"For the sage, time is only of significance in that within it the steps of becoming can unfold in clearest sequence."

— I Ching

Feed aggregator

Stellar Duo

NASA - Breaking News - Tue, 07/08/2025 - 11:30am
ESA/Hubble & NASA, J. Bally, M. Robberto

NASA’s Hubble Space Telescope captured a bright variable star, V 372 Orionis, and its companion in this festive image in this image released on Jan. 27, 2023. The pair lie in the Orion Nebula, a colossal region of star formation roughly 1,450 light-years from Earth.

V 372 Orionis is a particular type of variable star known as an Orion Variable. These young stars experience some tempestuous moods and growing pains, which are visible to astronomers as irregular variations in luminosity. Orion Variables are often associated with diffuse nebulae, and V 372 Orionis is no exception; the patchy gas and dust of the Orion Nebula pervade this scene.

Text credit: European Space Agency (ESA)

Image credit: ESA/Hubble & NASA, J. Bally, M. Robberto

Categories: NASA

Stellar Duo

NASA News - Tue, 07/08/2025 - 11:30am
ESA/Hubble & NASA, J. Bally, M. Robberto

NASA’s Hubble Space Telescope captured a bright variable star, V 372 Orionis, and its companion in this festive image in this image released on Jan. 27, 2023. The pair lie in the Orion Nebula, a colossal region of star formation roughly 1,450 light-years from Earth.

V 372 Orionis is a particular type of variable star known as an Orion Variable. These young stars experience some tempestuous moods and growing pains, which are visible to astronomers as irregular variations in luminosity. Orion Variables are often associated with diffuse nebulae, and V 372 Orionis is no exception; the patchy gas and dust of the Orion Nebula pervade this scene.

Text credit: European Space Agency (ESA)

Image credit: ESA/Hubble & NASA, J. Bally, M. Robberto

Categories: NASA

SpaceX launches 28 Starlink satellites from Cape Canaveral

Space.com - Tue, 07/08/2025 - 11:26am
A SpaceX Falcon 9 rocket carrying 28 Starlink satellites launched from Cape Canaveral Space Force Station in Florida on July 8, 2025.
Categories: Astronomy

Science Makes the U.S. a Great Nation

Scientific American.com - Tue, 07/08/2025 - 10:00am

History tells us what happens when great nations attack science

Categories: Astronomy

How your smartphone is powered by debris from a nova star explosion

Space.com - Tue, 07/08/2025 - 10:00am
The discovery could explain why younger stars seem to have more lithium than the Big Bang theory says they should have.
Categories: Astronomy

The best viral star projector is now 25% off for Amazon Prime Day

Space.com - Tue, 07/08/2025 - 9:24am
The Orzorz Star Projector, the best viral model and best under $100, is now 25% off this Amazon Prime Day in one of the best star projector deals.
Categories: Astronomy

How Trump's budget cuts could affect 2 iconic space telescopes: Hubble and James Webb

Space.com - Tue, 07/08/2025 - 9:00am
At the 246th American Astronomical Society meeting in Alaska last month, scientists discussed how Trump's budget cuts could affect operations for the Hubble Space Telescope and JWST.
Categories: Astronomy

Cutting-Edge Physics and Chemistry Now Unfold One Attosecond at a Time

Scientific American.com - Tue, 07/08/2025 - 8:00am

An attosecond—or 0.000000000000000001 second—is no time at all for a person. That is not so for electrons, atoms and molecules, and laser-wielding scientists are revealing the action

Categories: Astronomy

NASA astronaut Nichole Ayers works on experiment in microgravity | Space photo of the day for July 8, 2025

Space.com - Tue, 07/08/2025 - 8:00am
Aboard the International Space Station, Ayers pulls out physics research hardware inside the Microgravity Science Glovebox
Categories: Astronomy

Best Amazon Prime Day 2025 drone deals

Space.com - Tue, 07/08/2025 - 6:43am
We've rounded up the best Amazon Prime Day drone deals as the retailer's annual sales event kicks off on July 8 and runs through to July 11.
Categories: Astronomy

Anti-Prime Day camera deal from Walmart — be ready to capture the crescent moon crossing the Pleiades on July 20

Space.com - Tue, 07/08/2025 - 6:31am
The Sony A7 III is $1380 from Walmart on this anti-Prime deal and is a huge $118 cheaper than Amazon!
Categories: Astronomy

