"For the sage, time is only of significance in that within it the steps of becoming can unfold in clearest sequence."

— I Ching

Feed aggregator

Extreme heat in 2023 linked to drastic slump in growth of marine life

Last year’s marine heatwaves saw an unprecedented decline in the growth of phytoplankton and algae, which many animals in the oceans depend on for food
Categories: Astronomy

Dietary changes relieve irritable bowel syndrome better than medicine

New Scientist Space - Space Headlines - Thu, 04/18/2024 - 7:30pm
Both a special diet that excludes “FODMAP” compounds and a low-carb high-fibre diet were effective
Categories: Astronomy

AI for Earth: How NASA’s Artificial Intelligence and Open Science Efforts Combat Climate Change

NASA - Breaking News - Thu, 04/18/2024 - 5:06pm

4 min read

AI for Earth: How NASA’s Artificial Intelligence and Open Science Efforts Combat Climate Change Lights brighten the night sky in this image of Europe, including Poland, taken from the International Space Station. NASA

As extreme weather events increase around the world due to climate change, the need for further research into our warming planet has increased as well. For NASA, climate research involves not only conducting studies of these events, but also empowering outside researchers to do the same. The artificial intelligence (AI) efforts spearheaded by the agency offer a powerful tool to accomplish these goals.

In 2023, NASA teamed up with IBM Research to create an AI geospatial foundation model. Trained on vast amounts of NASA’s widely used Harmonized Landsat and Sentinel-2 (HLS) data, the model provides a base for a variety of AI-powered studies to tackle environmental challenges. In keeping with open science principles, the model is freely available for anyone to access.

Foundation models serve as a baseline from which scientists can develop a diverse set of applications, enabling powerful and efficient solutions. “Foundation models only know what things are represented in the data,” explained Manil Maskey, the data science lead at NASA’s Office of the Chief Science Data Officer (OCSDO). “It’s like a Swiss Army Knife—it can be used for multiple different things.”

Once a foundation model is created, it can be trained on a small amount of data to perform a specific task. To date, the Interagency Implementation and Advanced Concept Team (IMPACT) along with collaborators have demonstrated the geospatial foundation model’s capabilities by fine-tuning it to detect burn scars, to delineate flood water, and to classify crop and other land use categories.

Rectangular ponds for shrimp farming line the coast of northern Peru in this image captured on March 14, 2024 by the OLI-2 (Operational Land Imager-2) on Landsat 9. NASA Earth Observatory / Lauren Dauphin

Because of the computational resources required to create the initial foundation model, a partnership was necessary for success. In this case, NASA brought the data and scientific knowledge, while IBM brought the computing power and AI algorithm optimization expertise. The team’s shared commitment to making their research accessible through open science principles ensures that their model can be useful to as many researchers as possible.

“To build a foundation model at scale, we realized early on that it’s not feasible for one institution to build it,” Maskey said. “Everything we have done on our foundation models has been open to the public, all the way from pre-training data, code, best practices, model weights, fine-tuning training data, and publications. There’s transparency, so researchers can trace why certain things were used in terms of data or model architecture.”

Following on from the success of their geospatial foundation model, NASA and IBM Research are continuing their partnership to create a new, similar model for weather and climate studies. They are collaborating with Oak Ridge National Laboratory (ORNL), NVIDIA, and several universities to bring this model to life.

This time, the main dataset will be the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2), a huge collection of atmospheric reanalysis data that spans from 1980 to the present day. Like the geospatial foundation model, the weather and climate model is being developed with an open science approach, and will be available to the public in the near future.

Covering all aspects of Earth science would take several foundation models trained on different types of datasets. However, Maskey believes those future models might someday be combined into one comprehensive model, leading to a “digital twin” of the Earth that would provide unparalleled analysis and predictions for all kinds of climate and environmental events.

Whatever innovations the future holds, NASA and IBM’s geospatial and climate foundation models will enable leaps in Earth science like never before. Though powerful AI tools will enhance researchers’ work, the team’s dedication to open science supercharges the possibilities for discovery by allowing anyone to put those tools into practice and pave the way for groundbreaking research to help better care for the planet.

For more information about open science at NASA, visit:
https://science.nasa.gov/open-science/

By Lauren Leese
Web Content Strategist for the Office of the Chief Science Data Officer

Share

Details

Last Updated

Apr 18, 2024

Related Terms Explore More

4 min read NASA Data Shows How Drought Changes Wildfire Recovery in the West

Article


3 weeks ago

5 min read Early Adopters of NASA’s PACE Data to Study Air Quality, Ocean Health

Article


3 weeks ago

4 min read NASA’s Global Precipitation Measurement Mission: 10 years, 10 stories

Article


2 months ago

Keep Exploring Discover Related Topics

Missions


Humans in Space


Climate Change


Solar System

Categories: NASA

Rocket Lab gearing up to refly Electron booster for 1st time

Space.com - Thu, 04/18/2024 - 5:00pm
Rocket Lab has put a recovered Electron first stage back into its production line, a big step toward the company's first-ever rocket reflight.
Categories: Astronomy

Artemis Astronauts Will Deploy New Seismometers on the Moon

Universe Today - Thu, 04/18/2024 - 4:14pm

Back in the 1960s and 1970s, Apollo astronauts set up a collection of lunar seismometers to detect possible Moon quakes. These instruments monitored lunar activity for eight years and gave planetary scientists an indirect glimpse into the Moon’s interior. Now, researchers are developing new methods for lunar quake detection techniques and technologies. If all goes well, the Artemis astronauts will deploy them when they return to the Moon.

Fiber optic cable is the heart of a seismology network to be deployed on the Moon by future Artemis astronauts.

The new approach, called distributed acoustic sensing (DAS), is the brainchild of CalTech geophysics professor Zhongwen Zhan. It sends laser beams through a fiber optic cable buried just below the surface. Instruments at either end measure how the laser light changes during the shake-induced tremors. Basically Zhan’s plan turns the cable into a sequence of hundreds of individual seismometers. That gives precise information about the strength and timing of the tremors. Amazingly, a 100-kilometer fiber optic cable would function as the equivalent of 10,000 seismometers. This cuts down on the number of individual seismic instruments astronauts would have to deploy. It probably also affords some cost savings as well.

A seismometer station deployed on the Moon during the Apollo 15 mission. Courtesy NASA. DAS and Apollo on the Moon

Compare DAS the Apollo mission seismometer data and it becomes obvious very quickly that DAS is a vast improvement. In the Apollo days, the small collection of instruments left behind on the Moon provided information that was “noisy”. Essentially, when the seismic waves traveled through different parts of the lunar structure, they got scattered. This was particularly true when they encountered the dusty surface layer. The “noise” basically muddied up the signals.

The layout for the Apollo Lunar Seismic Profiling Experiment for the Apollo 17 mission. Courtesy Nunn, et al. What DAS Does to Detect Quakes on the Moon

The DAS system stations laser emitters and data collectors at each end of a fiber optic cable. This allows for multiple widely spaced installations that measure light as it transits the network. The cable consists of glass strands, and each strand contains tiny imperfections. That sounds bad, but each imperfection provides a useful “waypoint” that reflects a little bit of the light back to the source. That information gets recorded as part of a larger data set. Setting up such a system of telecommunications cables over a large area provides millions of waypoints that scientists can use to measure seismic movements on Earth.

