Nothing is the bridge between the future and the further future. Nothing is certainty. Nothing is any definition of anything.

— Peter Hammill

Feed aggregator

A martian butterfly flaps its wings

ESO Top News - Wed, 12/03/2025 - 5:00am

Is it an insect? A strange fossil? An otherworldly eye, or even a walnut? No, it’s an intriguing kind of martian butterfly spotted by ESA’s Mars Express.

Categories: Astronomy

NASA Astronaut Jonny Kim Advances Research Aboard Space Station

NASA - Breaking News - Wed, 12/03/2025 - 12:00am

5 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA astronaut Jonny Kim floats inside the Cupola of the International Space Station.NASA

NASA astronaut Jonny Kim is wrapping up his first mission aboard the International Space Station in early December. During his stay, Kim conducted scientific experiments and technology demonstrations to benefit humanity on Earth and advance NASA’s Artemis campaign in preparation for future human missions to Mars.

Here is a look at some of the science Kim completed during his mission:

Medical check-ups in microgravity NASA

NASA astronaut Jonny Kim, a medical doctor, completed several routine medical exams while aboard the International Space Station. NASA flight surgeons and researchers monitor crew health using a variety of tools, including blood tests, eye exams, and ultrasounds.

Kim conducts an ultrasound of his eye in the left image. Eye exams are essential as long-duration spaceflight may cause changes to the eye’s structure and affect vision, a condition known as spaceflight associated neuro-ocular syndrome, or SANS. In the right image, Kim draws blood from a fellow crew member. These blood sample collections provide important insights into crew cartilage and bone health, cardiovascular function, inflammation, stress, immune function, and nutritional status.

NASA astronauts complete regular medical exams before, during, and after spaceflight to monitor astronaut health and develop better tools and measures for future human exploration missions to the Moon and Mars.

Learn more about human research on space station.

Low light plant growth NASA NASA

NASA astronaut Jonny Kim photographs dwarf tomato sprouts grown using a nutrient supplement instead of photosynthesis as part of a study on plant development and gene expression. The plants are given an acetate supplement as a secondary nutrition source, which could increase growth and result in better yields, all while using less power and fewer resources aboard the space station and future spacecraft. 

Learn more about Rhodium USAFA NIGHT.

Radioing future space explorers NASA

NASA astronaut Jonny Kim uses a ham radio to speak with students on Earth via an educational program connecting students worldwide with astronauts aboard the International Space Station. Students can ask about life aboard the orbiting laboratory and the many experiments conducted in microgravity. This program encourages an interest in STEM (science, technology, engineering, and mathematics) and inspires the next generation of space explorers.

Learn more about ISS Ham Radio.

Encoding DNA with data NASA

Secure and reliable data storage and transmission are essential to maintain the protection, accuracy, and accessibility of information. In this photo, NASA astronaut Jonny Kim displays research hardware that tests the viability of encoding, transmitting, and decoding encrypted information via DNA sequences. As part of this experiment, DNA with encrypted information is sequenced aboard the space station to determine the impact of the space environment on its stability. Using DNA to store and transmit data could reduce the weight and energy requirements compared to traditional methods used for long-duration space missions and Earth-based industries.

Learn more about Voyager DNA Decryption.

Remote robotics NASA

Future deep space exploration could rely on robotics remotely operated by humans. NASA astronaut Jonny Kim tests a technology demonstration that allows astronauts to remotely control robots on Earth from the International Space Station. Findings from this investigation could help fine-tune user-robot operating dynamics during future missions to the Moon, Mars, and beyond. 

Learn more about Surface Avatar.

Blocking bone loss NASA

NASA astronaut Jonny Kim conducts an investigation to assess the effects of microgravity on bone marrow stem cells, including their ability to secrete proteins that form and dissolve bone. Bone loss, an age-related factor on Earth, is aggravated by weightlessness and is a health concern for astronauts. Researchers are evaluating whether blocking signals that cause loss could protect astronauts during long-duration spaceflights. The findings could also lead to preventative measures and treatments for bone loss caused by aging or disease on Earth.  

Learn more about MABL-B.

Upscaling production NASA

NASA astronaut Jonny Kim tests new hardware installed to an existing crystallization facility that enables increased production of crystals and other commercially relevant materials, like golden nanospheres. These tiny, spherical gold particles have optical and electronic applications, and are biocompatible, making them useful for medication delivery and diagnostics. As part of this experiment aboard the space station, Kim attempted to process larger, more uniform golden nanospheres than those produced on the ground.