Can Canada get to orbit? Companies NordSpace and ProtoSpace hope to launch country's 1st space mission (exclusive)

Space.com - Tue, 07/08/2025 - 6:00am
Canadian company NordSpace hopes to be the first in the country's history to launch an orbital rocket from Canadian soil. They've got the support of ProtoSpace, a specialized aerospace manufacturing provider hoping to support Canada's budding space industry.
Categories: Astronomy

<p><a href="https://apod.nasa.gov/apod

APOD - Mon, 07/07/2025 - 8:00pm

What do you see when you look into this sky?


Categories: Astronomy, NASA

Curiosity Blog, Sols 4589 – 4592: Setting up to explore Volcán Peña Blanca

NASA News - Mon, 07/07/2025 - 7:21pm
Curiosity Navigation

Navcam view of the ~3 ft high ridge that marks the eastern side of Volcán Peña Blanca.  The ridge is currently about 35 ft away from the rover, and the team used images like this during today’s planning to decide the exact location for Curiosity’s approach. NASA/JPL-Caltech

Written by Abigail Fraeman, Deputy Project Scientist at NASA’s Jet Propulsion Laboratory

Earth planning date: Thursday, July 3, 2025

The team was delighted this morning to learn that Wednesday’s drive had completed flawlessly, placing us in a stable position facing a ~3 foot high ridge located ~35 feet away.  This ridge is the eastern edge of a feature the team has informally named “Volcán Peña Blanca.” This feature certainly looked intriguing in orbital images, but once we saw Curiosity’s pictures of it from the ground, we decided it was cool enough to spend the time to investigate it closer.  The images from the ground show a lot more detail than is visible in orbit, including clear sedimentary structures exposed along the ridge face which could provide important clues about how the rocks in the boxwork-bearing terrain were initially deposited – dunes? Rivers? Lakes? The team picked their favorite spot to approach the ridge and take a closer look during Wednesday’s planning, so Curiosity made a sharp right turn to take us in that direction.  Using today’s images, we refined our plan for the exact location to approach and planned a drive to take us there, setting us up for contact science on Monday.

We had the opportunity to plan four sols today, to cover the U.S. 4th of July holiday weekend, so there was lots of time for activities besides the drive.  Curiosity is currently sitting right in front of some light toned rocks, including one we gave the evocative name “Huellas de Dinosaurios.” It’s extremely unlikely we’ll see dinosaur footprints in the rock, but we will get the chance to investigate it with APXS, MAHLI, and ChemCam.  We also have a pair of ChemCam only targets on a more typical bedrock target named “Amboro” and some pebbles named “Tunari.”  Mastcam will take a high resolution of mosaic covering Volcán Peña Blanca, some nearby rocks named “Laguna Verde,” a small light colored rock named “Suruto,” and various patterns in the ground. Two ChemCam RMI mosaics of features in the distant Mishe Mokwa face and environment monitoring activities round out the plan.


For more Curiosity blog posts, visit MSL Mission Updates


Learn more about Curiosity’s science instruments

Explore More

2 min read Curiosity Blog, Sol 4588: Ridges and troughs

Article


2 hours ago

2 min read Curiosity Blog, Sols 4586-4587: Straight Drive, Strategic Science

Article


6 days ago

3 min read An Update From the 2025 Mars 2020 Science Team Meeting

Article


6 days ago

Keep Exploring Discover More Topics From NASA

Mars


Mars Resources

Explore this page for a curated collection of Mars resources.


Rover Basics

Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


Mars Exploration: Science Goals

The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

Categories: NASA

Curiosity Blog, Sols 4589 – 4592: Setting up to explore Volcán Peña Blanca

NASA - Breaking News - Mon, 07/07/2025 - 7:21pm
Curiosity Navigation

Navcam view of the ~3 ft high ridge that marks the eastern side of Volcán Peña Blanca.  The ridge is currently about 35 ft away from the rover, and the team used images like this during today’s planning to decide the exact location for Curiosity’s approach. NASA/JPL-Caltech

Written by Abigail Fraeman, Deputy Project Scientist at NASA’s Jet Propulsion Laboratory

