"If you wish to make an apple pie truly from scratch, you must first invent the universe."

— Carl Sagan

Feed aggregator

Year in images 2025

ESO Top News - Sun, 12/21/2025 - 6:05am

Year in images 2025

Our year through the lens: a selection of our favourite images for 2025

Categories: Astronomy

<p><a href="https://apod.nasa.gov/apod

APOD - Sun, 12/21/2025 - 12:00am

What would it be like to fly over the


Categories: Astronomy, NASA

Astronomers Find the First Compelling Evidence of "Monster Stars" in the Early Universe

Universe Today - Sat, 12/20/2025 - 7:00pm

Using the James Webb Space Telescope, a team of international researchers has discovered chemical fingerprints of gigantic primordial stars that were among the first to form after the Big Bang.

Categories: Astronomy

Artemis II Crew Rehearse Launch Day Demonstration

NASA News - Sat, 12/20/2025 - 3:31pm

The four astronauts set to fly around the Moon during NASA’s Artemis II test flight depart the Neil A. Armstrong Operations and Checkout Building at the agency’s Kennedy Space Center in Florida, during a dress rehearsal for launch day on Dec. 20, 2025. From left are CSA (Canadian Space Agency) astronaut Jeremy Hansen, NASA astronauts Victor Glover, Reid Wiseman, and Christina Koch.

The launch day rehearsal, called a countdown demonstration test, simulated the launch day timeline, including the crew suiting up in their spacesuits and climbing in and out of their Orion spacecraft. Because the SLS (Space Launch System) rocket upon which they will launch is not yet at the launch pad, the crew boarded Orion inside Kennedy’s Vehicle Assembly Building, where engineers are conducting final preparations on the spacecraft, rocket, and ground systems.  

Through Artemis, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and build the foundation for the first crewed missions to Mars.

Photo Credit: NASA/Jim Ross

Categories: NASA

Artemis II Crew Rehearse Launch Day Demonstration

NASA - Breaking News - Sat, 12/20/2025 - 3:31pm

The four astronauts set to fly around the Moon during NASA’s Artemis II test flight depart the Neil A. Armstrong Operations and Checkout Building at the agency’s Kennedy Space Center in Florida, during a dress rehearsal for launch day on Dec. 20, 2025. From left are CSA (Canadian Space Agency) astronaut Jeremy Hansen, NASA astronauts Victor Glover, Reid Wiseman, and Christina Koch.

The launch day rehearsal, called a countdown demonstration test, simulated the launch day timeline, including the crew suiting up in their spacesuits and climbing in and out of their Orion spacecraft. Because the SLS (Space Launch System) rocket upon which they will launch is not yet at the launch pad, the crew boarded Orion inside Kennedy’s Vehicle Assembly Building, where engineers are conducting final preparations on the spacecraft, rocket, and ground systems.  

Through Artemis, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and build the foundation for the first crewed missions to Mars.

Photo Credit: NASA/Jim Ross

Categories: NASA

U.S. Plan to Drop Some Childhood Vaccines to Align with Denmark Will Endanger Children, Experts Say

Scientific American.com - Sat, 12/20/2025 - 8:00am

The U.S. reportedly plans to overhaul the country’s childhood vaccine schedule. The move could set public health back decades, experts say

Categories: Astronomy

IMAP's Instruments Are Coming Online

Universe Today - Sat, 12/20/2025 - 7:32am

During the deployment of new space telescopes that are several critical steps each has to go through. Launch is probably the one most commonly thought of, another is “first light” of all of the instruments on the telescope. Ultimately, they’re responsible for the data the telescope is intended to collect - if they don’t work properly then the mission itself it a failure. Luckily, the Interstellar Mapping and Acceleration Probe (IMAP) recently collected first light on its 10 primary instruments, and everything seems to be in working order, according to a press release from the Southwest Research Institute who was responsible for ensuring the delivery of all 10 instruments went off without a hitch.

Categories: Astronomy

Disney and OpenAI Signal the Arrival of AI Video Streaming

Scientific American.com - Sat, 12/20/2025 - 7:30am

Disney and OpenAI’s agreement hints at a future in which viewers don’t just choose what to watch but generate it on demand

Categories: Astronomy

The Last Meteor Shower of 2025 and the Winter Solstice Align This Weekend

Scientific American.com - Sat, 12/20/2025 - 7:00am

Sky watchers may be tempted out this weekend, when an underappreciated meteor shower will coincide with a new moon and the longest night of year for the Northern Hemisphere

Categories: Astronomy

This Week's Sky at a Glance, December 19 – 28

Sky & Telescope Magazine - Fri, 12/19/2025 - 10:11pm

We greet the winter solstice. Jupiter nears opposition. Will the two Dog Stars balance for you? And meet the House in the Hyades.

The post This Week's Sky at a Glance, December 19 – 28 appeared first on Sky & Telescope.

Categories: Astronomy

Wind-Sculpted Landscapes: Investigating the Martian Megaripple ‘Hazyview’

NASA News - Fri, 12/19/2025 - 8:19pm
Explore This Section

The inactive aeolian megaripple, “Hazyview,” that Perseverance studied while passing through the “Honeyguide” area. NASA’s Mars Perseverance rover acquired this image on Dec. 5, 2025 (Sol 1704) at the local mean solar time of 12:33:53, using its onboard Left Navigation Camera (Navcam). The camera is located high on the rover’s mast and aids in driving. NASA/JPL-Caltech

Written by Noah Martin, Ph.D. student and Candice Bedford, Research Scientist at Purdue University

While much of Perseverance’s work focuses on ancient rocks that record Mars’ long-lost rivers and lakes, megaripples offer a rare opportunity to examine processes that are still shaping the surface today. Megaripples are sand ripples up to 2 meters (about 6.5 feet) tall that are mainly built and modified by wind. However, when water in the atmosphere interacts with dust on the ripple surface, a salty, dusty crust can form. When this happens, it is much harder for the wind to move or shape the megaripple. As such, megaripples on Mars are largely considered inactive, standing as records of past wind regimes and atmospheric water interactions over time. However, some have shown signs of movement, and it is possible that periods of high wind speeds may erode or reactivate these deposits again.