A recent study led by CalTech postdoctoral researcher Qiushi Zhai deployed this type of DAS-enabled fiber optic cable system in Antarctica. The conditions mimic some of the environmental challenges of a lunar deployment—it’s freezing cold, very dry, and far removed from human activities. The sensors measured the small movements of caused by ice cracking and moving around. Those types of signals are perfect analogs to lunar quakes.

Aerial view of Antarctica. A prototype of the lunar DAS system for the Artemis missions to the Moon detected tiny tremors from ice movements here. Photo credit: L. McFadden 2008 Measuring a Lunar Quake Using DAS

Since DAS works well measuring tiny tremors induced by ice, it seems like the perfect “next step” in doing lunar seismology. On the Moon, the fiber optic cable would be buried (just as cables are on Earth) a few centimeters below the level of the regolith. It will sit there waiting for the next quake, which probably won’t take long, since the Moon seems to quiver frequently. When one strikes, its seismic waves will move through the ground from the source. They’ll wiggle the cable. That will affect the light-travel path inside. The actions of light hitting thousands of imperfections inside the cable will provide lunar geologists with high-precision data about moonquakes. That includes their origins, travel time, and other aspects of the wave that will help them understand more about the lunar structure they travel through.

The distributed nature of the seismic network will have a big advantage over the Apollo-style individual seismometers used in the past. And, there are other reasons to use DAS, according to Zhai. “Another advantage of using DAS on the Moon is that a fiber optic cable is physically quite resilient to the harsh lunar environment: high radiation, extreme temperatures, and heavy dust,” Zhai said.

Moon Structure and DAS

Zhai is the first author of a paper describing the DAS system, which should allow scientists to detect close to 100 percent of Moon tremors. The paper offers insight into the advantages that DAS offers. In particular, such an array stretched across large areas of the Moon should provide much higher-quality data about even the smallest tremors that shake the surface.

Since the Moon is not tectonically active, its quakes don’t occur from the same causes as they do on Earth. Some happen during the sunset/sunrise period when temperature changes affect the surface. Others happen thanks to Earth’s pull on the Moon, and still others occur because the Moon is still cooling and contracting. Zhai’s paper suggests that DAS could detect about 15 moonquakes per day, and perhaps help better characterize the thermal moonquakes that happen at sunrise/sunset and the deeper ones that occur during perigee and apogee portions of its orbit, and those intrinsic to the Moon’s contraction. In addition, impacts on the Moon also generate quakes. Information about all these events should give planetary scientists a big leg up on understanding more about the lunar interior structure.

The deployment of DAS and other science experiments will be part of the surface operations of the Artemis missions. It will be part of one of the proposed seven-month stays for astronaut teams. Although there is no specific planned date for seismometer deployment, it’s likely to take place no sooner than the mid-2030s. That’s after the planned missions to build shelters, deploy power stations, and other activities to create the lunar bases.

For More Information

A New Type of Seismic Sensor to Detect Moonquakes
Assessing the feasibility of Distributed Acoustic Sensing (DAS) for Moonquake Detection
Lunar Seismology: A Data and Instrumentation Review

The post Artemis Astronauts Will Deploy New Seismometers on the Moon appeared first on Universe Today.

Categories: Astronomy

'Transformers One' 1st trailer unveils Optimus Prime and Megatron's shared history (video)

Space.com - Thu, 04/18/2024 - 4:00pm
The Transformers are returning to cinemas in 2024 with their first animated movie in nearly 40 years. This is the beginning of Cybertron's end.
Categories: Astronomy

Ice Deposits on Ceres Might Only Be a Few Thousand Years Old

Universe Today - Thu, 04/18/2024 - 3:43pm

The dwarf planet Ceres has some permanently dark craters that hold ice. Astronomers thought the ice was ancient when they were discovered, like in the moon’s permanently shadowed regions. But something was puzzling.

Why did some of these shadowed craters hold ice while others did not?

Ceres was first discovered in 1801 and was considered a planet. Later, it was thought to be the first asteroid ever discovered, since it’s in the main asteroid belt. Since then, our expanding knowledge has changed its definition: we now know it as a dwarf planet.

Even though it was discovered over 200 years ago, it’s only in the last couple of decades that we’ve gotten good looks at its surface features. NASA’s Dawn mission is responsible for most of our knowledge of Ceres’ surface, and it found what appeared to be ice in permanently shadowed regions (PSRs.)

New research shows that these PSRs are not actually permanent and that the ice they hold is not ancient. Instead, it’s only a few thousand years old.

The new research is titled “History of Ceres’s Cold Traps Based on Refined Shape Models,” published in The Planetary Science Journal. The lead author is Norbert Schorghofer, a senior scientist at the Planetary Science Institute.

“The results suggest all of these ice deposits must have accumulated within the last 6,000 years or less.”

Norbert Schorghofer, senior scientist, Planetary Science Institute.

Dawn captured its first images of Ceres while approaching the dwarf planet in January 2015. At that time, it was close enough to capture images as good as Hubble’s. Those images showed craters and a high-albedo site on the surface. Once captured by Ceres, Dawn followed a polar orbit with decreasing altitude. It eventually reached 375 km (233 mi) above the surface, allowing it to see the poles and surface in greater detail.

“For Ceres, the story started in 2016, when the Dawn spacecraft, which orbited around Ceres at the time, glimpsed into these permanently dark craters and saw bright ice deposits in some of them,” Schorghofer said. “The discovery back in 2016 posed a riddle: Many craters in the polar regions of Ceres remain shadowed all year – which on Ceres lasts 4.6 Earth years – and therefore remain frigidly cold, but only a few of them harbor ice deposits.”

As scientists continued to study Ceres, they made another discovery: its massive Solar System neighbours make it wobble.

“Soon, another discovery provided a clue why: The rotation axis of Ceres oscillates back and forth every 24,000 years due to tides from the Sun and Jupiter. When the axis tilt is high and the seasons strong, only a few craters remain shadowed all year, and these are the craters that contain bright ice deposits,” said lead author Schorghofer.

This figure from the research shows how Ceres’ obliquity has changed over the last 25,000 years. As the obliquity varies, sunlight reaches some crater floors that were thought to be PSRs. Image Credit: Schorghofer et al. 2023.

Researchers constructed digital elevation maps (DEMs) of the craters to uncover these facts. They wanted to find out how large and deep the shadows in the craters were, not just now but thousands of years ago. But that’s difficult to do since portions of these craters were in deep shadow when Dawn visited. That made it difficult to see how deep the craters were.

Robert Gaskell, also from the Planetary Science Institute, took on the task. He developed a new technique to create more accurate maps of the craters with data from Dawn’s sensitive Framing Cameras, contributed to the mission by Germany. With improved accuracy, these maps of the crater floors could be used in ray tracing to show sunlight penetrated the shadows as Ceres wobbled over thousands of years.