Earth planning date: Thursday, July 3, 2025

The team was delighted this morning to learn that Wednesday’s drive had completed flawlessly, placing us in a stable position facing a ~3 foot high ridge located ~35 feet away.  This ridge is the eastern edge of a feature the team has informally named “Volcán Peña Blanca.” This feature certainly looked intriguing in orbital images, but once we saw Curiosity’s pictures of it from the ground, we decided it was cool enough to spend the time to investigate it closer.  The images from the ground show a lot more detail than is visible in orbit, including clear sedimentary structures exposed along the ridge face which could provide important clues about how the rocks in the boxwork-bearing terrain were initially deposited – dunes? Rivers? Lakes? The team picked their favorite spot to approach the ridge and take a closer look during Wednesday’s planning, so Curiosity made a sharp right turn to take us in that direction.  Using today’s images, we refined our plan for the exact location to approach and planned a drive to take us there, setting us up for contact science on Monday.

We had the opportunity to plan four sols today, to cover the U.S. 4th of July holiday weekend, so there was lots of time for activities besides the drive.  Curiosity is currently sitting right in front of some light toned rocks, including one we gave the evocative name “Huellas de Dinosaurios.” It’s extremely unlikely we’ll see dinosaur footprints in the rock, but we will get the chance to investigate it with APXS, MAHLI, and ChemCam.  We also have a pair of ChemCam only targets on a more typical bedrock target named “Amboro” and some pebbles named “Tunari.”  Mastcam will take a high resolution of mosaic covering Volcán Peña Blanca, some nearby rocks named “Laguna Verde,” a small light colored rock named “Suruto,” and various patterns in the ground. Two ChemCam RMI mosaics of features in the distant Mishe Mokwa face and environment monitoring activities round out the plan.


For more Curiosity blog posts, visit MSL Mission Updates


Learn more about Curiosity’s science instruments

Explore More

2 min read Curiosity Blog, Sol 4588: Ridges and troughs

Article


2 hours ago

2 min read Curiosity Blog, Sols 4586-4587: Straight Drive, Strategic Science

Article


6 days ago

3 min read An Update From the 2025 Mars 2020 Science Team Meeting

Article


6 days ago

Keep Exploring Discover More Topics From NASA

Mars


Mars Resources

Explore this page for a curated collection of Mars resources.


Rover Basics

Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


Mars Exploration: Science Goals

The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

Categories: NASA

Curiosity Blog, Sol 4588: Ridges and troughs

NASA News - Mon, 07/07/2025 - 6:27pm
Curiosity Navigation

NASA’s Mars rover Curiosity acquired this image using its Left Navigation Camera onboard NASA’s Mars rover Curiosity on Sol 4,587 (2025-07-02 07:33:39 UTC). NASA/JPL-Caltech

Written by Lucy Thompson, APXS Collaborator and Senior Research Scientist at the University of New Brunswick, Canada

Earth planning date: Wednesday, July 2, 2025

As we traverse the boxwork terrain, we are encountering a series of more resistant ridges/bedrock patches, and areas that are more rubbly and tend to form lower relief polygonal or trough-like features. We came into planning this morning in one of the trough-like features after another successful drive. The science team is interested in determining why we see these different geomorphological and erosional expressions. Is the rock that comprises the more resistant ridges and patches a different composition to the rock in the troughs and low relief areas? How do the rocks vary texturally? Might the resistant bedrock be an indicator of what we will encounter when we reach the large boxworks that we are driving towards?

We managed to find a large enough area of rock to safely brush (target – “Guapay”), after which we will place APXS and MAHLI to determine the composition and texture. ChemCam will also analyze a different rock target, “Taltal” for chemistry and texture, and we will also acquire an accompanying Mastcam documentation image. The resistant ridge that we are planning to drive towards (“Volcan Pena Blanca”) and eventually investigate will be captured in a Mastcam mosaic. ChemCam will utilize their long-distance imaging capabilities to image the “Mishe Mokwa” butte off to the southeast of our current location, which likely contains bedrock layers that we will eventually pass through as we continue our climb up Mount Sharp.

After a planned drive, taking us closer to the “Volcan Pena Blanca” ridge, MARDI will image the new terrain beneath the wheels, before we execute some atmospheric observations. Mastcam will make a tau observation to monitor dust in the atmosphere and Navcam will acquire a zenith movie. Standard DAN, RAD and REMS activities round out the plan.