Despite Mars’ thin atmosphere today (2% of the Earth’s atmospheric density), wind is one of the main drivers of change at the surface, eroding local bedrock into sand-sized grains and transporting these grains across the ripple field. As a result, megaripple studies help us understand how wind has shaped the surface in Mars’ most recent history and support planning for future human missions, as the chemistry and cohesion of Martian soils will influence everything from mobility to resource extraction.

Following the successful investigation of the dusty, inactive megaripples at “Kerrlaguna,” Perseverance recently explored a more expansive field of megaripples called “Honeyguide.” This region hosts some of the largest megaripples Perseverance has seen along its traverse so far, making it an ideal location for a comprehensive study of these features. The megaripples at “Honeyguide” rise higher, extend farther, and have sharply defined crests with more uniform orientation compared to those at “Kerrlaguna.” The consistent orientation of the megaripples at “Honeyguide” suggests that winds in this area have blown predominantly from the same direction (north-south) for a long period of time.

At “Honeyguide,” Perseverance studied the “Hazyview” megaripple, where over 50 observations were taken across the SuperCam, Mastcam-Z, MEDA, PIXL and WATSON instruments, looking for grain movement, signs of early morning frost, and changes in mineralogy from crest to trough. The investigation of the “Hazyview” bedform builds directly on the results from “Kerrlaguna” and represents the most detailed look yet at these intriguing wind-formed deposits. As Perseverance continues its journey on the crater rim, these observations will provide a valuable reference for interpreting other wind-blown features and for understanding how Mars continues to change, one grain of sand at a time.

Explore More

3 min read Curiosity Blog, Sols 4743-4749:  Polygons in the Hollow

Article


1 day ago

2 min read Hi ya! Hyha

Article


2 days ago

3 min read Curiosity Blog, Sols 4731-4742: Finishing Up at Nevado Sajama

Article


1 week ago

Keep Exploring Discover More Topics From NASA

All Mars Resources

Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


Rover Basics

Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


Mars Exploration: Science Goals

The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…


Mars Perseverance Rover

The Mars Perseverance rover is the first leg the Mars Sample Return Campaign’s interplanetary relay team. Its job is to…

Categories: NASA

Wind-Sculpted Landscapes: Investigating the Martian Megaripple ‘Hazyview’

NASA - Breaking News - Fri, 12/19/2025 - 8:19pm
Explore This Section The inactive aeolian megaripple, “Hazyview,” that Perseverance studied while passing through the “Honeyguide” area. NASA’s Mars Perseverance rover acquired this image on Dec. 5, 2025 (Sol 1704) at the local mean solar time of 12:33:53, using its onboard Left Navigation Camera (Navcam). The camera is located high on the rover’s mast and aids in driving.NASA/JPL-Caltech

Written by Noah Martin, Ph.D. student and Candice Bedford, Research Scientist at Purdue University

While much of Perseverance’s work focuses on ancient rocks that record Mars’ long-lost rivers and lakes, megaripples offer a rare opportunity to examine processes that are still shaping the surface today. Megaripples are sand ripples up to 2 meters (about 6.5 feet) tall that are mainly built and modified by wind. However, when water in the atmosphere interacts with dust on the ripple surface, a salty, dusty crust can form. When this happens, it is much harder for the wind to move or shape the megaripple. As such, megaripples on Mars are largely considered inactive, standing as records of past wind regimes and atmospheric water interactions over time. However, some have shown signs of movement, and it is possible that periods of high wind speeds may erode or reactivate these deposits again.

Despite Mars’ thin atmosphere today (2% of the Earth’s atmospheric density), wind is one of the main drivers of change at the surface, eroding local bedrock into sand-sized grains and transporting these grains across the ripple field. As a result, megaripple studies help us understand how wind has shaped the surface in Mars’ most recent history and support planning for future human missions, as the chemistry and cohesion of Martian soils will influence everything from mobility to resource extraction.

Following the successful investigation of the dusty, inactive megaripples at “Kerrlaguna,” Perseverance recently explored a more expansive field of megaripples called “Honeyguide.” This region hosts some of the largest megaripples Perseverance has seen along its traverse so far, making it an ideal location for a comprehensive study of these features. The megaripples at “Honeyguide” rise higher, extend farther, and have sharply defined crests with more uniform orientation compared to those at “Kerrlaguna.” The consistent orientation of the megaripples at “Honeyguide” suggests that winds in this area have blown predominantly from the same direction (north-south) for a long period of time.

At “Honeyguide,” Perseverance studied the “Hazyview” megaripple, where over 50 observations were taken across the SuperCam, Mastcam-Z, MEDA, PIXL and WATSON instruments, looking for grain movement, signs of early morning frost, and changes in mineralogy from crest to trough. The investigation of the “Hazyview” bedform builds directly on the results from “Kerrlaguna” and represents the most detailed look yet at these intriguing wind-formed deposits. As Perseverance continues its journey on the crater rim, these observations will provide a valuable reference for interpreting other wind-blown features and for understanding how Mars continues to change, one grain of sand at a time.