This figure from the study shows some of the DEMs the researchers developed for craters on Ceres. White regions represent sunlit areas, while the coloured contours represent PSRs for different axial tilts. Image Credit: Schorghofer et al. 2023.

The DEMs in the above image show that at 20 degrees obliquity, none of the craters are in permanent shadow. That means none of them have truly permanent PSRs. “A PSR starts to emerge in Bilwis crater at about 18°, and they emerge at lower obliquities at the other six study sites. This implies that the ice deposits are remarkably young,” the researchers write in their paper.

This figure from the research shows PSRs in the north-polar region of Ceres. The colour scale shows how oblique each crater is. The research shows that 14,000 years ago, none of these were PSRs, and the ice they hold now is only 6,000 years old. Image Credit: Schorghofer et al. 2023.

About 14,000 years ago, Ceres reached its maximum axial tilt. At that time, no craters were PSRs. Any ice in these craters would’ve been sublimated into space. “That leaves only one plausible explanation: The ice deposits must have formed more recently than that. The results suggest all of these ice deposits must have accumulated within the last 6,000 years or less. Considering that Ceres is well over 4 billion years old, that is a remarkably young age,” Schorghofer said.

So, where did the ice come from?

There must be some source if the ice is young and keeps reforming during maximum obliquity. The only plausible one is Ceres itself.

“Ceres is an ice-rich object, but almost none of this ice is exposed on the surface. The aforementioned polar craters and a few small patches outside the polar regions are the only ice exposures. However, ice is ubiquitous at shallow depths – as discovered by PSI scientist Tom Prettyman and his team back in 2017 – so even a small dry impactor could vaporize some of that ice.” Schorghofer said. “A fragment of an asteroid may have collided with Ceres about 6,000 years ago, which created a temporary water atmosphere. Once a water atmosphere is generated, ice would condense in the cold polar craters, forming the bright deposits that we still see today. Alternatively, the ice deposits could have formed by avalanches of ice-rich material. This ice would then survive in only the cold shadowed craters. Either way, these events were very recent on an astronomical time scale.”

There are other potential sources of water ice. Ceres has a very thin, transient water atmosphere. The water could come from cryovolcanic processes and then be trapped and frozen in shadowed regions.

Ceres also has a single cryovolcano: Ahuna Mons. It’s at least a couple hundred million years old and long dormant. There are dozens of other dormant potential cryovolcanoes, too. But these likely aren’t the water source.

There’s ample water ice at shallow levels in Ceres. If the dwarf planet erodes over time, mass-wasting could expose and release water that freezes in the craters. “The few ice deposits that have been detected spectroscopically outside the polar regions are indeed often associated with landslides, and the sunlit portion of the ice deposit in Zatik crater is best explained by a recent mass wasting event,” the authors explain.

Ceres has been through a lot. As an ancient protoplanet that’s survived to this day, it holds important clues to the Solar System. Though its craters don’t hold ancient ice like once thought, deeper study is revealing the dwarf planet’s true nature.

“The ice deposits in the Cerean PSRs indicate an active water cycle; ice is either repeatedly captured and lost or frequently exposed, or both,” the authors conclude.

The post Ice Deposits on Ceres Might Only Be a Few Thousand Years Old appeared first on Universe Today.

Categories: Astronomy

Sols 4159-4160: A Fully Loaded First Sol

NASA - Breaking News - Thu, 04/18/2024 - 3:31pm

3 min read

Sols 4159-4160: A Fully Loaded First Sol This image was taken by Chemistry & Camera (ChemCam) onboard NASA’s Mars rover Curiosity on Sol 4158 (2024-04-17 07:52:27 UTC). NASA/JPL-Caltech/LANL

Earth planning date: Wednesday, April 17, 2024

Curiosity continues to make progress along the margin of upper Gediz Vallis ridge, investigating the broken bedrock in our workspace and acquiring images of the ridge deposit as the rover drives south.

Today’s 2-sol plan focused on a DRT, contact science, and drive on the first sol, followed by untargeted remote sensing on the second sol.  The team had to make some decisions at the start of planning about whether to drive on the first or second sol of this plan, and how that would affect the upcoming weekend activities.  As it turned out, the team was able to fit all of the desired contact science and remote sensing activities on the first sol, in addition to the drive on the first sol, which means we’ll be able to downlink more information about our end-of-drive location to better inform planning for the weekend.  Weekend plans provide opportunities for a lot of great contact science, so it will be really helpful to have that additional data down for planning.

That means the first sol of this plan is fully loaded!  The plan begins with a DRT activity to expose a fresh surface on the bedrock target “Tilden Lake,” followed by APXS integrations to investigate its composition. Then the Geology theme group planned several hours of remote sensing activities, including ChemCam LIBS on the bedrock target “Curry Village,” which has a similar “dragon scale” texture (or “tire tracks”) to what we had observed in the previous workspace. This big remote sensing block also includes ChemCam long distance RMI mosaics to assess the stratigraphy at Gediz Vallis ridge and the distant butte Kukenan.  These long distance RMI images reveal a lot of great detail about distant targets, like the diversity of clasts at Gediz Vallis ridge, as seen in the above image.  

The plan also includes a number of Mastcam activities to characterize local textures, sedimentary structures, dark rocks, and sandy aeolian bedforms (known as Transverse Aeolian Ridges, aka TARs) in a nearby trough.  The Environmental theme group also planned activities to monitor the movement of fines on the rover deck, search for dust devils, and monitor atmospheric dust.  After this big remote sensing block, Curiosity will use MAHLI to image the contact science target, and then continue driving south.  The second sol includes untargeted activities like an autonomously selected ChemCam AEGIS target, additional Navcam deck monitoring, and Navcam line-of-sight observations. After the drive we’ll take post drive imaging to prepare for the next plan.

Looking forward to seeing what other surprises our next workspace will reveal!

Written by Lauren Edgar, Planetary Geologist at USGS Astrogeology Science Center

Share

Details

Last Updated

Apr 18, 2024

Related Terms Explore More

3 min read Comet Geyser: Perseverance’s 21st Rock Core

Article


2 days ago

3 min read Sols 4157-4158: What is That??

Article


3 days ago

5 min read Sols 4154-4156: Bumpy Driving up the Mountain

Article


6 days ago

Keep Exploring Discover More Topics From NASA

Mars

Mars is no place for the faint-hearted. It’s dry, rocky, and bitter cold. The fourth planet from the Sun, Mars…


All Mars Resources


Rover Basics


Mars Exploration Science Goals

Categories: NASA

China rolls out rocket for next astronaut mission to Tiangong space station (photos)

Space.com - Thu, 04/18/2024 - 3:00pm
CMSA said Shenzhou 18 will be launched at an appropriate time in the near future. However, airspace closure notices indicate launch is currently set for around 9:00 a.m. EDT on April 25 (1300 GMT, or 9:00 p.m. Beijing time).
Categories: Astronomy

Cocaine seems to hijack brain pathways that prioritise food and water

New Scientist Space - Space Headlines - Thu, 04/18/2024 - 3:00pm
Cocaine and morphine hijacked neural responses in the brains of mice, which resulted in them consuming less food and water
Categories: Astronomy

Cocaine seems to hijack brain pathways that prioritise food and water

New Scientist Space - Cosmology - Thu, 04/18/2024 - 3:00pm
Cocaine and morphine hijacked neural responses in the brains of mice, which resulted in them consuming less food and water
Categories: Astronomy

See Amazing Views of the April 8th Total Solar Eclipse from Space

Sky & Telescope Magazine - Thu, 04/18/2024 - 2:20pm

Millions of viewers were wowed by last week’s total solar eclipse. Now, we get to see the eclipse from another angle: space.