Learn more about ADSEP-ICC.

Nutrients on demand NASA

Some vitamins and nutrients in foods and supplements lose their potency during long-term storage, and insufficient intake of even a single nutrient can lead to diseases and other health issues. NASA astronaut Jonny Kim displays purple-pink production bags for an investigation aimed at producing nutrient-rich yogurt and kefir using bioengineered yeasts and probiotics. The unique color comes from a food-grade pH indicator that allows astronauts to visually monitor the fermentation process.

Learn more about BioNutrients-3.

Next-Gen medicine and manufacturing NASA

NASA astronaut Jonny Kim uses the Microgravity Science Glovebox to study how high-concentration protein fluids behave in microgravity. This study helps researchers develop more accurate models to predict the behavior of these complex fluids in various scenarios, which advances manufacturing processes in space and on Earth. It also can enable the development of next-generation medicines for treating cancers and other diseases. 

Learn more about Ring Sheared Drop-IBP-2.

Observing colossal Earth events NASA

On Sept. 28, 2025, NASA astronaut Jonny Kim photographed Hurricane Humberto from the International Space Station. Located at 250 miles above Earth, the orbiting laboratory’s unique orbit allows crew members to photograph the planet’s surface including hurricanes, dust storms, and fires. These images are used to document disasters and support first responders on the ground. 

Learn more about observing Earth from space station.

Keep Exploring Discover More Topics From NASA

Latest News from Space Station Research

Space Station Research Results

Humans In Space

International Space Station

Explore More 5 min read Student Art Murals at Johnson Celebrate 25 Years of Humanity in Space  Article 14 hours ago 8 min read Sugars, ‘Gum,’ Stardust Found in NASA’s Asteroid Bennu Samples Article 2 days ago 6 min read The International Space Station Marks 25 Years of Continuous Human Presence  Article 2 days ago
Categories: NASA

NASA Astronaut Jonny Kim Advances Research Aboard Space Station

NASA News - Wed, 12/03/2025 - 12:00am

5 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA astronaut Jonny Kim floats inside the Cupola of the International Space Station.NASA

NASA astronaut Jonny Kim is wrapping up his first mission aboard the International Space Station in early December. During his stay, Kim conducted scientific experiments and technology demonstrations to benefit humanity on Earth and advance NASA’s Artemis campaign in preparation for future human missions to Mars.

Here is a look at some of the science Kim completed during his mission:

Medical check-ups in microgravity NASA

NASA astronaut Jonny Kim, a medical doctor, completed several routine medical exams while aboard the International Space Station. NASA flight surgeons and researchers monitor crew health using a variety of tools, including blood tests, eye exams, and ultrasounds.

Kim conducts an ultrasound of his eye in the left image. Eye exams are essential as long-duration spaceflight may cause changes to the eye’s structure and affect vision, a condition known as spaceflight associated neuro-ocular syndrome, or SANS. In the right image, Kim draws blood from a fellow crew member. These blood sample collections provide important insights into crew cartilage and bone health, cardiovascular function, inflammation, stress, immune function, and nutritional status.

NASA astronauts complete regular medical exams before, during, and after spaceflight to monitor astronaut health and develop better tools and measures for future human exploration missions to the Moon and Mars.

Learn more about human research on space station.

Low light plant growth NASA NASA

NASA astronaut Jonny Kim photographs dwarf tomato sprouts grown using a nutrient supplement instead of photosynthesis as part of a study on plant development and gene expression. The plants are given an acetate supplement as a secondary nutrition source, which could increase growth and result in better yields, all while using less power and fewer resources aboard the space station and future spacecraft. 

Learn more about Rhodium USAFA NIGHT.

Radioing future space explorers NASA

NASA astronaut Jonny Kim uses a ham radio to speak with students on Earth via an educational program connecting students worldwide with astronauts aboard the International Space Station. Students can ask about life aboard the orbiting laboratory and the many experiments conducted in microgravity. This program encourages an interest in STEM (science, technology, engineering, and mathematics) and inspires the next generation of space explorers.

Learn more about ISS Ham Radio.