Explore More 3 min read Curiosity Blog, Sols 4743-4749:  Polygons in the Hollow Article 1 day ago 2 min read Hi ya! Hyha Article 2 days ago 3 min read Curiosity Blog, Sols 4731-4742: Finishing Up at Nevado Sajama Article 1 week ago Keep Exploring Discover More Topics From NASA All Mars Resources

Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…

Rover Basics

Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…

Mars Exploration: Science Goals

The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

Mars Perseverance Rover

The Mars Perseverance rover is the first leg the Mars Sample Return Campaign’s interplanetary relay team. Its job is to…

Categories: NASA

Orion and the Ocean of Storms

APOD - Fri, 12/19/2025 - 8:00pm

On December 5, 2022,


Categories: Astronomy, NASA

The Protectors: Inside the Desperate Rush to Save an Orca Community

Scientific American.com - Fri, 12/19/2025 - 5:30pm

As endangered southern resident killer whales fight for survival, federal funding cuts threaten the scientists working to save them.

Categories: Astronomy

NASA Shares SpaceX Crew-12 Assignments for Space Station Mission

NASA News - Fri, 12/19/2025 - 3:21pm
From left to right, NASA astronauts Jessica Meir and Jack Hathaway, ESA (European Space Agency) astronaut Sophie Adenot, and Roscosmos cosmonaut Andrey Fedyaev.Credit: NASA

As part of NASA’s SpaceX Crew-12 mission, four crew members from three space agencies will launch no earlier than Sunday, Feb. 15, 2026, to the International Space Station for a long-duration science expedition.

NASA astronauts Jessica Meir and Jack Hathaway will serve as spacecraft commander and pilot, respectively, and will be accompanied by ESA (European Space Agency) astronaut Sophie Adenot and Roscosmos cosmonaut Andrey Fedyaev, who will both serve as mission specialists. Crew-12 will join Expedition 74 crew members currently aboard the space station.

The flight is the 12th crew rotation with SpaceX to the orbiting laboratory as part of NASA’s Commercial Crew Program. Crew-12 will conduct scientific investigations and technology demonstrations to help prepare humans for future exploration missions to the Moon and Mars, as well as benefit people on Earth.

This will be the second flight to the space station for Meir, who was selected as a NASA astronaut in 2013. The Caribou, Maine, native earned a bachelor’s degree in biology from Brown University, a master’s degree in space studies from the International Space University, and a doctorate in marine biology from Scripps Institution of Oceanography in San Diego. On her first spaceflight, Meir spent 205 days as a flight engineer during Expedition 61/62, and she completed the first three all-woman spacewalks with fellow NASA astronaut Christina Koch, totaling 21 hours and 44 minutes outside of the station. Since then, she has served in various roles, including assistant to the chief astronaut for commercial crew (SpaceX), deputy for the Flight Integration Division, and assistant to the chief astronaut for the human landing system.

A commander in the United States Navy, Hathaway was selected as part of the 2021 astronaut candidate class. This will be Hathaway’s first spaceflight. The South Windsor, Connecticut, native holds a bachelor’s degree in physics and history from the U.S. Naval Academy and master’s degrees in flight dynamics from Cranfield University and national security and strategic studies from the U.S. Naval War College, respectively. Hathaway also is a graduate of the Empire Test Pilot’s School, Fixed Wing Class 70 in 2011. At the time of his selection, Hathaway was deployed aboard the USS Truman, serving as Strike Fighter Squadron 81’s prospective executive officer. He has accumulated more than 2,500 flight hours in 30 different aircraft, including more than 500 carrier arrested landings and 39 combat missions.

The Crew-12 mission will be Adenot’s first spaceflight. Before her selection as an ESA astronaut in 2022, Adenot earned a degree in engineering from ISAE-SUPAERO in Toulouse, France, specializing in spacecraft and aircraft flight dynamics. She also earned a master’s degree in human factors engineering at Massachusetts Institute of Technology in Cambridge. After earning her master’s degree, she became a helicopter cockpit design engineer at Airbus Helicopters and later served as a search and rescue pilot at Cazaux Air Base from 2008 to 2012. She then joined the High Authority Transport Squadron in Villacoublay, France, and served as a formation flight leader and mission captain from 2012 to 2017. Between 2019 and 2022, Adenot worked as a helicopter experimental test pilot in Cazaux Flight Test Center with DGA (Direction Générale de l’Armement – the French Defence Procurement Agency). She has logged more than 3,000 hours flying 22 different helicopters.

This will be Fedyaev’s second long-duration stay aboard the orbiting laboratory. He graduated from the Krasnodar Military Aviation Institute in 2004, specializing in aircraft operations and air traffic organization, and earned qualifications as a pilot engineer. Prior to his selection as a cosmonaut, he served as deputy commander of an Ilyushin-38 aircraft unit in the Kamchatka Region, logging more than 600 flight hours and achieving the rank of second-class military pilot. Fedyaev was selected for the Gagarin Research and Test Cosmonaut Training Center Cosmonaut Corps in 2012 and has served as a test cosmonaut since 2014. In 2023, he flew to the space station as a mission specialist during NASA’s SpaceX Crew-6 mission, spending 186 days in orbit, as an Expedition 69 flight engineer. For his achievements, Fedyaev was awarded the title Hero of the Russian Federation and received the Yuri Gagarin Medal. 

For more than 25 years, people have lived and worked continuously aboard the International Space Station, advancing scientific knowledge and making research breakthroughs that are not possible on Earth. The station is a critical testbed for NASA to understand and overcome the challenges of long-duration spaceflight and to expand commercial opportunities in low Earth orbit. As commercial companies concentrate on providing human space transportation services and destinations as part of a robust low Earth orbit economy, NASA is focusing its resources on deep space missions to the Moon as part of the Artemis campaign in preparation for future human missions to Mars.