The post See Amazing Views of the April 8th Total Solar Eclipse from Space appeared first on Sky & Telescope.

Categories: Astronomy

SpaceX launches Starlink satellites on company's 40th mission of 2024 (video)

Space.com - Thu, 04/18/2024 - 1:59pm
SpaceX launched its 40th mission of 2024 this evening (April 18), sending yet another batch of the company's Starlink internet satellites skyward.
Categories: Astronomy

The Mystery of Cosmic Rays Deepens

Universe Today - Thu, 04/18/2024 - 1:42pm

Cosmic rays are high-energy particles accelerated to extreme velocities approaching the speed of light. It takes an extremely powerful event to send these bits of matter blazing through the Universe. Astronomers theorize that cosmic rays are ejected by supernova explosions that mark the death of supergiant stars. But recent data collected by the Fermi Gamma-ray space telescope casts doubt on this production method for cosmic rays, and has astronomers digging for an explanation.

It’s not easy to tell where a cosmic ray comes from. Most cosmic rays are hydrogen nuclei, others are protons, or free-flying electrons. These are charged particles, meaning that every time they come across other matter in the Universe with a magnetic field, they change course, causing them to zig-zag through space.

The direction a cosmic ray comes from when it hits Earth, then, is not likely the direction it started in.

But there are ways to indirectly track down their origin. One of the more promising methods is by observing gamma rays (which do travel in straight lines, thankfully).

When cosmic rays bump into other bits of matter, they produce gamma rays. So when a supernova goes off and sends cosmic rays out into the Universe, it should also send a gamma-ray signal letting us know it’s happening.

That’s the theory, anyway.

But the evidence hasn’t matched expectations. Studies of old, distant supernovas show some gamma ray production occurring, but not as much as predicted. Astronomers explained away the missing radiation as a result of the supernovas’ age and distance. But in 2023, the Fermi telescope captured a bright new supernova occurring nearby. Named SN 2023ixf, the supernova went off just 22 million light-years away in a galaxy called Messier 101 (better known as the ‘Pinwheel Galaxy’). And yet again, gamma rays were conspicuously absent.

NASA Goddard.

“Astrophysicists previously estimated that supernovae convert about 10% of their total energy into cosmic ray acceleration,” said Guillem Martí-Devesa, University of Trieste. “But we have never observed this process directly. With the new observations of SN 2023ixf, our calculations result in an energy conversion as low as 1% within a few days after the explosion. This doesn’t rule out supernovae as cosmic ray factories, but it does mean we have more to learn about their production.”

So where is all the missing gamma radiation?

It’s possible that interstellar material around the exploding star could have blocked gamma rays from reaching the Fermi telescope. But it might also mean that astronomers need to look for alternative explanations for the production of cosmic rays.

Nobody likes a good mystery better than astronomers, and digging into the missing gamma radiation could eventually tell us a whole lot more about cosmic rays and where they come from.

Astronomers plan to study SN 2023ixf in other wavelengths to improve their models of the event, and will of course keep an eye out for the next big supernova, in an effort to understand what is going on.

The most recent gamma-ray data from SN 2023ixf will be published in Astronomy and Astrophysics in a paper led by Martí-Devesa.

The post The Mystery of Cosmic Rays Deepens appeared first on Universe Today.

Categories: Astronomy

Water Touches Everything

NASA - Breaking News - Thu, 04/18/2024 - 1:25pm
The ocean holds about 97 percent of Earth’s water and covers 70 percent of our planet’s surface. According to the United Nations, the ocean may be home to 50 to 80 percent of all life on Earth. Even if you live hundreds of miles from a coast, what happens in the ocean is fundamental to your life.NASA/Jenny Mottar

Real satellite imagery from NASA’s Terra, Aqua, and Landsat missions takes the shape of whales and swirling clouds in the agency’s Earth Day 2024 poster, “Water Touches Everything.”

The major ocean basins – Atlantic, Pacific, Arctic, Indian, and Southern – shape our planet’s climate and weather by absorbing, storing, and moving heat, water, and carbon dioxide. For nearly five decades, NASA missions have enabled researchers to observe from above and measure changes in the ocean across days, months, seasons, and years. Scientists use our satellite and sub-orbital data and climate models to study ocean dynamics, sea level rise, hydrological cycles, marine life, and the intersections of land and sea.

Hear NASA Science Mission Directorate Art Director, Jenny Mottar, explain her inspiration behind this year’s poster concept and design.

Image Credit: NASA/Jenny Mottar

Categories: NASA

Water Touches Everything

NASA Image of the Day - Thu, 04/18/2024 - 1:25pm
The ocean holds about 97 percent of Earth's water and covers 70 percent of our planet's surface. According to the United Nations, the ocean may be home to 50 to 80 percent of all life on Earth. Even if you live hundreds of miles from a coast, what happens in the ocean is fundamental to your life.
Categories: Astronomy, NASA

NASA’s Juno Gives Aerial Views of Mountain, Lava Lake on Io

NASA - Breaking News - Thu, 04/18/2024 - 1:00pm
This animation is an artist’s concept of Loki Patera, a lava lake on Jupiter’s moon Io, made using data from the JunoCam imager aboard NASA’s Juno spacecraft. With multiple islands in its interior, Loki is a depression filled with magma and rimmed with molten lava. Credit: NASA/JPL-Caltech/SwRI/MSSS

Imagery from the solar-powered spacecraft provides close-ups of intriguing features on the hellish Jovian moon.

Scientists on NASA’s Juno mission to Jupiter have transformed data collected during two recent flybys of Io into animations that highlight two of the Jovian moon’s most dramatic features: a mountain and an almost glass-smooth lake of cooling lava. Other recent science results from the solar-powered spacecraft include updates on Jupiter’s polar cyclones and water abundance.

The new findings were announced Wednesday, April 16, by Juno’s principal investigator Scott Bolton during a news conference at the European Geophysical Union General Assembly in Vienna.

Juno made extremely close flybys of Io in December 2023 and February 2024, getting within about 930 miles (1,500 kilometers) of the surface, obtaining the first close-up images of the moon’s northern latitudes.