Encoding DNA with data NASA

Secure and reliable data storage and transmission are essential to maintain the protection, accuracy, and accessibility of information. In this photo, NASA astronaut Jonny Kim displays research hardware that tests the viability of encoding, transmitting, and decoding encrypted information via DNA sequences. As part of this experiment, DNA with encrypted information is sequenced aboard the space station to determine the impact of the space environment on its stability. Using DNA to store and transmit data could reduce the weight and energy requirements compared to traditional methods used for long-duration space missions and Earth-based industries.

Learn more about Voyager DNA Decryption.

Remote robotics NASA

Future deep space exploration could rely on robotics remotely operated by humans. NASA astronaut Jonny Kim tests a technology demonstration that allows astronauts to remotely control robots on Earth from the International Space Station. Findings from this investigation could help fine-tune user-robot operating dynamics during future missions to the Moon, Mars, and beyond. 

Learn more about Surface Avatar.

Blocking bone loss NASA

NASA astronaut Jonny Kim conducts an investigation to assess the effects of microgravity on bone marrow stem cells, including their ability to secrete proteins that form and dissolve bone. Bone loss, an age-related factor on Earth, is aggravated by weightlessness and is a health concern for astronauts. Researchers are evaluating whether blocking signals that cause loss could protect astronauts during long-duration spaceflights. The findings could also lead to preventative measures and treatments for bone loss caused by aging or disease on Earth.  

Learn more about MABL-B.

Upscaling production NASA

NASA astronaut Jonny Kim tests new hardware installed to an existing crystallization facility that enables increased production of crystals and other commercially relevant materials, like golden nanospheres. These tiny, spherical gold particles have optical and electronic applications, and are biocompatible, making them useful for medication delivery and diagnostics. As part of this experiment aboard the space station, Kim attempted to process larger, more uniform golden nanospheres than those produced on the ground.

Learn more about ADSEP-ICC.

Nutrients on demand NASA

Some vitamins and nutrients in foods and supplements lose their potency during long-term storage, and insufficient intake of even a single nutrient can lead to diseases and other health issues. NASA astronaut Jonny Kim displays purple-pink production bags for an investigation aimed at producing nutrient-rich yogurt and kefir using bioengineered yeasts and probiotics. The unique color comes from a food-grade pH indicator that allows astronauts to visually monitor the fermentation process.

Learn more about BioNutrients-3.

Next-Gen medicine and manufacturing NASA

NASA astronaut Jonny Kim uses the Microgravity Science Glovebox to study how high-concentration protein fluids behave in microgravity. This study helps researchers develop more accurate models to predict the behavior of these complex fluids in various scenarios, which advances manufacturing processes in space and on Earth. It also can enable the development of next-generation medicines for treating cancers and other diseases. 

Learn more about Ring Sheared Drop-IBP-2.

Observing colossal Earth events NASA

On Sept. 28, 2025, NASA astronaut Jonny Kim photographed Hurricane Humberto from the International Space Station. Located at 250 miles above Earth, the orbiting laboratory’s unique orbit allows crew members to photograph the planet’s surface including hurricanes, dust storms, and fires. These images are used to document disasters and support first responders on the ground. 

Learn more about observing Earth from space station.

Keep Exploring Discover More Topics From NASA

Latest News from Space Station Research

Space Station Research Results

Humans In Space

International Space Station

Explore More 5 min read Student Art Murals at Johnson Celebrate 25 Years of Humanity in Space  Article 10 hours ago 8 min read Sugars, ‘Gum,’ Stardust Found in NASA’s Asteroid Bennu Samples Article 2 days ago 6 min read The International Space Station Marks 25 Years of Continuous Human Presence  Article 2 days ago
Categories: NASA

<p><a href="https://apod.nasa.gov/apod

APOD - Tue, 12/02/2025 - 8:00pm

Stars, like bees, swarm around the center of bright


Categories: Astronomy, NASA

NASA Awards Lunar Freezer System Contract

NASA - Breaking News - Tue, 12/02/2025 - 4:12pm
Credit: NASA

NASA has selected the University of Alabama at Birmingham to provide the necessary systems required to return temperature sensitive science payloads to Earth from the Moon.

The Lunar Freezer System contract is an indefinite-delivery/indefinite-quantity award with cost-plus-fixed-fee delivery orders. The contract begins Thursday, Dec. 4, with a 66-month base period along with two optional periods that could extend the award through June 3, 2033. The contract has a total estimated value of $37 million.

