiento.”

Los episodios se centran en algunas de las principales misiones de la NASA, acercando las maravillas de la exploración, la tecnología espacial y los descubrimientos científicos al público hispanohablante del mundo entero.

“Este pódcast pone en relieve la dedicación de la NASA a hacer que el conocimiento esté a disposición de todos, independientemente de su lengua materna”, dijo Shahra Lambert, asesora principal de la NASA para la participación pública. “Al compartir la emoción de las misiones de la NASA en el segundo idioma más hablado en los EE.UU. y en todo el mundo, estamos amplificando nuestro alcance y posiblemente allanando el camino para una fuerza de trabajo en ciencia, tecnología, ingeniería y matemáticas más diversa en el futuro.”

El primer episodio de Universo curioso se emitió en 2021, como parte de la cobertura en español del lanzamiento del telescopio espacial James Webb. En 2023, el programa fue seleccionado como “Programa que nos encanta” por Apple Podcasts Latinoamérica.

Presentado por Noelia González, especialista en comunicaciones del Centro Goddard de Vuelo Espacial de la NASA en Greenbelt, Maryland, en el pódcast invitamos a los oyentes a emprender un viaje a una de las lunas heladas de Júpiter, a oír acerca de los dos primeros años de descubrimientos del telescopio espacial James Webb, así como a conocer la trayectoria de un astronauta de Puerto Rico y de una directora de vuelo colombiana para llegar a la NASA.

Los episodios cubrirán el próximo lanzamiento de Europa Clipper en octubre de 2024, una misión que tiene como objetivo determinar si existen lugares bajo la superficie de la luna helada de Júpiter, Europa, que puedan albergar vida.

A continuación figura la lista completa de los nuevos episodios, así como sus fechas de publicación:

  • Martes, 17 de septiembre: Avance de la segunda temporada
  • Martes, 24 de septiembre: Diana Trujillo: De Cali a la Luna y Marte
  • Martes, 1 de octubre: Europa Clipper: Un viaje poético a la luna de Júpiter
  • Martes, 8 de octubre: Marcos Berríos: Cómo convertirse en astronauta de la NASA
  • Martes, 15 de octubre: Explorando el cosmos con Webb

Universo curioso de la NASA es una iniciativa conjunta de los programas de comunicación en español y de audio de la agencia. La nueva temporada, así como los episodios anteriores, están disponibles en Apple Podcasts, Spotify y el sitio web de la NASA.

Escucha el pódcast en:

https://www.nasa.gov/universo-curioso-de-la-nasa

-fin-

María José Viñas / Cheryl Warner
Sede, Washington
240-458-0248 / 202-358-1600
maria-jose.vinasgarcia@nasa.gov / cheryl.m.warner@nasa.gov

Categories: NASA