“Io is simply littered with volcanoes, and we caught a few of them in action,” said Bolton. “We also got some great close-ups and other data on a 200-kilometer-long (127-mile-long) lava lake called Loki Patera. There is amazing detail showing these crazy islands embedded in the middle of a potentially magma lake rimmed with hot lava. The specular reflection our instruments recorded of the lake suggests parts of Io’s surface are as smooth as glass, reminiscent of volcanically created obsidian glass on Earth.”

The JunoCam instrument on NASA’s Juno captured this view of Jupiter’s moon Io — with the first-ever image of its south polar region — during the spacecraft’s 60th flyby of Jupiter on April 9.Image credit: NASA/JPL-Caltech/SwRI/MSSS. Image processing: Gerald Eichstädt/Thomas Thomopoulos (CC BY).

Maps generated with data collected by Juno’s Microwave Radiometer (MWR) instrument reveal Io not only has a surface that is relatively smooth compared to Jupiter’s other Galilean moons, but also has poles that are colder than middle latitudes.

Pole Position

During Juno’s extended mission, the spacecraft flies closer to the north pole of Jupiter with each pass. This changing orientation allows the MWR instrument to improve its resolution of Jupiter’s northern polar cyclones. The data allows multiwavelength comparisons of the poles, revealing that not all polar cyclones are created equal.

“Perhaps most striking example of this disparity can be found with the central cyclone at Jupiter’s north pole,” said Steve Levin, Juno’s project scientist at NASA’s Jet Propulsion Laboratory in Southern California. “It is clearly visible in both infrared and visible light images, but its microwave signature is nowhere near as strong as other nearby storms. This tells us that its subsurface structure must be very different from these other cyclones. The MWR team continues to collect more and better microwave data with every orbit, so we anticipate developing a more detailed 3D map of these intriguing polar storms.”

Jovian Water

One of the mission’s primary science goals is to collect data that could help scientists better understand Jupiter’s water abundance. To do this, the Juno science team isn’t hunting for liquid water. Instead, they are looking to quantify the presence of oxygen and hydrogen molecules (the molecules that make up water) in Jupiter’s atmosphere. An accurate estimate is critical to piecing together the puzzle of our solar system’s formation.

Created using data collected by the JunoCam imager aboard NASA’s Juno during flybys in December 2023 and February 2024, this animation is an artist’s concept of a feature on the Jovian moon Io that the mission science team nicknamed “Steeple Mountain.” Credit: NASA/JPL-Caltech/SwRI/MSSS

Jupiter was likely the first planet to form, and it contains most of the gas and dust that wasn’t incorporated into the Sun. Water abundance also has important implications for the gas giant’s meteorology (including how wind currents flow on Jupiter) and internal structure.

In 1995, NASA’s Galileo probe provided an early dataset on Jupiter’s water abundance during the spacecraft’s 57-minute descent into the Jovian atmosphere. But the data created more questions than answers, indicating the gas giant’s atmosphere was unexpectedly hot and — contrary to what computer models had indicated — bereft of water.

“The probe did amazing science, but its data was so far afield from our models of Jupiter’s water abundance that we considered whether the location it sampled could be an outlier. But before Juno, we couldn’t confirm,” said Bolton. “Now, with recent results made with MWR data, we have nailed down that the water abundance near Jupiter’s equator is roughly three to four times the solar abundance when compared to hydrogen. This definitively demonstrates that the Galileo probe’s entry site was an anomalously dry, desert-like region.”

The results support the belief that the during formation of our solar system, water-ice material may have been the source of the heavy element enrichment (chemical elements heavier than hydrogen and helium that were accreted by Jupiter) during the gas giant’s formation and/or evolution. The formation of Jupiter remains puzzling, because Juno results on the core of the gas giant suggest a very low water abundance — a mystery that scientists are still trying to sort out. 

Data during the remainder of Juno’s extended mission may help, both by enabling scientists to compare Jupiter’s water abundance near the polar regions to the equatorial region and by shedding additional light on the structure of the planet’s dilute core. 

During Juno’s most recent flyby of Io, on April 9, the spacecraft came within about 10,250 miles (16,500 kilometers) of the moon’s surface. It will execute its 61st flyby of Jupiter on May 12.

More About the Mission

NASA’s Jet Propulsion Laboratory, a division of Caltech in Pasadena, California, manages the Juno mission for the principal investigator, Scott Bolton, of the Southwest Research Institute in San Antonio. Juno is part of NASA’s New Frontiers Program, which is managed at NASA’s Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Science Mission Directorate in Washington. The Italian Space Agency (ASI) funded the Jovian InfraRed Auroral Mapper. Lockheed Martin Space in Denver built and operates the spacecraft.

More information about Juno is available at:

https://www.nasa.gov/juno

News Media Contacts

DC Agle
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-9011
agle@jpl.nasa.gov

Karen Fox / Charles Blue
NASA Headquarters, Washington
301-286-6284 / 202-802-5345
karen.c.fox@nasa.gov / charles.e.blue@nasa.gov

Deb Schmid
Southwest Research Institute, San Antonio
210-522-2254
dschmid@swri.org

2024-045

Share Details Last Updated Apr 18, 2024 Related Terms Explore More 3 min read Sols 4159-4160: A Fully Loaded First Sol

Earth planning date: Wednesday, April 17, 2024 Curiosity continues to make progress along the margin…

Article 4 hours ago
7 min read Hubble Goes Hunting for Small Main Belt Asteroids

Like boulders, rocks, and pebbles scattered across a landscape, asteroids come in a wide range…

Article 10 hours ago
5 min read NASA’s Ingenuity Mars Helicopter Team Says Goodbye … for Now Article 2 days ago
Categories: NASA

NASA Confirms that a Piece of its Battery Pack Smashed into a Florida Home

Universe Today - Thu, 04/18/2024 - 12:59pm

NASA is in the business of launching things into orbit. But what goes up must come down, and if whatever is coming down doesn’t burn up in the atmosphere, it will strike Earth somewhere.

Even Florida isn’t safe.

Careful consideration goes into releasing debris from the International Space Station. Its mass is measured and calculated so that it burns up during re-entry to Earth’s atmosphere. But in March 2024, something didn’t go as planned.

It all started in 2021 when astronauts replaced the ISS’s nickel hydride batteries with lithium-ion batteries. It was part of a power system upgrade, and the expired batteries added up to about 2,630 kg (5,800 lbs.) On March 8th, 2021, ground controllers used the ISS’s robotic arm to release a pallet full of the expired batteries into space, where orbital decay would eventually send them plummeting into Earth’s atmosphere.

The Canadarm 2 robotic arm releases a pallet of spent batteries into space on March 8th, 2021. Image Credit: NASA

It was the most massive debris release from the ISS. According to calculations, it should have burned up when it entered the atmosphere on March 8th, 2024. But it didn’t.

Alejandro Otero owns a home in Naples, Florida. He wasn’t home on March 8th when there was a loud crash as something smashed into his roof. But his son was. “It was a tremendous sound. It almost hit my son,” Otero told CNN affiliate WINK News in March. “He was two rooms over and heard it all.”

“Something ripped through the house and then made a big hole in the floor and on the ceiling,” Otero explained. “I’m super grateful that nobody got hurt.”