Learn more about International Space Station research and operations at:

https://www.nasa.gov/station

-end-

Joshua Finch / Jimi Russell
Headquarters, Washington
202-358-1100
joshua.a.finch@nasa.gov / james.j.russell@nasa.gov

Shaneequa Vereen
Johnson Space Center, Houston
281-483-5111
shaneequa.y.vereen@nasa.gov

Share Details Last Updated Dec 19, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
Categories: NASA

NASA Shares SpaceX Crew-12 Assignments for Space Station Mission

NASA - Breaking News - Fri, 12/19/2025 - 3:21pm
From left to right, NASA astronauts Jessica Meir and Jack Hathaway, ESA (European Space Agency) astronaut Sophie Adenot, and Roscosmos cosmonaut Andrey Fedyaev.Credit: NASA

As part of NASA’s SpaceX Crew-12 mission, four crew members from three space agencies will launch no earlier than Sunday, Feb. 15, 2026, to the International Space Station for a long-duration science expedition.

NASA astronauts Jessica Meir and Jack Hathaway will serve as spacecraft commander and pilot, respectively, and will be accompanied by ESA (European Space Agency) astronaut Sophie Adenot and Roscosmos cosmonaut Andrey Fedyaev, who will both serve as mission specialists. Crew-12 will join Expedition 74 crew members currently aboard the space station.

The flight is the 12th crew rotation with SpaceX to the orbiting laboratory as part of NASA’s Commercial Crew Program. Crew-12 will conduct scientific investigations and technology demonstrations to help prepare humans for future exploration missions to the Moon and Mars, as well as benefit people on Earth.

This will be the second flight to the space station for Meir, who was selected as a NASA astronaut in 2013. The Caribou, Maine, native earned a bachelor’s degree in biology from Brown University, a master’s degree in space studies from the International Space University, and a doctorate in marine biology from Scripps Institution of Oceanography in San Diego. On her first spaceflight, Meir spent 205 days as a flight engineer during Expedition 61/62, and she completed the first three all-woman spacewalks with fellow NASA astronaut Christina Koch, totaling 21 hours and 44 minutes outside of the station. Since then, she has served in various roles, including assistant to the chief astronaut for commercial crew (SpaceX), deputy for the Flight Integration Division, and assistant to the chief astronaut for the human landing system.

A commander in the United States Navy, Hathaway was selected as part of the 2021 astronaut candidate class. This will be Hathaway’s first spaceflight. The South Windsor, Connecticut, native holds a bachelor’s degree in physics and history from the U.S. Naval Academy and master’s degrees in flight dynamics from Cranfield University and national security and strategic studies from the U.S. Naval War College, respectively. Hathaway also is a graduate of the Empire Test Pilot’s School, Fixed Wing Class 70 in 2011. At the time of his selection, Hathaway was deployed aboard the USS Truman, serving as Strike Fighter Squadron 81’s prospective executive officer. He has accumulated more than 2,500 flight hours in 30 different aircraft, including more than 500 carrier arrested landings and 39 combat missions.

The Crew-12 mission will be Adenot’s first spaceflight. Before her selection as an ESA astronaut in 2022, Adenot earned a degree in engineering from ISAE-SUPAERO in Toulouse, France, specializing in spacecraft and aircraft flight dynamics. She also earned a master’s degree in human factors engineering at Massachusetts Institute of Technology in Cambridge. After earning her master’s degree, she became a helicopter cockpit design engineer at Airbus Helicopters and later served as a search and rescue pilot at Cazaux Air Base from 2008 to 2012. She then joined the High Authority Transport Squadron in Villacoublay, France, and served as a formation flight leader and mission captain from 2012 to 2017. Between 2019 and 2022, Adenot worked as a helicopter experimental test pilot in Cazaux Flight Test Center with DGA (Direction Générale de l’Armement – the French Defence Procurement Agency). She has logged more than 3,000 hours flying 22 different helicopters.

This will be Fedyaev’s second long-duration stay aboard the orbiting laboratory. He graduated from the Krasnodar Military Aviation Institute in 2004, specializing in aircraft operations and air traffic organization, and earned qualifications as a pilot engineer. Prior to his selection as a cosmonaut, he served as deputy commander of an Ilyushin-38 aircraft unit in the Kamchatka Region, logging more than 600 flight hours and achieving the rank of second-class military pilot. Fedyaev was selected for the Gagarin Research and Test Cosmonaut Training Center Cosmonaut Corps in 2012 and has served as a test cosmonaut since 2014. In 2023, he flew to the space station as a mission specialist during NASA’s SpaceX Crew-6 mission, spending 186 days in orbit, as an Expedition 69 flight engineer. For his achievements, Fedyaev was awarded the title Hero of the Russian Federation and received the Yuri Gagarin Medal. 

For more than 25 years, people have lived and worked continuously aboard the International Space Station, advancing scientific knowledge and making research breakthroughs that are not possible on Earth. The station is a critical testbed for NASA to understand and overcome the challenges of long-duration spaceflight and to expand commercial opportunities in low Earth orbit. As commercial companies concentrate on providing human space transportation services and destinations as part of a robust low Earth orbit economy, NASA is focusing its resources on deep space missions to the Moon as part of the Artemis campaign in preparation for future human missions to Mars.

Learn more about International Space Station research and operations at:

https://www.nasa.gov/station

-end-

Joshua Finch / Jimi Russell
Headquarters, Washington
202-358-1100
joshua.a.finch@nasa.gov / james.j.russell@nasa.gov

Shaneequa Vereen
Johnson Space Center, Houston
281-483-5111
shaneequa.y.vereen@nasa.gov

Share Details Last Updated Dec 19, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
Categories: NASA

NASA Johnson’s 2025 Milestones

NASA News - Fri, 12/19/2025 - 2:59pm

NASA’s Johnson Space Center in Houston closed 2025 with major progress across human spaceflight, research, and exploration. From Artemis II mission preparations to science aboard the International Space Station, teams at Johnson helped prepare for future missions to the Moon and, ultimately, Mars.

