The space of night is infinite,
The blackness and emptiness
Crossed only by thin bright fences
Of logic

— Kenneth Rexroth
"Theory of Numbers"

Feed aggregator

The Horse’s Mane

NASA Image of the Day - Mon, 04/29/2024 - 2:04pm
Rising from turbulent waves of dust and gas is the Horsehead Nebula, otherwise known as Barnard 33, which resides roughly 1,300 light-years away. The NASA/ESA/CSA James Webb Space Telescope has captured the sharpest infrared images to date of one of the most distinctive objects in our skies, the Horsehead Nebula. Webb’s new view focuses on the illuminated edge of the top of the nebula’s distinctive dust and gas structure.
Categories: Astronomy, NASA

The Horse’s Mane

NASA - Breaking News - Mon, 04/29/2024 - 2:02pm
Rising from turbulent waves of dust and gas is the Horsehead Nebula, otherwise known as Barnard 33, which resides roughly 1300 light-years away. The NASA/ESA/CSA James Webb Space Telescope has captured the sharpest infrared images to date of one of the most distinctive objects in our skies, the Horsehead Nebula. Webb’s new view focuses on the illuminated edge of the top of the nebula’s distinctive dust and gas structure.

This image of part of the Horsehead Nebula, captured by NASA’s James Webb Space Telescope and released on April 29, 2024, shows the nebula in a whole new light, capturing the region’s complexity with unprecedented spatial resolution. Located roughly 1,300 light-years away, the nebula formed from a collapsing interstellar cloud of material, and glows because it is illuminated by a nearby hot star. The gas clouds surrounding the Horsehead have already dissipated, but the jutting pillar is made of thick clumps of material and therefore is harder to erode. Astronomers estimate that the Horsehead has about 5 million years left before it too disintegrates.

Image Credit: NASA, ESA, CSA, K. Misselt (University of Arizona) and A. Abergel (IAS/University Paris-Saclay, CNRS)

Categories: NASA

Horsehead Nebula rears its head in gorgeous new James Webb Space Telescope images (video)

Space.com - Mon, 04/29/2024 - 2:00pm
The James Webb Telescope has zoomed in on the Horsehead Nebula, capturing slices of this stunning star-forming region close to Earth in an entirely new light.
Categories: Astronomy

Rat Neurons Repair Mouse Brains That Lack a Sense of Smell

Scientific American.com - Mon, 04/29/2024 - 2:00pm

With an injection of rat cells, mouse brains that were genetically engineered to be unable to smell could detect odors and even track down an Oreo cookie stash

Categories: Astronomy

Energy Independence Is a Big Election Talking Point—But What Does It Mean?

Scientific American.com - Mon, 04/29/2024 - 2:00pm

“Energy independence” doesn’t mean what politicians think it means

Categories: Astronomy

NASA Sets Coverage for Dragon Spacecraft Relocation on Space Station

NASA - Breaking News - Mon, 04/29/2024 - 1:33pm
The SpaceX Dragon crew spacecraft pictured from the International Space Station.Credit: NASA

In preparation for the arrival of NASA’s Boeing Crew Flight Test, four crew members aboard the International Space Station will relocate the SpaceX Dragon crew spacecraft to a different docking port Thursday, May 2, to make way for Boeing’s Starliner spacecraft.

NASA will provide live coverage of the move beginning at 7:30 a.m. EDT on NASA+, NASA Television, the NASA app, YouTube, and the agency’s website. Learn how to stream NASA TV through a variety of platforms including social media.

NASA astronauts Matt Dominick, Mike Barratt, and Jeanette Epps, as well as Roscosmos cosmonaut Alexander Grebenkin, will undock from the forward-facing port of the station’s Harmony module at 7:45 a.m. The spacecraft will then autonomously dock with the module’s space-facing port at 8:28 a.m.

The relocation, supported by flight controllers at NASA’s Johnson Space Center in Houston and SpaceX in Hawthorne, California, will free up Harmony’s forward-facing port for the docking of the Boeing Starliner spacecraft for its first flight with astronauts in May. Starliner will autonomously dock to the forward-facing port of the Harmony module, delivering NASA astronauts Butch Wilmore and Suni Williams to the space station.