This time, nobody got hurt. But NASA is taking the accident seriously.

Otero cooperated with NASA, and NASA examined the object at the Kennedy Space Center in Florida. They determined the debris was from a stanchion used to mount the old batteries on a special cargo pallet.

This image shows an intact stanchion and the recovered stanchion from the NASA flight support equipment used to mount International Space Station batteries on a cargo pallet. The stanchion survived re-entry through Earth’s atmosphere on March 8, 2024, and impacted a home in Naples, Florida. Image Credit: NASA

The stanchion is made of the superalloy Inconel to understand extreme environments, including extreme heat. It weighs 725 grams (1.6 lbs.) It’s about 10 cm (4 inches) in height and 4 cm (1.6 inches) in diameter.

Even though it’s a tiny object, it’s the type of accident that NASA and the ISS are determined to avoid. “The International Space Station will perform a detailed investigation of the jettison and re-entry analysis to determine the cause of the debris survival and to update modelling and analysis, as needed,” a NASA statement read.

Investigators want to know how the debris survived without burning up on re-entry. Engineers use models to understand how objects react to re-entry heat and break apart, and this event will refine those models. In fact, every time an object reaches the ground, the models are updated.

For Otero, this accident amounted to little more than a great story and an insurance claim. But the chunk of stanchion could’ve seriously injured someone or even killed someone.

In January 1997, Lottie Williams was walking through a park with friends in Tulsa, Oklahoma, in the early morning. They saw a huge fireball in the sky and felt a rush of excitement, thinking they were seeing a shooting star. “We were stunned, in awe,” Williams told FoxNews.com. “It was beautiful.”

Then, something struck her lightly on the shoulder before falling to the ground. It was like a piece of metallic fabric, and after reaching out to some authorities, she learned that it was part of a fuel tank from a Delta II rocket. She’s the first person known to have been hit with space debris. Had it been something with more mass, who knows if Williams would’ve been injured or worse?

That’s why NASA takes debris survival so seriously. The guilt of injuring or even killing someone would be overwhelming. A serious debris accident could also make things very uncomfortable going forward, as people can be fickle and not prone to critical thinking. NASA’s already struggling with budget constraints; the organization doesn’t need any nasty public relations to imperil its progress further.

Complicating matters is that the ESA warned that not all the battery debris would burn up. There wasn’t much else they could do. Fluctuating atmospheric drag made it impossible to predict where debris would strike Earth.

Those who follow space know how complicated and unpredictable this is. And they likewise know how improbable an injury is. But there’s always a non-zero chance of injury or death from space debris for someone going about their life here on the Earth’s surface. If that ever happened, the scrutiny would be intense.

Is it statistical fear-mongering to consider space debris striking someone, injuring them, or worse? Probably. When we see a shooting star in the sky, it’s safe to enjoy the spectacle without worry.

But maybe, just in case, out of an abundance of caution, Don’t Look Up.

The post NASA Confirms that a Piece of its Battery Pack Smashed into a Florida Home appeared first on Universe Today.

Categories: Astronomy

55 Years Ago: Three Months Until the Moon Landing

NASA - Breaking News - Thu, 04/18/2024 - 12:36pm

The rapid pace of preparations for the first Moon landing continued in April 1969. The successful Apollo 9 mission in March cleared the way for Apollo 10 to test all three components of the spacecraft in lunar orbit in May, in a dress rehearsal for the landing itself. Apollo 10 astronauts Thomas P. Stafford, John W. Young, and Eugene A. Cernan and their backups L. Gordon Cooper, Donn F. Eisele, and Edgar D. Mitchell continued training in spacecraft simulators while engineers prepared their Saturn V rocket and Apollo spacecraft for the mid-May launch. Preparations continued in parallel for Apollo 11, the mission to attempt the first Moon landing. The astronauts trained for the flight, including rehearsing the activities for their historic spacewalk on the lunar surface. Fulfilling President John F. Kennedy’s goal by the appointed deadline looked promising.

Apollo 10


The Apollo 10 flight plan.

Apollo 10 would serve as a dress rehearsal for the Moon landing mission. After liftoff from Launch Pad 39B – the first use of that facility – the spacecraft, still attached to the Saturn V’s S-IVB third stage, would make two revolutions around the Earth. The S-IVB would reignite for the Trans-Lunar Injection to begin the journey toward the Moon. Shortly after, the astronauts would undock the Command and Service Module (CSM) from the S-IVB, turn around, and dock with the Lunar Module (LM), tucked away in the top of the rocket stage, in a maneuver called transposition and docking. After jettisoning the S-IVB, the docked spacecraft would coast toward the Moon for about three days. The Service Propulsion System (SPS) engine would fire to drop them into orbit around the Moon. Stafford and Cernan would enter the LM and undock, leaving Young alone in the CSM. Using the LM’s Descent Propulsion System engine to lower their altitude, Stafford and Cernan would descend to about 50,000 feet above the lunar surface, and photograph the primary Apollo 11 landing site in the Sea of Tranquility. The LM would travel up to 350 miles away from the CSM during these maneuvers. The Ascent Propulsion System engine would then fire as they jettisoned the descent stage, in a simulation of a litfoff from the Moon. Stafford and Cernan would then rejoin Young in the CSM. After jettisoning the LM’s ascent stage and completing 11 more orbits around the Moon, Apollo 10 would fire its SPS engine for the retrun trip to Earth, ending with a splashdown in the Pacific Ocean. Except for the actual descent to and touchdown on the surface, Apollo 10 would follow all the steps of the actual Moon landing mission.


Left: Apollo 10 astronauts Thomas P. Stafford, left, John W. Young, and Eugene A. Cernan during a press conference at NASA’s Kennedy Space Center in Florida. Right: Stafford, left, Young, and Cernan hold their mission patch following a press conference at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston.

During two press conferences, at NASA’s Kennedy Space Center (KSC) in Florida on April 8 and at the Manned Spacecraft Center (MSC), now NASA’s Johnson Space Center in Houston, on April 26, Stafford, Young, and Cernan discussed their eight-day mission with reporters. The trio described their upcoming flight as essentially a dress rehearsal for the Moon landing, with Stafford stating that Apollo 10 will “sort out all the unknowns and actually pave the whole way for the lunar landing mission.” They displayed their mission patch and revealed the call signs for their spacecraft – Charlie Brown for the CSM and Snoopy for the LM, after characters in the Peanuts© comic strip by Charles M. Schulz. According to Apollo Spacecraft Program Manager George M. Low, Apollo 10 would do “everything that we did on Apollo 9, only in lunar orbit.” Officials also announced that the Apollo 10 CM may carry a color TV system in addition to the standard black and white cameras. The color camera, equipped with a zoom lens, would provide live TV broadcasts from the spacecraft during critical mission operations and provide viewers at home with a glimpse of life aboard an Apollo spacecraft during a lunar mission. They also expected views of the Earth as well as the lunar landscape. During their low pass over the Moon, Stafford and Cernan would take high resolution stereo photographs of the Apollo 11 landing site. They would also activate the LM’s landing radar during the low passes, a critical test before the Moon landing. Regarding the complexity of the mission, Cernan added “I’ve never been involved in anything that has required as great an amount of coordination and team work as … to work with two vehicles in a lunar environment.” 