Under the contract, the awardee will be responsible for providing safe, reliable, and cost-effective hardware and software systems NASA needs to maintain temperature-critical science materials, including lunar geological samples, human research samples, and biological experimentation samples, as they travel aboard Artemis spacecraft to Earth from the lunar surface. The awarded contractor was selected after a thorough evaluation by NASA engineers of the proposals submitted. NASA’s source selection authority made the selection after reviewing the evaluation material based on the evaluation criteria contained in the request for proposals.

For information about NASA and other agency programs, visit:

https://www.nasa.gov

-end-

Tiernan Doyle
Headquarters, Washington
202-358-1600
tiernan.doyle@nasa.gov  

Share Details Last Updated Dec 02, 2025 LocationNASA Headquarters Related Terms
Categories: NASA

NASA Awards Lunar Freezer System Contract

NASA News - Tue, 12/02/2025 - 4:12pm
Credit: NASA

NASA has selected the University of Alabama at Birmingham to provide the necessary systems required to return temperature sensitive science payloads to Earth from the Moon.

The Lunar Freezer System contract is an indefinite-delivery/indefinite-quantity award with cost-plus-fixed-fee delivery orders. The contract begins Thursday, Dec. 4, with a 66-month base period along with two optional periods that could extend the award through June 3, 2033. The contract has a total estimated value of $37 million.

Under the contract, the awardee will be responsible for providing safe, reliable, and cost-effective hardware and software systems NASA needs to maintain temperature-critical science materials, including lunar geological samples, human research samples, and biological experimentation samples, as they travel aboard Artemis spacecraft to Earth from the lunar surface. The awarded contractor was selected after a thorough evaluation by NASA engineers of the proposals submitted. NASA’s source selection authority made the selection after reviewing the evaluation material based on the evaluation criteria contained in the request for proposals.

For information about NASA and other agency programs, visit:

https://www.nasa.gov

-end-

Tiernan Doyle
Headquarters, Washington
202-358-1600
tiernan.doyle@nasa.gov  

Share Details Last Updated Dec 02, 2025 LocationNASA Headquarters Related Terms
Categories: NASA

To Celebrate 25 Years In Service, The Gemini Observatory Imaged The Butterfly Nebula

Universe Today - Tue, 12/02/2025 - 3:44pm

To celebrate 25 years since the completion of the International Gemini Observatory, students in Chile voted for the Gemini South telescope to image NGC 6302 — a billowing planetary nebula that resembles a cosmic butterfly. The International Gemini Observatory is partly funded by the U.S. National Science Foundation (NSF) and operated by NSF NOIRLab.

Categories: Astronomy

Trump’s MRI Is Not Standard ‘Preventive’ Care, Say Experts

Scientific American.com - Tue, 12/02/2025 - 3:00pm

“It is certainly not standard medical practice to perform screening MRIs of the heart and abdomen,” says one expert

Categories: Astronomy

NASA’s Fly Foundational Robots Demo to Bolster In-Space Infrastructure

NASA - Breaking News - Tue, 12/02/2025 - 2:36pm

NASA and industry partners will fly and operate a commercial robotic arm in low Earth orbit through the Fly Foundational Robots mission set to launch in late 2027. This mission aims to revolutionize in-space operations, a critical capability for sustainably living and working on other planets. By enabling this technology demonstration, NASA is fostering the in-space robotics industry to unlock valuable tools for future scientific discovery and exploration missions.   

“Today it’s a robotic arm demonstration, but one day these same technologies could be assembling solar arrays, refueling satellites, constructing lunar habitats, or manufacturing products that benefit life on Earth,” said Bo Naasz, senior technical lead for In-space Servicing, Assembly, and Manufacturing (ISAM) in the Space Technology Mission Directorate at NASA Headquarters in Washington. “This is how we build a dominant space economy and sustained human presence on the Moon and Mars.”