This will be the fourth port relocation of a Dragon spacecraft with crew, following previous relocations during the Crew-1, Crew-2, and Crew-6 missions.

NASA’s SpaceX Crew-8 mission launched March 3 from NASA’s Kennedy Space Center in Florida and docked to the space station March 5. Crew-8, targeted to return this fall, is the eighth rotational crew mission from NASA and SpaceX as a part of the agency’s Commercial Crew Program.

Learn more about space station activities by following @space_station and @ISS_Research on X, as well as the ISS Facebook, ISS Instagram, and the space station blog.

-end-


Joshua Finch / Claire O’Shea
Headquarters, Washington
202-358-1100
joshua.a.finch@nasa.gov / claire.a.o’shea@nasa.gov


Sandra Jones / Anna Schneider
Johnson Space Center, Houston
281-483-5111
sandra.p.jones@nasa.gov / anna.c.schneider@nasa.gov

Share Details Last Updated Apr 29, 2024 LocationJohnson Space Center Related Terms
Categories: NASA

China to launch sample-return mission to the moon's far side on May 3

Space.com - Mon, 04/29/2024 - 1:30pm
China reportedly plans to launch its Chang'e 6 sample-return mission toward the moon's mysterious far side on Friday (May 3).
Categories: Astronomy

English oaks can withstand warming – but other trees will struggle

New Scientist Space - Cosmology - Mon, 04/29/2024 - 1:06pm
Climate change means many tree species planted today in Europe won’t survive to the end of the century, but English oaks could thrive in many areas
Categories: Astronomy

English oaks can withstand warming – but other trees will struggle

New Scientist Space - Space Headlines - Mon, 04/29/2024 - 1:06pm
Climate change means many tree species planted today in Europe won’t survive to the end of the century, but English oaks could thrive in many areas
Categories: Astronomy

Boeing Starliner astronauts conduct dress rehearsal ahead of May 6 launch (photos, video)

Space.com - Mon, 04/29/2024 - 12:59pm
Boeing Starliner's 1st astronaut crew continues their training, even in quarantine. After finishing a big dress rehearsal on April 26, practice continues ahead of the scheduled May 6 launch to the ISS.
Categories: Astronomy

A Cosmic Arrow Pierced Pluto's Heart — Is It Still There Beneath the Surface?

Sky & Telescope Magazine - Mon, 04/29/2024 - 12:55pm

A giant impact likely formed Pluto's heart-shaped basin, Sputnik Planitia. A big chunk of the impactor’s core might still be buried under the ice.

The post A Cosmic Arrow Pierced Pluto's Heart — Is It Still There Beneath the Surface? appeared first on Sky & Telescope.

Categories: Astronomy

NASA Scientists Gear Up for Solar Storms at Mars

NASA - Breaking News - Mon, 04/29/2024 - 12:53pm
This coronal mass ejection, captured by NASA’s Solar Dynamics Observatory, erupted on the Sun Aug. 31, 2012, traveling over 900 miles per second and sending radiation deep into space. Earth’s magnetic field shields it from radiation produced by solar events like this one, while Mars lacks that kind of shielding.NASA/GFSC/SDO

The Sun will be at peak activity this year, providing a rare opportunity to study how solar storms and radiation could affect future astronauts on the Red Planet.

In the months ahead, two of NASA’s Mars spacecraft will have an unprecedented opportunity to study how solar flares — giant explosions on the Sun’s surface — could affect robots and future astronauts on the Red Planet.

That’s because the Sun is entering a period of peak activity called solar maximum, something that occurs roughly every 11 years. During solar maximum, the Sun is especially prone to throwing fiery tantrums in a variety of forms — including solar flares and coronal mass ejections — that launch radiation deep into space. When a series of these solar events erupts, it’s called a solar storm.

Earth’s magnetic field largely shields our home planet from the effects of these storms. But Mars lost its global magnetic field long ago, leaving the Red Planet more vulnerable to the Sun’s energetic particles. Just how intense does solar activity get on Mars? Researchers hope the current solar maximum will give them a chance to find out. Before sending humans there, space agencies need to determine, among many other details, what kind of radiation protection astronauts would require.