Orion Stacked for Artemis II, Orion Mission Evaluation Room Unveiled  NASA’s Artemis II Orion spacecraft with its launch abort system is stacked atop the agency’s SLS (Space Launch System) rocket in High Bay 3 of the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida on Oct. 20, 2025.NASA/Kim Shiflett

As NASA prepares for the crewed Artemis II mission, a 10-day journey around the Moon and back in early 2026, teams at Johnson continue work to ensure the Orion spacecraft is flight-ready. The mission will carry NASA astronauts Reid Wiseman, Victor Glover, Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen. 

In October, NASA completed stacking of the Orion spacecraft and launch abort system atop the agency’s SLS (Space Launch System) rocket inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida. Following Orion stacking, teams completed testing critical communications systems between SLS and Orion, and confirmed the interfaces function properly between the rocket, Orion, and the ground systems. 

The new Orion Mission Evaluation Room inside the Mission Control Center at NASA’s Johnson Space Center in Houston.NASA/Bill Stafford

Teams also unveiled the Orion Mission Evaluation Room inside NASA’s Mission Control Center in Houston. The new facility will support Artemis II by allowing engineers to monitor Orion spacecraft systems in real time and assess vehicle performance throughout the mission, strengthening flight operations beyond low Earth orbit. 

These milestones were made possible by teams across Johnson, including the Orion Program, Flight Operations Directorate, Systems Engineering and Integration Office, Crew and Thermal Systems Division, and the Human Health and Performance Directorate, working closely with other NASA centers and industry partners. 

These accomplishments mark steady progress toward Artemis II and reflect the work underway across NASA to advance the next era of human spaceflight. 

Gateway Lunar Space Station The primary structure of Gateway’s Power and Propulsion Element (PPE) undergoing assembly, integration, and testing at Lanteris Space Systems in Palo Alto, California, on September 29, 2025.Lanteris Space Systems

Together with international and industry partners, the Gateway Program continued progress toward building humanity’s first lunar space station. The powerhouse reached a major milestone this fall with its successful initial power on.

NASA Selects 2025 Astronaut Candidate Class NASA’s new astronaut candidates greet the crowd for the first time at Johnson Space Center.NASA/James Blair

NASA’s 10 new astronaut candidates were introduced Sept. 22 following a competitive selection process of more than 8,000 applicants from across the United States. The class will complete nearly two years of training before becoming eligible for flight assignments supporting missions to low Earth orbit, the Moon, and Mars.

When they graduate, they will join NASA’s active astronaut corps, advancing research aboard the space station and supporting Artemis missions that will carry human exploration farther than ever before.

A Space Station Anniversary NASA and its partners have supported humans continuously living and working in space since November 2000.NASA/Jonny Kim

On Nov. 2, 2025, NASA marked 25 years of continuous human presence aboard the space station. What began as a set of connected modules has grown into a cornerstone of international partnership, scientific discovery, and technology development in low Earth orbit.
For a quarter of century, the orbiting laboratory has supported research that advances human health, drives innovation, and prepares NASA for future crewed missions to the Moon and Mars.

A truly global endeavor, the space station has been visited by more than 290 people from 26 countries and a variety of international and commercial spacecraft. The unique microgravity laboratory has hosted more than 4,000 experiments from over 5,000 researchers from 110 countries. The orbital outpost also is facilitating the growth of a commercial market in low Earth orbit for research, technology development, and crew and cargo transportation.

After 25 years of habitation, the space station remains a symbol of international cooperation and a proving ground for humanity’s next giant leaps.

Record-Breaking Spacewalks NASA astronaut and Expedition 72 Commander Suni Williams is pictured during a six-hour spacewalk for science and maintenance on the International Space Station. At upper right, is the SpaceX Dragon crew spacecraft docked to the Harmony module’s space-facing port.NASA

NASA astronauts Nick Hague, Suni Williams, and Butch Wilmore began 2025 with two successful spacewalks, completing key maintenance and research tasks. Their work included removing an antenna assembly and collecting surface material samples for analysis at Johnson’s Astromaterials Research and Exploration Services, or ARES, division.

With her latest spacewalks, Williams now holds the record for the most cumulative spacewalking time by a woman–62 hours and 6 minutes–placing her fourth among the most experienced spacewalkers.

NASA astronauts Anne McClain and Nichole Ayers also conducted spacewalk operations, installing a mounting bracket to prepare for the future installation of an additional set of International Space Station Rollout Solar Arrays and relocating a space station communications antenna.

These achievements were made possible by countless Johnson teams across the International Space Station, Flight Operations Directorate, and Exploration Architecture, Integration, and Science Directorate.

Two Expeditions Take Flight

NASA’s SpaceX Crew-10 arrived at the space station on March 15 and returned to Earth on on Aug. 9. Crew-10 included NASA astronauts Anne McClain and Nichole Ayers, JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi, and Roscosmos cosmonaut Kirill Peskov—all of whom are trained pilots. Crew-9 also splashed down off Florida’s coast on March 18. 

NASA astronaut Jonny Kim launched aboard the Soyuz MS-27 spacecraft on April 8, marking his first mission to the space station. Expedition 73 officially began following the departure of NASA astronaut Don Pettit aboard Soyuz MS-26 on April 19. NASA astronaut Chris Williams then launched aboard the Soyuz MS-28 spacecraft on Nov. 27 with Kim returning to Earth shortly after on Dec. 9, marking the start of Expedition 74.