For more Curiosity blog posts, visit MSL Mission Updates


Learn more about Curiosity’s science instruments

Explore More

2 min read Curiosity Blog, Sols 4589 – 4592: Setting up to explore Volcán Peña Blanca

Article


44 minutes ago

2 min read Curiosity Blog, Sols 4586-4587: Straight Drive, Strategic Science

Article


6 days ago

3 min read An Update From the 2025 Mars 2020 Science Team Meeting

Article


6 days ago

Keep Exploring Discover More Topics From NASA

Mars


Mars Resources

Explore this page for a curated collection of Mars resources.


Rover Basics

Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


Mars Exploration: Science Goals

The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

Categories: NASA

Curiosity Blog, Sol 4588: Ridges and troughs

NASA - Breaking News - Mon, 07/07/2025 - 6:27pm
Curiosity Navigation

NASA’s Mars rover Curiosity acquired this image using its Left Navigation Camera onboard NASA’s Mars rover Curiosity on Sol 4,587 (2025-07-02 07:33:39 UTC). NASA/JPL-Caltech

Written by Lucy Thompson, APXS Collaborator and Senior Research Scientist at the University of New Brunswick, Canada

Earth planning date: Wednesday, July 2, 2025

As we traverse the boxwork terrain, we are encountering a series of more resistant ridges/bedrock patches, and areas that are more rubbly and tend to form lower relief polygonal or trough-like features. We came into planning this morning in one of the trough-like features after another successful drive. The science team is interested in determining why we see these different geomorphological and erosional expressions. Is the rock that comprises the more resistant ridges and patches a different composition to the rock in the troughs and low relief areas? How do the rocks vary texturally? Might the resistant bedrock be an indicator of what we will encounter when we reach the large boxworks that we are driving towards?

We managed to find a large enough area of rock to safely brush (target – “Guapay”), after which we will place APXS and MAHLI to determine the composition and texture. ChemCam will also analyze a different rock target, “Taltal” for chemistry and texture, and we will also acquire an accompanying Mastcam documentation image. The resistant ridge that we are planning to drive towards (“Volcan Pena Blanca”) and eventually investigate will be captured in a Mastcam mosaic. ChemCam will utilize their long-distance imaging capabilities to image the “Mishe Mokwa” butte off to the southeast of our current location, which likely contains bedrock layers that we will eventually pass through as we continue our climb up Mount Sharp.

After a planned drive, taking us closer to the “Volcan Pena Blanca” ridge, MARDI will image the new terrain beneath the wheels, before we execute some atmospheric observations. Mastcam will make a tau observation to monitor dust in the atmosphere and Navcam will acquire a zenith movie. Standard DAN, RAD and REMS activities round out the plan.


For more Curiosity blog posts, visit MSL Mission Updates


Learn more about Curiosity’s science instruments

Explore More

2 min read Curiosity Blog, Sols 4589 – 4592: Setting up to explore Volcán Peña Blanca

Article


44 minutes ago

2 min read Curiosity Blog, Sols 4586-4587: Straight Drive, Strategic Science

Article


6 days ago

3 min read An Update From the 2025 Mars 2020 Science Team Meeting

Article


6 days ago

Keep Exploring Discover More Topics From NASA

Mars


Mars Resources

Explore this page for a curated collection of Mars resources.


Rover Basics

Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


Mars Exploration: Science Goals

The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

Categories: NASA

High-Speed Gas Clouds Fuel Star Formation in Depleted Galaxies

Universe Today - Mon, 07/07/2025 - 5:49pm

How do galaxies like ours continue producing stars long after they should have used up their star-forming gas. Somehow, an external gas source must find its way into the galaxy. New research has found evidence of gas clouds that found their way into a spiral galaxy, likely fueling continued star formation.

Categories: Astronomy

A Star Detonated as a Supernova... Twice

Universe Today - Mon, 07/07/2025 - 5:49pm

The beautiful supernova remnant looks a little different from other examples of stars that detonated in the past. And it should, because according to astronomers, the star that met its end exploded twice. It was a white dwarf in its former life, pulling material from a binary companion, creating the perfect conditions for a Type 1a supernova. It accumulated a blanket of helium, which exploded first, triggering a second detonation at the core of the star.

Categories: Astronomy