Learn how NASA’s MAVEN and the agency’s Curiosity rover will study solar flares and radiation at Mars during solar maximum – a period when the Sun is at peak activity. Credit: NASA/JPL-Caltech/GSFC/SDO/MSSS/University of Colorado

“For humans and assets on the Martian surface, we don’t have a solid handle on what the effect is from radiation during solar activity,” said Shannon Curry of the University of Colorado Boulder’s Laboratory for Atmospheric and Space Physics. Curry is principal investigator for NASA’s MAVEN (Mars Atmosphere and Volatile EvolutioN) orbiter, which is managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “I’d actually love to see the ‘big one’ at Mars this year — a large event that we can study to understand solar radiation better before astronauts go to Mars.”

Measuring High and Low

MAVEN observes radiation, solar particles, and more from high above Mars. The planet’s thin atmosphere can affect the intensity of the particles by the time they reach the surface, which is where NASA’s Curiosity rover comes in. Data from Curiosity’s Radiation Assessment Detector, or RAD, has helped scientists understand how radiation breaks down carbon-based molecules on the surface, a process that could affect whether signs of ancient microbial life are preserved there. The instrument has also provided NASA with an idea of how much shielding from radiation astronauts could expect by using caves, lava tubes, or cliff faces for protection.

When a solar event occurs, scientists look both at the quantity of solar particles and how energetic they are.

“You can have a million particles with low energy or 10 particles with extremely high energy,” said RAD’s principal investigator, Don Hassler of the Boulder, Colorado, office of the Southwest Research Institute. “While MAVEN’s instruments are more sensitive to lower-energy ones, RAD is the only instrument capable of seeing the high-energy ones that make it through the atmosphere to the surface, where astronauts would be.”

The Radiation Assessment Detector on NASA’s Curiosity is indicated in this annotated image from the rover’s Mastcam. RAD scientists are excited to use the instrument to study radiation on the Martian surface during solar maximum.NASA/JPL-Caltech/MSSS This artist’s concept depicts NASA’s Mars Atmosphere and Volatile EvolutioN (MAVEN) near Mars. The spacecraft observes radiation, solar particles, and more from high above the Red Planet.NASA/GFSC

When MAVEN detects a big solar flare, the orbiter’s team lets the Curiosity team know so they can watch for changes in RAD’s data. The two missions can even assemble a time series measuring changes down to the half-second as particles arrive at the Martian atmosphere, interact with it, and eventually strike the surface.

The MAVEN mission also leads an early warning system that lets other Mars spacecraft teams know when radiation levels begin to rise. The heads-up enables missions to turn off instruments that could be vulnerable to solar flares, which can interfere with electronics and radio communication.

Lost Water

Beyond helping to keep astronauts and spacecraft safe, studying solar maximum could also lend insight into why Mars changed from being a warm, wet Earth-like world billions of years ago to the freezing desert it is today.

The planet is at a point in its orbit when it’s closest to the Sun, which heats up the atmosphere. That can cause billowing dust storms to blanket the surface. Sometimes the storms merge, becoming global.

While there’s little water left on Mars — mostly ice under the surface and at the poles — some still circulates as vapor in the atmosphere. Scientists wonder whether global dust storms help to eject this water vapor, lofting it high above the planet, where the atmosphere gets stripped away during solar storms. One theory is that this process, repeated enough times over eons, might explain how Mars went from having lakes and rivers to virtually no water today.

If a global dust storm were to occur at the same time as a solar storm, it would provide an opportunity to test that theory. Scientists are especially excited because this particular solar maximum is occurring at the start of the dustiest season on Mars, but they also know that a global dust storm is a rare occurrence.

More About the Missions

NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the MAVEN mission. Lockheed Martin Space built the spacecraft and is responsible for mission operations. JPL provides navigation and Deep Space Network support. The Laboratory for Atmospheric and Space Physics at the University of Colorado Boulder is responsible for managing science operations and public outreach and communications. 

Curiosity was built by NASA’s Jet Propulsion Laboratory, which is managed by Caltech in Pasadena, California. JPL leads the mission on behalf of NASA’s Science Mission Directorate in Washington. The RAD investigation is supported by NASA’s Heliophysics Division as part of NASA’s Heliophysics System Observatory (HSO).