Left: Apollo 10 astronauts Eugene A. Cernan, left, and Thomas P. Stafford in the Lunar Module simulator. Right: Apollo 10 astronaut John W. Young in the Command Module simulator.

When not speaking with the press, Stafford, Cernan, and Young, as well as their backups, spent time almost daily in the LM and CSM simulators at MSC and KSC rehearsing various aspects of their upcoming mission. During many of these simulations, Mission Control in Houston was tied in for flight controllers to gain experience. The astronauts also spent time reviewing procedures, updating checklists, and receiving briefings on spacecraft systems and lunar topography.


Left: Apollo 10 astronauts John W. Young, left, Thomas P. Stafford, and Eugene A. Cernan during an inspection visit at Launch Pad 39B. Middle: Young, front, Stafford, and Cernan inspect the slide wire escape mechanism at the top of Launch Pad 39B. Right: Young, left, Stafford, and Cernan inside the blast room beneath the launch pad.

Engineers at KSC completed the Flight Readiness Test (FRT) between April 7 and 10, an activity that ensured the flight readiness of all the vehicle systems and their interaction with ground support equipment. Stafford, Cernan, and Young took part in an emergency egress drill at Launch Pad 39B, including inspecting the slide wire escape mechanism and the blast room, a concrete reinforced structure under the launch pad used in case of a catastrophic emergency during fueling of the rocket or the countdown. Managers from NASA Headquarters, KSC, MSC, and the Marshall Space Flight Center in Huntsville, Alabama, met at KSC on April 23 to conduct the Flight Readiness Review for Apollo 10. At the conclusion of the meeting, during which they reviewed all aspects of the flight hardware as well as the readiness of the crew, the control centers, and the Manned Spaceflight Network, the managers decided that the mission could proceed toward a launch on May 18. On April 28, a planned power outage to conduct maintenance at KSC’s Launch Control Center also caused power outages at the launch pad, where not all systems had backup power. Workers had already loaded the rocket’s first stage with its flight load of RP-1 fuel, and the loss of power caused valves at the bottom of the tank to open, spilling 5,280 liters of fuel onto the launch pad’s flame trench. Since the fuel tank did not have any relief valves to allow air to enter the tank as fuel drained out, the loss of fluid volume caused the top of the tank to dimple inward. Quick thinking engineers at the pad instituted a work around to refill the tank and the dimple popped out with a very audible “boomp.” Launch pad manager John J. “Tip” Talone concluded of the quick action, “It worked like a champ.” Engineers resolved concern with any possible cracks in the fuel tank through non-destructive testing and visual inspections. The Countdown Demonstration Test, a final dress rehearsal of the countdown, took place between April 29 and May 6, with Stafford, Young, and Cernan participating in the final phase as if on launch day.


Left: The Apollo 10 backup crew of L. Gordon Cooper, left, Edgar D. Mitchell, and Donn F. Eisele prepare for the water egress test aboard the MV Retriever in the Gulf of Mexico. Right: Mitchell, left, Eisele, and Cooper in the life raft await pickup by a helicopter during the water egress test.

Apollo 10 backup crew members Cooper, Eisele, and Mitchell completed water egress training in the Gulf of Mexico on April 4. Using a boilerplate Apollo CM and tended by the Motorized Vessel (MV) Retriever, the astronauts practiced emerging from the capsule as if after splashdown, and with assistance from divers waited in a life raft for helicopter crews to retrieve them from the water.

Apollo 11


Left: In the Manned Spacecraft Operations Building (MSOB) at NASA’s Kennedy Space Center (KSC) in Florida, workers complete attaching the landing legs to the Apollo 11 Lunar Module (LM). Middle: In the MSOB, workers lower the Command Service Module onto the Spacecraft LM Adaptor. Right: In KSC’s Vehicle Assembly Building, workers lower the Apollo 11 spacecraft onto its Saturn V rocket.

As launch day neared for Apollo 10, work progressed to get Apollo 11 ready for its historic mission. In KSC’s Manned Spacecraft Operations Building (MSOB), workers attached the four landing legs to the Apollo 11 LM, mated it with its Spacecraft LM Adapter (SLA) on April 4, and three days later completed assembly of the spacecraft by adding the CSM. On April 14, they transported the spacecraft to the Vehicle Assembly Building (VAB), where engineers stacked it atop its Saturn V rocket. They performed tests on the vehicle prior to its rollout to the launch pad in mid-May.


Left: Apollo 11 astronaut Neil A. Armstrong practices taking the first step onto the lunar surface. Middle: Edwin E. “Buzz” Aldrin, left, and Armstrong train for lunar surface activities. Right: Aldrin trains to carry the science instruments.

The Apollo 11 prime crew of Neil A. Armstrong, Michael Collins, and Edwin E. “Buzz” Aldrin and their backups James A. Lovell, William A. Anders, and Fred W. Haise busied themselves training for the Moon landing. On April 14, Apollo Spacecraft Program Manager Low announced in a press conference that Armstrong would most likely be the first person to exit the LM and take humanity’s first steps on the lunar surface. Aldrin would follow about 20 minutes later. The LM cabin’s configuration primarily dictated the rationale for this decision – because of the way the LM’s hatch opened inward, it would be difficult at best for Aldrin to exit first, since he would need to climb over Armstrong in the cramped quarters of the cabin, both of them wearing bulky spacesuits. 


Left: Apollo 11 astronaut Edwin E. “Buzz” Aldrin tests his spacesuit in a vacuum chamber. Middle: Michael Collins prepares to enter the centrifuge gondola. Right: Neil A. Armstrong trains with a lunar sample container in a vacuum chamber.

To ensure the space-worthiness of their spacesuits, the astronauts tested them in the 8-foot altitude chamber in MSC’s Crew Systems Division. Collins and Anders spent time in the centrifuge in MSC’s Flight Acceleration Facility, practicing profiles of a launch and a reentry from a lunar mission. In MSC’s Building 9, on April 18 Armstrong and Aldrin, wearing their spacesuits, completed a 2.5-hour simulation of activities, such as collecting rock and soil samples and deploying scientific instruments, that they will perform on the lunar surface. Armstrong, Aldrin, Lovell, and Haise each completed sea-level runs in Chamber B of MSC’s Space Environment Simulation Laboratory. During these tests, the astronauts wore their spacesuits and practiced the various lunar surface activities, such as activating the television camera, collecting rock samples, and deploying the scientific experiments of the Early Apollo Surface Experiment Package (EASEP). They followed up these ambient sessions with altitude runs in early May.


Left: One of the three Lunar Module-2 drop tests conducted during the first week of April. Right: The Lunar Receiving Laboratory for astronauts and lunar samples returning from the Moon.