A Year of Lunar Firsts Firefly’s Blue Ghost lunar lander captured a bright image of the Moon’s South Pole (on the far left) through the cameras on its top deck, while it travels to the Moon as part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign.Firefly Aerospace

Firefly Aerospace’s Blue Ghost Mission 1 launched delivering 10 NASA science and technology instruments to the Moon on March 2. The lander touched down near Mons Latreille in Mare Crisium, a basin on the near side of the Moon. Just days later on March 6, Intuitive Machines’ IM-2 mission landed closer to the lunar South Pole than any previous lander.  

Part of NASA’s Commercial Lunar Payload Services (CLPS) and Artemis campaign, these lunar deliveries are helping scientists address challenges like lunar dust mitigation, resource utilization, and radiation tolerance. 

These milestones were made possible by the collaborative efforts of Johnson teams across NASA’s CLPS initiative, as well as the Engineering; Exploration Architecture, Integration, and Science; and Flight Operations directorates—along with support from other NASA centers. 

First Asteroid-Detecting Space Telescope Completes Testing The instrument enclosure of NASA’s Near-Earth Object Surveyor is prepared for critical environmental tests inside the historic Chamber A at the Space Environment Simulation Laboratory at NASA’s Johnson Space Center.NASA

NASA’s Near-Earth Object (NEO) Surveyor—its first space-based telescope designed specifically for planetary defense—has successfully completed thermal vacuum testing in Johnson’s Space Environment Simulation Laboratory in Chamber A. 

Set to launch no earlier than late 2027, NEO Surveyor will seek out, measure, and characterize hard-to-detect asteroids and comets that could pose a hazard to Earth. The spacecraft is now at NASA’s Jet Propulsion Laboratory in Southern California for continued development. 

Explore the capabilities and scientific work enabled by the thermal testing conducted in Johnson’s Chamber A. 

These achievements were made possible by countless Johnson teams across the ARES Division and Engineering Directorate. 

First Houston AutoBoative Show Johnson Space Center employees present the Artemis Exhibit at the 2025 Houston AutoBoative Show at NRG Center.NASA/Robert Markowitz 

For the first time, NASA rolled out its Artemis exhibit at the Houston AutoBoative Show at NRG Center from Jan. 29 to Feb. 2. Johnson employees introduced vehicle enthusiasts to the technologies NASA and its commercial partners will use to explore more of the lunar surface than ever before.

The Artemis exhibit stood alongside some of the world’s most advanced cars and boats, offering visitors an up-close look at the future of human space exploration.

Attendees explored Artemis II and Artemis III mission road maps, practiced a simulated Orion docking with Gateway in lunar orbit, and tested their skills driving a virtual lunar rover simulator.

NASA showcased lunar rover concepts, highlighting vehicles under development to help Artemis astronauts travel farther across the Moon’s surface.

All three Lunar Terrain Vehicle (LTV) contractors, Astrolab, Intuitive Machines, and Lunar Outpost, completed their Preliminary Design Review milestones in June 2025, marking the end of Phase 1 feasibility study task orders that began in May 2024. NASA is preparing to award Phase 2 of the Lunar Terrain Vehicle Services contract with a demonstration mission task order that will result in the development, delivery, and demonstration of an LTV on the Moon  later this decade.

First Dual NBL Run for NASA’s Artemis III Lunar Spacesuit NASA astronauts Loral O’Hara (left) and Stan Love (right) pose during the first dual spacesuit run at NASA’s Neutral Buoyancy Laboratory in Houston on Sept. 24, 2025. The astronauts wore Axiom Space’s Artemis III lunar spacesuit, known as the Axiom Extravehicular Mobility Unit (AxEMU), during the final integrated underwater test, confirming the spacesuit and facility are ready to support Artemis training.NASA

NASA and Axiom Space teams held the first dual spacesuit run at NASA’s Neutral Buoyancy Laboratory with NASA astronauts Stan Love and Loral O’Hara. Both crewmembers wore Axiom Space’s lunar spacesuit, called the Axiom Extravehicular Mobility Unit (AxEMU), while performing simulated lunar surface operations underwater to test the spacesuit’s functionality and mobility. This was the final integration test in the pool, proving both the spacesuit and facility are ready to support NASA Artemis training. To date, the Axiom team has conducted over 700 hours of manned, pressurized testing of the Artemis III lunar spacesuit. Axiom Space is scheduled to complete the critical design review in 2026.

These efforts were made possible by teams across Johnson’s Joint Extravehicular Activity and Human Surface Mobility Test Team.

Watch how astronauts, engineers, and scientists are preparing for the next giant leap on the lunar surface.

OSIRIS-REx Team Honored for Asteroid Sample Return NASA’s OSIRIS-REx team poses inside a cleanroom at Johnson Space Center after successfully freeing fasteners on the TAGSAM (Touch-and-Go Sample Acquisition Mechanism) head, allowing access to samples collected from asteroid Bennu. NASA/Robert Markowitz

NASA’s OSIRIS-REx curation team earned an Agency Group Achievement Award for their dedication to acquiring, preserving, and distributing asteroid samples from Bennu—the agency’s first asteroid sample return mission.

“The curation team ensured we were ready to receive and safeguard the samples, prepare and allocate them, and make them available to the broader scientific community,” said Jemma Davidson, Astromaterials curator and branch chief of the Astromaterials Acquisition and Curation Office.

After years of preparation, the team overcame unforeseen technical challenges to recover and preserve more than 120 grams of asteroid material—now accessible to scientists worldwide for research into the origins of our solar system.