Additional information about the missions can be found at:

https://mars.nasa.gov/maven/

and

http://mars.nasa.gov/msl

News Media Contacts

Nancy Neal Jones
Goddard Space Flight Center, Greenbelt, Md.
301-286-0039
nancy.n.jones@nasa.gov

Andrew Good
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-2433
andrew.c.good@jpl.nasa.gov

Karen Fox / Charles Blue
NASA Headquarters, Washington
301-286-6284 / 202-802-5345
karen.c.fox@nasa.gov / charles.e.blue@nasa.gov

2024-052

Share Details Last Updated Apr 29, 2024 Related Terms Explore More 1 min read Major Martian Milestones

There’s good news from NASA’s Cloudspotting on Mars project! That’s the project that invites you to…

Article 4 hours ago
2 min read NASA’s Hubble Pauses Science Due to Gyro Issue

NASA is working to resume science operations of the agency’s Hubble Space Telescope after it…

Article 3 days ago
4 min read NASA’s ORCA, AirHARP Projects Paved Way for PACE to Reach Space Article 3 days ago
Categories: NASA

NASA Administrator Names New Stennis Space Center Director

NASA - Breaking News - Mon, 04/29/2024 - 12:31pm
John Bailey, director, John C. Stennis Space Center

NASA Administrator Bill Nelson on Monday named John Bailey as director of the agency’s Stennis Space Center near Bay St. Louis, Mississippi, effective immediately. Bailey had been serving as acting director since January. 

“John will build on his nearly 35 years of federal service to lead our talented workforce at Stennis,” said Nelson. “So much of NASA runs through Stennis. It is where we hone new and exciting capabilities in aerospace, technology, and deep space exploration. I am confident that John will lead the nation’s largest and premier propulsion test site to even greater success.”

NASA Stennis also is a unique federal city, home to more than 50 resident tenants with a combined workforce of over 5,200. The center tested the SLS (Space Launch System) core stage that helped launch the Artemis I mission. It also is testing all RS-25 engines to help power SLS launches and will conduct flightworthy testing of the agency’s new exploration upper stage prior to its use in space on future Artemis missions to the Moon and beyond.

The center is a leader in partnering and working with commercial aerospace companies to support their propulsion test projects. It also is expanding as an aerospace and technology hub, and in development of intelligent and autonomous systems needed for deep space exploration.

“This is an exciting time for NASA Stennis, and I am deeply honored to lead its great family of employees who make up this amazing workforce,” Bailey said. “We are dedicated to continuing to provide frontline support to the agency’s missions and initiatives. I look forward to our shared future and success.”

Bailey has more than three decades of federal service with the U.S. Air Force and NASA. As a communications engineer with the U.S. Air Force, Bailey led electronic communications testing worldwide. He joined the NASA Stennis team in 1999 and subsequently served in a variety of roles, managing and leading technical and non-technical organizations and supervising employees with a wide range of skills and backgrounds.

Bailey was tapped in 2015 to lead the NASA Stennis Engineering and Test Directorate, managing critical rocket propulsion test assets exceeding $2 billion in value and projects more than $221 million. He was named NASA Stennis associate director in 2018 and selected as the center’s deputy director in 2021.

An Alabama native, Bailey holds a bachelor’s degree in Electrical Engineering and a master’s degree in Business Administration from the University of South Alabama.

Access Bailey’s online biography at:

https://www.nasa.gov/people/john-w-bailey-jr/

-end-

Cheryl Warner 
Headquarters, Washington 
202-358-1600 
cheryl.m.warner@nasa.gov

C. Lacy Thompson
Stennis Space Center, Bay St. Louis, Miss.
228-363-5499
calvin.l.thompson@nasa.gov

Categories: NASA

Meet the crew launching on Boeing's 1st Starliner astronaut flight

Space.com - Mon, 04/29/2024 - 12:30pm
NASA astronauts Barry "Butch" Wilmore and Suni Williams are slated to launch on Boeing’s first crewed test flight of its Starliner capsule, flying to the International Space Station on May 6.
Categories: Astronomy

JWST Uses “Interferometry Mode” to Reveal Two Protoplanets Around a Young Star

Universe Today - Mon, 04/29/2024 - 12:01pm

The JWST is flexing its muscles with its interferometry mode. Researchers used it to study a well-known extrasolar system called PDS 70. The goal? To test the interferometry mode and see how it performs when observing a complex target.