Artist concept of the FFR Mission’s robotic system payload atop the Astro Digital spacecraft. The robotic arm, provided by Motiv Space Systems, will perform robotic demonstrations in orbit.Motiv Space Systems

The Fly Foundational Robots (FFR) mission will leverage a robotic arm from small business Motiv Space Systems capable of dexterous manipulation, autonomous tool use, and walking across spacecraft structures in zero or partial gravity. This mission could enable ways to repair and refuel spacecraft, construct habitats and infrastructure in space, maintain life support systems on lunar and Martian surfaces, and serve as robotic assistants to astronauts during extended missions. Advancing robotic systems in space could also enhance our understanding of similar technologies on Earth across industries including construction, medicine, and transportation.  

To demonstrate FFR’s commercial robotic arm in space, NASA’s Space Technology Mission Directorate is contracting with Astro Digital to provide a hosted orbital test through the agency’s Flight Opportunities program.  

Guest roboticists will have the opportunity to contribute to the FFR mission, and participation will allow them to use Motiv’s robotic platform as a testbed and perform unique tasks. NASA will serve as the inaugural guest operator and is currently seeking other interested U.S. partners to participate.  

The future of in-space robotics relies on testing robotic operations in space prior to launching more complex and extensive servicing and refueling missions. Through FFR, the demonstration of Motiv’s robotic arm operations in space will begin to push open the door to endless possibilities. 

NASA’s Fly Foundational Robots demonstration is funded through the NASA Space Technology Mission Directorate’s ISAM portfolio and managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Motiv Space Systems of Pasadena, California, will supply the mission’s robotic arm system through a NASA Small Business Innovation Research Phase III award. Astro Digital of Littleton, Colorado, will flight test Motiv’s robotic payload through NASA’s Flight Opportunities program managed by NASA’s Armstrong Flight Research Center in Edwards, California. 

Learn more about In-space Servicing, Assembly, and Manufacturing at NASA.

By Colleen Wouters
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Share Details Last Updated Dec 02, 2025 Related Terms
Categories: NASA

NASA’s Fly Foundational Robots Demo to Bolster In-Space Infrastructure

NASA News - Tue, 12/02/2025 - 2:36pm

NASA and industry partners will fly and operate a commercial robotic arm in low Earth orbit through the Fly Foundational Robots mission set to launch in late 2027. This mission aims to revolutionize in-space operations, a critical capability for sustainably living and working on other planets. By enabling this technology demonstration, NASA is fostering the in-space robotics industry to unlock valuable tools for future scientific discovery and exploration missions.   

“Today it’s a robotic arm demonstration, but one day these same technologies could be assembling solar arrays, refueling satellites, constructing lunar habitats, or manufacturing products that benefit life on Earth,” said Bo Naasz, senior technical lead for In-space Servicing, Assembly, and Manufacturing (ISAM) in the Space Technology Mission Directorate at NASA Headquarters in Washington. “This is how we build a dominant space economy and sustained human presence on the Moon and Mars.”

Artist concept of the FFR Mission’s robotic system payload atop the Astro Digital spacecraft. The robotic arm, provided by Motiv Space Systems, will perform robotic demonstrations in orbit.Motiv Space Systems

The Fly Foundational Robots (FFR) mission will leverage a robotic arm from small business Motiv Space Systems capable of dexterous manipulation, autonomous tool use, and walking across spacecraft structures in zero or partial gravity. This mission could enable ways to repair and refuel spacecraft, construct habitats and infrastructure in space, maintain life support systems on lunar and Martian surfaces, and serve as robotic assistants to astronauts during extended missions. Advancing robotic systems in space could also enhance our understanding of similar technologies on Earth across industries including construction, medicine, and transportation.  

To demonstrate FFR’s commercial robotic arm in space, NASA’s Space Technology Mission Directorate is contracting with Astro Digital to provide a hosted orbital test through the agency’s Flight Opportunities program.  

Guest roboticists will have the opportunity to contribute to the FFR mission, and participation will allow them to use Motiv’s robotic platform as a testbed and perform unique tasks. NASA will serve as the inaugural guest operator and is currently seeking other interested U.S. partners to participate.  

The future of in-space robotics relies on testing robotic operations in space prior to launching more complex and extensive servicing and refueling missions. Through FFR, the demonstration of Motiv’s robotic arm operations in space will begin to push open the door to endless possibilities. 

NASA’s Fly Foundational Robots demonstration is funded through the NASA Space Technology Mission Directorate’s ISAM portfolio and managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Motiv Space Systems of Pasadena, California, will supply the mission’s robotic arm system through a NASA Small Business Innovation Research Phase III award. Astro Digital of Littleton, Colorado, will flight test Motiv’s robotic payload through NASA’s Flight Opportunities program managed by NASA’s Armstrong Flight Research Center in Edwards, California. 