To certify the LM and its systems for the loads it would encounter during a lunar landing, engineers at MSC continued drop tests with the flight-like LM-2 in the Vibration and Acoustics Test Facility (VATF).  Beginning the series in late March, engineers completed three of the five drop tests in early April. These tests induced lateral accelerations on the wire harnesses and plumbing in the spacecraft’s aft equipment bay, produced high acceleration loads around the inertial measurement unit and the environmental control system, and stressed the LM’s front face and side hatch. The final test in early May completed the certification of the LM for the first lunar landing. Elsewhere at MSC, staff continued to prepare the Lunar Receiving Laboratory (LRL) for the return of astronauts and samples from the Moon. Workers completed long-duration simulations of the LRL’s major functions including the Crew Reception Area in early April. The tests highlighted some deficiencies requiring correction prior to the first Moon landing flight. These included problems with the sterilization equipment and the gloves used in gloveboxes to handle lunar samples repeatedly developed holes, compromising the biological barrier. A management readiness review held April 17-18 also noted these as areas needing improvement. To solve these issues, MSC Director Robert R. Gilruth named his special assistant Richard S. Johnston to oversee all aspects of the LRL. Workers corrected the problems and the LRL received certification just prior to the Apollo 11 mission.


Left: At Ellington Air Force Base in Houston, NASA pilot Harold E. “Bud” Ream at the controls of Lunar Landing Training Vehicle-2 (LLTV-2) on its first flight after flights resumed. Middle: Ream walks away from LLTV-2 after the successful flight. Right: Multiple exposure of a practice landing at the Lunar Landing Research Facility at NASA’s Langley Research Center in Hampton, Virginia. 

At Ellington Air Force Base near MSC, the Lunar Landing Training Vehicle (LLTV) resumed flight operations on April 7 with MSC pilot Harold E. “Bud” Ream at the controls. Apollo commanders relied on the LLTV as a key training tool to simulate the flying characteristics of the LM, especially of the final 500 feet of the descent. But NASA managers had grounded the LLTV after a crash in December 1968, and following investigations had allowed flights to resume but only by test pilots. Ream completed more than a dozen flights before managers cleared the LLTV for astronaut training in June. While the LLTV remained grounded, Apollo 11 astronauts made use of the Lunar Landing Research Facility (LLRF) at the NASA Langley Research Center in Hampton, Virginia, to train for the final descent to the lunar surface.  Lovell and Haise practiced Moon landings in the LLRF in mid-April. Armstrong and Aldrin would use the facility for practice landings in late June. Once managers cleared the LLTV for astronaut use in early June, Armstrong and Lovell completed training flights in that higher fidelity vehicle later that month.

Apollo 12

Looking beyond Apollo 11, NASA continued preparations for the next missions. In case Apollo 11 could not achieve the Moon landing, the agency established readiness dates for Apollo 12 of Sept. 13 and Apollo 13 of Nov. 10, to try again. If Apollo 11 succeeded, the follow on missions would occur at four-month intervals and explore different regions of the Moon with an expanded set of science instruments and geology objectives.


Left: Apollo 12 astronauts Charles “Pete” Conrad, left, Richard F. Gordon, and Alan L. Bean pose in front of a boilerplate Apollo capsule during water egress training when they served as the backup crew for Apollo 9. Right: Apollo 12 prime crew members Conrad, left, and Bean, right, review Apollo Lunar Surface Experiment Package equipment as backup astronaut James B. Irwin, with arms folded, looks on.

On April 10, NASA announced the prime and backup crews for Apollo 12. The prime crew consisted of Charles “Pete” Conrad, Richard F. Gordon, and Alan L. Bean. The three had served as the backup crew for the March 1969 Apollo 9 mission. Conrad had flown in space twice before, during the then record-breaking eight-day Gemini V mission in 1965 and with Gordon on his only previous mission during Gemini XI in 1966, when they achieved a then-record human space flight altitude of 853 miles. NASA selected Bean, a spaceflight rookie, in 1963. The Apollo 12 backup crew of David R. Scott, Alfred M. Worden, and James B. Irwin would fly the mission in case something happened to the prime crew. Scott had previously flown in space aboard Gemini VIII in 1966, the mission that accomplished the first docking in space and also made the first emergency landing, and more recently he flew aboard Apollo 9. Worden and Irwin had not yet flown in space, but Worden had served on support crews and Irwin as the commander of the crew that conducted tests with LM Test Article-8 (LTA-8) in 1968 to evaluate the LM in a vacuum chamber at MSC.


Left: At NASA’s Kennedy Space Center (KSC) in Florida, workers unwrap the Apollo 12 Lunar Module (LM) descent stage shortly after its arrival in the Manned Spacecraft Operations Building. Middle: Workers lower the Apollo 12 LM ascent stage onto the Command Module for a docking test. Right: Workers roll the Apollo 12 Saturn V S-II second stage into KSC’s Vehicle Assembly Building.

At KSC, components for Apollo 12 began to arrive for processing. The Saturn V’s S-IVB third stage had arrived at the VAB in March, joined by the S-II second stage on April 21, with the S-IC first stage expected in May. The Apollo 12 LM and CSM had arrived in the MSOB in March, and as workers finished up work with the Apollo 11 spacecraft, they shifted their focus to processing Apollo 12. On April 18, they conducted a docking test between the LM’s ascent stage and the CSM, already placed in its altitude chamber for future testing.

To be continued …

News from around the world in April 1969:

April 1 – At MSC, Director of Engineering Maxime A. Faget displayed a wood and paper model of a concept that would develop into the reusable space shuttle.

April 1 – The Hawker-Siddeley Harrier – a vertical take-off and landing fighter jet – began service with the Royal Air Force.

April 4 – Surgeon Dr. Denton Cooley implanted the first temporary artificial heart in a human in an operation at St. Luke’s Episcopal Hospital in Houston.

April 7 – First use of what became the Internet, with circulation of a Request for Comments document among the Network Working Group developing communications protocols for the ARPANET, the Internet’s forerunner.

April 14 – The Montreal Expos beat the visiting St. Louis Cardinals in the first Major League Baseball game played outside the U.S.

April 20 – Princeton University announced that for the first time in its 223- year history it would admit women starting in the fall of 1969.

April 22 – Robin Knox-Johnson completed the first solo sail around the world without stopping or taking on supplies during the entire 312-day voyage.

April 28 – Charles de Gaulle resigned as president of France after 11 years in office.

April 29 – President Richard M. Nixon awarded the Presidential Medal of Freedom to bandleader Duke Ellington.

Explore More 13 min read 45 Years Ago: Space Shuttle Enterprise Arrives at NASA’s Kennedy Space Center Article 6 days ago 5 min read NASA’s SERT II: ‘A Genuine Space Success Story’ Article 1 week ago 5 min read 60 Years Ago: Gemini 1 Flies a Successful Uncrewed Test Flight Article 1 week ago
Categories: NASA

Fossil snake discovered in India may have been the largest ever

New Scientist Space - Cosmology - Thu, 04/18/2024 - 12:00pm
The vertebrae of Vasuki indicus, a snake that lived 47 million years ago, suggest it could have been as long as 15 metres
Categories: Astronomy