The mode uses the telescope’s NIRISS (Near Infrared Imager and Slitless Spectrograph) as an interferometer. It’s called Aperture Masking Interferometry (AMI) and it allows the JWST to reach its highest level of spatial resolution.

A team of astronomers used the JWST’s AMI to observe the PDS 70 system. PDS 70 is a young T-Tauri star about 5.4 million years old. At that young age, its protoplanetary disk still surrounds it. PDS 70 is a well-studied system that’s caught the attention of astronomers. It’s unique because its two planets, PDS 70 b and c, make it the only multiplanet protoplanetary disk system we know of.

The researchers wanted to determine how easily the AMI would find PDS 70’s two known planets and what else it could observe in the system.

Their research is “The James Webb Interferometer: Space-based interferometric detections of PDS 70 b and c at 4.8 µm.” It’s available on the pre-print site arxiv.org and hasn’t been peer-reviewed yet. The lead author is Dori Blakely from the Department of Physics and Astronomy at the University of Victoria, BC, Canada.

PDS 70 is known for its pair of planets. PDS 70 b is about 3.2 Jupiter masses and follows a 123-year orbital period. PDS 70 c is about 7.5 Jupiter masses and follows a 191-year orbit. One of the most puzzling things about the system is that PDS 70 b appears to have its own accretion disk. The system also shows intriguing evidence of a third body, maybe another star.

The JWST’s interferometry easily detected both planets. In fact, the observations found evidence of circumplanetary disk emissions around PDS 70 b and c. “Our photometry of both PDS 70 b and c provide evidence for circumplanetary disk emission,” the researchers write. That means we can see the star and its protoplanetary disk, where planets form, and the individual circumplanetary disks around each planet. Those disks are where moons form, and seeing them in a system 366 light-years away is very impressive.

The PDS 70 system as seen by the JWST’s interferometry mode and after extensive data processing. A yellow star marks the location of PDS 70, with PDS 70 b and c also shown. The JWST shows the infrared emissions coming from the disk. Image Credit: Blakely et al. 2024.

The JWST’s AMI observations also found a third point source. Its light is different from the light from the pair of planets and more similar to the light from the star. If it’s another planet, its composition is different from the others. If it’s not another planet, that doesn’t mean it necessarily has to be another star. The JWST could be seeing scattered starlight from another gaseous, dusty structure or clump in the disk. “This indicates that what we observe is not due to a simple inner disk structure, and may hint at a complex inner disk morphology such as a spiral or clumpy features,” the researchers explain.

The unexplained third source could be something more exotic. Previous research also identified the source and suggested that it could be an accretion stream flowing between PDS 70 b and c. “We interpret its signal in the direct vicinity of planet c as tracing the accretion stream feeding its circumplanetary disk,” the authors of the previous research wrote.

These images are from previous research that used the JWST but not its interferometry mode. The top row is from the telescope’s F187N filter, and the bottom row is from the telescope’s F480M filter. The left column shows the complete images. The middle column shows the system with the disk subtracted. The right column shows the system with the disk and both known planets extracted. What remains is a potential third planet, planet “d,” and an arm-like feature and potential accretion stream. Image Credit: V. Christiaens et al. 2024.

Or, perhaps most exciting, the source could be another planet. “Another scenario is that the signal we observe is due to an additional planet interior to the orbit of PDS 70 b,” the authors explain. “Follow-up observations will be needed to determine the nature of this emission,” the authors write.

Part of the observations’ success comes from what it didn’t detect. Protoplanetary disks are dusty and difficult to examine. The JWST has a leg up on it because it can see infrared light. When used in interferometry mode, it’s a powerful tool. The fact that it failed to detect any other planets is progress, though. “Additionally, we place the deepest constraints on additional planets,” in part of the disk. These constraints will help future researchers examine the PDS 70 system and other extrasolar systems.