These achievements were made possible by Johnson teams across the ARES Division and the Exploration Architecture, Integration, and Science Directorate.

Axiom Mission 4 Marks International Firsts in Space Station Mission  The official crew portrait of the Axiom Mission-4 private astronaut mission to the International Space Station. From left are, Pilot Shubhanshu Shukla from India, Commander Peggy Whitson from the U.S., and Mission Specialists Sławosz Uzanański-Wiśniewksi from Poland and Tibor Kapu from Hungary.Axiom Space

The Axiom Mission 4 crew successfully returned to Earth after an 18-day mission aboard the space station, conducting more than 60 experiments and educational outreach activities. Launched aboard a SpaceX Dragon spacecraft on June 25, the crew docked with the orbiting laboratory the following day to begin a packed schedule of science and outreach. 

The mission marked the first space station flight for India, Poland, and Hungary. Led by former NASA astronaut and Axiom Space director of human spaceflight Peggy Whitson, the crew included ISRO (Indian Space Research Organization) astronaut Shubhanshu Shukla, ESA (European Space Agency) project astronaut Sławosz Uznański-Wiśniewski of Poland, and Hungarian to Orbit (HUNOR) astronaut Tibor Kapu. 

These achievements were made possible by Johnson’s dedicated teams across the International Space Station Program, Commercial Low Earth Orbit Development Program, and Flight Operations Directorate. 

Johnson-Built Mars Hardware on Display at the Smithsonian  At left is NASA’s Perseverance Mars rover, with a circle indicating the location of the calibration target for the rover’s SHERLOC instrument. At right is a close-up of the calibration target. Along the bottom row are five swatches of spacesuit materials that scientists are studying as they de-grade.NASA/Malin Space Science Systems Scanning Habitable Environments with Raman & Luminescence for Organics & Chemicals (SHERLOC) calibration target built at NASA’s Johnson Space Center is on display in the Smithsonian National Air and Space Museum’s Futures in Space gallery in Washington, D.C. NASA/Smithsonian National Air and Space Museum

A piece of NASA Johnson Space Center’s Mars legacy has landed at the Smithsonian National Air and Space Museum in Washington, D.C. 

Nearly 10 years in the making, the Scanning Habitable Environments with Raman & Luminescence for Organics & Chemicals (SHERLOC) calibration target—built by Johnson’s ARES Division with partners at NASA’s Jet Propulsion Laboratory and Amentum—now has a permanent place in the museum’s Futures in Space gallery.  

The palm-sized device is displayed beside an R2-D2 replica, connecting the wonder of space travel with the inspiration of seeing real flight hardware up close. 

The calibration target, still in use aboard NASA’s Perseverance rover after more than four years of operations in Jezero Crater, Mars, helps keep SHERLOC’s laser, cameras, and spectrometers precisely tuned as it searches for ancient signs of life on Mars. Mounted on the rover’s front, the target carries 10 known samples so engineers can check SHERLOC’s performance during routine operations. 

Trevor Graff, an ARES scientist who conceived the idea and led the team that designed and built SHERLOC’s calibration device, said the project highlights the unique role of geology in space exploration. “What excites me most is the practical application of geology—where science enables exploration and exploration enables science,” he said.  

SHERLOC itself sits on the rover’s seven-foot robotic arm and combines a laser, camera, and chemical analyzers to look for signs that water once altered the Martian surface, potentially revealing evidence of past microscopic life. Several calibration targets are made from spacesuit material samples, allowing Johnson scientists to study how fabrics endure the harsh Martian environment to protect future explorers. 

Explore More 6 min read NASA Kennedy Top 20 Stories of 2025 Article 3 hours ago 4 min read NASA’s Wideband Technology Demo Proves Space Missions are Free to Roam

Just like your cellphone stays connected by roaming between networks, NASA’s Polylingual Experimental Terminal, or…

Article 3 days ago
2 min read NASA’s Two-in-One Satellite Propulsion Demo Begins In-Space Test Article 5 days ago
Categories: NASA

NASA Johnson’s 2025 Milestones

NASA - Breaking News - Fri, 12/19/2025 - 2:59pm

NASA’s Johnson Space Center in Houston closed 2025 with major progress across human spaceflight, research, and exploration. From Artemis II mission preparations to science aboard the International Space Station, teams at Johnson helped prepare for future missions to the Moon and, ultimately, Mars.

Orion Stacked for Artemis II, Orion Mission Evaluation Room Unveiled  NASA’s Artemis II Orion spacecraft with its launch abort system is stacked atop the agency’s SLS (Space Launch System) rocket in High Bay 3 of the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida on Oct. 20, 2025.NASA/Kim Shiflett

As NASA prepares for the crewed Artemis II mission, a 10-day journey around the Moon and back in early 2026, teams at Johnson continue work to ensure the Orion spacecraft is flight-ready. The mission will carry NASA astronauts Reid Wiseman, Victor Glover, Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen. 

In October, NASA completed stacking of the Orion spacecraft and launch abort system atop the agency’s SLS (Space Launch System) rocket inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida. Following Orion stacking, teams completed testing critical communications systems between SLS and Orion, and confirmed the interfaces function properly between the rocket, Orion, and the ground systems. 

The new Orion Mission Evaluation Room inside the Mission Control Center at NASA’s Johnson Space Center in Houston.NASA/Bill Stafford

Teams also unveiled the Orion Mission Evaluation Room inside NASA’s Mission Control Center in Houston. The new facility will support Artemis II by allowing engineers to monitor Orion spacecraft systems in real time and assess vehicle performance throughout the mission, strengthening flight operations beyond low Earth orbit. 