Learn more about In-space Servicing, Assembly, and Manufacturing at NASA.

By Colleen Wouters
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Share Details Last Updated Dec 02, 2025 Related Terms
Categories: NASA

Ancient human artefacts found near caves in Arabian desert

New Scientist Space - Cosmology - Tue, 12/02/2025 - 2:21pm
Today, the deserts of the Arabian peninsula are inhospitable – but 100,000 years ago, the area was full of animals and ancient humans
Categories: Astronomy

Ancient human artefacts found near caves in Arabian desert

New Scientist Space - Space Headlines - Tue, 12/02/2025 - 2:21pm
Today, the deserts of the Arabian peninsula are inhospitable – but 100,000 years ago, the area was full of animals and ancient humans
Categories: Astronomy

What Is a Bomb Cyclone? Why This Winter Storm Doesn’t Qualify

Scientific American.com - Tue, 12/02/2025 - 1:26pm

A rapidly intensifying low-pressure system off the coast is keeping the worst of the snow away from Boston, New York City and Washington, D.C.

Categories: Astronomy

Why quantum mechanics says the past isn’t real

New Scientist Space - Cosmology - Tue, 12/02/2025 - 1:00pm
The famous double-slit experiment brings into question the very nature of matter. Its cousin, the quantum eraser experiment, makes us question the very existence of time – and how much we can manipulate it
Categories: Astronomy

Why quantum mechanics says the past isn’t real

New Scientist Space - Space Headlines - Tue, 12/02/2025 - 1:00pm
The famous double-slit experiment brings into question the very nature of matter. Its cousin, the quantum eraser experiment, makes us question the very existence of time – and how much we can manipulate it
Categories: Astronomy

Waxing Gibbous Moon

NASA Image of the Day - Tue, 12/02/2025 - 12:34pm
The waxing gibbous Moon rises above Earth’s blue atmosphere in this photograph taken from the International Space Station as it orbited 263 miles above a cloudy Atlantic Ocean off the coast of Quebec, Canada.
Categories: Astronomy, NASA

Waxing Gibbous Moon

NASA - Breaking News - Tue, 12/02/2025 - 12:30pm
NASA

The waxing gibbous moon rises above Earth’s blue atmosphere in this photograph taken from the International Space Station on Oct. 3, 2025, as it orbited 263 miles above a cloudy Atlantic Ocean off the coast of Quebec, Canada.

In our entire solar system, the only object that shines with its own light is the Sun. That light always beams onto Earth and the Moon from the direction of the Sun, illuminating half of our planet in its orbit and reflecting off the surface of the Moon to create moonlight. Sometimes the entire face of the Moon glows brightly. Other times we see only a thin crescent of light. Sometimes the Moon seems to disappear. These shifts are called Moon phases. The waxing gibbous phase comes just before the full moon.

Learn more about our Moon.

Image credit: NASA

Categories: NASA

Waxing Gibbous Moon

NASA News - Tue, 12/02/2025 - 12:30pm
NASA

The waxing gibbous moon rises above Earth’s blue atmosphere in this photograph taken from the International Space Station on Oct. 3, 2025, as it orbited 263 miles above a cloudy Atlantic Ocean off the coast of Quebec, Canada.

In our entire solar system, the only object that shines with its own light is the Sun. That light always beams onto Earth and the Moon from the direction of the Sun, illuminating half of our planet in its orbit and reflecting off the surface of the Moon to create moonlight. Sometimes the entire face of the Moon glows brightly. Other times we see only a thin crescent of light. Sometimes the Moon seems to disappear. These shifts are called Moon phases. The waxing gibbous phase comes just before the full moon.

Learn more about our Moon.

Image credit: NASA

Categories: NASA

The Knotty Problem of Matter Asymmetry Might Be Solved By Extending Physics

Universe Today - Tue, 12/02/2025 - 12:29pm

Why is the Universe filled with matter? Why isn't it an equal amount of matter and antimatter? We still don't know the answer, but a new approach looks at the symmetries of extended models of particle physics and finds a possible path forward. It's a knotty problem that may just have a knotty solution.

Categories: Astronomy