The results also show another of AMI’s strengths: its ability to see into parts of the parameter space that other telescopes can’t. “Furthermore, our results show that NIRISS/AMI can reliably measure relative astrometry and contrasts of young planets in a part of parameter space (small separations and moderate to high contrasts) that is unique to this observing mode, and inaccessible to all other present facilities at 4.8 µm,” the authors explain.

The JWST has already established its place in the history of astronomy. It’s delivered on its promise and has already significantly contributed to our understanding of the cosmos. The telescope’s observations with its Aperture Masking Interferometry mode will further cement its place in history.

“Here, using the power of the James Webb Interferometer, we detect PDS 70, its outer disk, and its two protoplanets, b and c. These are the first planets detected with space-based interferometry,” the authors write.

The post JWST Uses “Interferometry Mode” to Reveal Two Protoplanets Around a Young Star appeared first on Universe Today.

Categories: Astronomy

Major Martian Milestones

NASA - Breaking News - Mon, 04/29/2024 - 12:00pm
1 Min Read Major Martian Milestones The horizon of Mars showing water-ice and dust in the atmosphere, as seen by the NASA’s Mars Odyssey mission on May 9, 2023. To find layers of ice and dust like these in Mars’s atmosphere, participants in the Cloudspotting on Mars project analyze data from a different infrared instrument, the Mars Climate Sounder on the Mars Reconnaissance Orbiter. More information on this image (including an animation) can be found here: https://mars.nasa.gov/resources/27816/odysseys-themis-views-the-horizon-of-mars/?site=msl.

There’s good news from NASA’s Cloudspotting on Mars project! That’s the project that invites you to help identify exotic clouds high in the Martian atmosphere.

  • Thanks to your help, the Cloudspotting on Mars project reached ahuge milestone. Another full Mars year, Mars Year 30 (Oct 2009 – Sep 2011), has been completed! That’s the second full Mars year of observations that has been analyzed since the project began. 
  • A new project from the Cloudspotting on Mars team has started its beta testing phase! In this new project, you’ll pick out cloud shapes in data from NASA’s Mars Atmosphere and Volatile Evolution (MAVEN) Mission.  If you’re willing to help beta test this project and provide feedback before it launches, please send an email to the team. We’ll let everyone know when this project officially launches, of course!

Congratulations to the Cloudspotting on Mars team and all the volunteers who have helped spot Martian clouds!

Facebook logo @DoNASAScience @DoNASAScience Share Details Last Updated Apr 29, 2024 Related Terms Explore More 6 min read Pushing the Limits of Sub-Kilowatt Electric Propulsion Technology to Enable Planetary Exploration and Commercial Mission Concepts Article 6 days ago 5 min read Why is Methane Seeping on Mars? NASA Scientists Have New Ideas Article 1 week ago 5 min read Hubble Goes Hunting for Small Main Belt Asteroids Article 2 weeks ago
Categories: NASA

The galactic anomalies hinting dark matter is weirder than we thought

New Scientist Space - Space Headlines - Mon, 04/29/2024 - 12:00pm
Cosmological puzzles are tempting astronomers to rethink our simple picture of the universe – and ask whether dark matter is even stranger than we thought
Categories: Astronomy

The galactic anomalies hinting dark matter is weirder than we thought

New Scientist Space - Cosmology - Mon, 04/29/2024 - 12:00pm
Cosmological puzzles are tempting astronomers to rethink our simple picture of the universe – and ask whether dark matter is even stranger than we thought
Categories: Astronomy

A new approach to dark matter could help us solve galactic anomalies

New Scientist Space - Cosmology - Mon, 04/29/2024 - 12:00pm
Cosmological puzzles are tempting astronomers to rethink our simple picture of the universe – and ask whether dark matter is even stranger than we thought
Categories: Astronomy

A new approach to dark matter could help us solve galactic anomalies

New Scientist Space - Space Headlines - Mon, 04/29/2024 - 12:00pm
Cosmological puzzles are tempting astronomers to rethink our simple picture of the universe – and ask whether dark matter is even stranger than we thought
Categories: Astronomy