These milestones were made possible by teams across Johnson, including the Orion Program, Flight Operations Directorate, Systems Engineering and Integration Office, Crew and Thermal Systems Division, and the Human Health and Performance Directorate, working closely with other NASA centers and industry partners. 

These accomplishments mark steady progress toward Artemis II and reflect the work underway across NASA to advance the next era of human spaceflight. 

Gateway Lunar Space Station The primary structure of Gateway’s Power and Propulsion Element (PPE) undergoing assembly, integration, and testing at Lanteris Space Systems in Palo Alto, California, on September 29, 2025.Lanteris Space Systems

Together with international and industry partners, the Gateway Program continued progress toward building humanity’s first lunar space station. The powerhouse reached a major milestone this fall with its successful initial power on.

NASA Selects 2025 Astronaut Candidate Class NASA’s new astronaut candidates greet the crowd for the first time at Johnson Space Center.NASA/James Blair

NASA’s 10 new astronaut candidates were introduced Sept. 22 following a competitive selection process of more than 8,000 applicants from across the United States. The class will complete nearly two years of training before becoming eligible for flight assignments supporting missions to low Earth orbit, the Moon, and Mars.

When they graduate, they will join NASA’s active astronaut corps, advancing research aboard the space station and supporting Artemis missions that will carry human exploration farther than ever before.

A Space Station Anniversary NASA and its partners have supported humans continuously living and working in space since November 2000.NASA/Jonny Kim

On Nov. 2, 2025, NASA marked 25 years of continuous human presence aboard the space station. What began as a set of connected modules has grown into a cornerstone of international partnership, scientific discovery, and technology development in low Earth orbit.
For a quarter of century, the orbiting laboratory has supported research that advances human health, drives innovation, and prepares NASA for future crewed missions to the Moon and Mars.

A truly global endeavor, the space station has been visited by more than 290 people from 26 countries and a variety of international and commercial spacecraft. The unique microgravity laboratory has hosted more than 4,000 experiments from over 5,000 researchers from 110 countries. The orbital outpost also is facilitating the growth of a commercial market in low Earth orbit for research, technology development, and crew and cargo transportation.

After 25 years of habitation, the space station remains a symbol of international cooperation and a proving ground for humanity’s next giant leaps.

Record-Breaking Spacewalks NASA astronaut and Expedition 72 Commander Suni Williams is pictured during a six-hour spacewalk for science and maintenance on the International Space Station. At upper right, is the SpaceX Dragon crew spacecraft docked to the Harmony module’s space-facing port.NASA

NASA astronauts Nick Hague, Suni Williams, and Butch Wilmore began 2025 with two successful spacewalks, completing key maintenance and research tasks. Their work included removing an antenna assembly and collecting surface material samples for analysis at Johnson’s Astromaterials Research and Exploration Services, or ARES, division.

With her latest spacewalks, Williams now holds the record for the most cumulative spacewalking time by a woman–62 hours and 6 minutes–placing her fourth among the most experienced spacewalkers.

NASA astronauts Anne McClain and Nichole Ayers also conducted spacewalk operations, installing a mounting bracket to prepare for the future installation of an additional set of International Space Station Rollout Solar Arrays and relocating a space station communications antenna.

These achievements were made possible by countless Johnson teams across the International Space Station, Flight Operations Directorate, and Exploration Architecture, Integration, and Science Directorate.

Two Expeditions Take Flight

NASA’s SpaceX Crew-10 arrived at the space station on March 15 and returned to Earth on on Aug. 9. Crew-10 included NASA astronauts Anne McClain and Nichole Ayers, JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi, and Roscosmos cosmonaut Kirill Peskov—all of whom are trained pilots. Crew-9 also splashed down off Florida’s coast on March 18. 

NASA astronaut Jonny Kim launched aboard the Soyuz MS-27 spacecraft on April 8, marking his first mission to the space station. Expedition 73 officially began following the departure of NASA astronaut Don Pettit aboard Soyuz MS-26 on April 19. NASA astronaut Chris Williams then launched aboard the Soyuz MS-28 spacecraft on Nov. 27 with Kim returning to Earth shortly after on Dec. 9, marking the start of Expedition 74.

A Year of Lunar Firsts Firefly’s Blue Ghost lunar lander captured a bright image of the Moon’s South Pole (on the far left) through the cameras on its top deck, while it travels to the Moon as part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign.Firefly Aerospace

Firefly Aerospace’s Blue Ghost Mission 1 launched delivering 10 NASA science and technology instruments to the Moon on March 2. The lander touched down near Mons Latreille in Mare Crisium, a basin on the near side of the Moon. Just days later on March 6, Intuitive Machines’ IM-2 mission landed closer to the lunar South Pole than any previous lander.  

Part of NASA’s Commercial Lunar Payload Services (CLPS) and Artemis campaign, these lunar deliveries are helping scientists address challenges like lunar dust mitigation, resource utilization, and radiation tolerance. 

These milestones were made possible by the collaborative efforts of Johnson teams across NASA’s CLPS initiative, as well as the Engineering; Exploration Architecture, Integration, and Science; and Flight Operations directorates—along with support from other NASA centers. 

First Asteroid-Detecting Space Telescope Completes Testing The instrument enclosure of NASA’s Near-Earth Object Surveyor is prepared for critical environmental tests inside the historic Chamber A at the Space Environment Simulation Laboratory at NASA’s Johnson Space Center.NASA

NASA’s Near-Earth Object (NEO) Surveyor—its first space-based telescope designed specifically for planetary defense—has successfully completed thermal vacuum testing in Johnson’s Space Environment Simulation Laboratory in Chamber A. 

Set to launch no earlier than late 2027, NEO Surveyor will seek out, measure, and characterize hard-to-detect asteroids and comets that could pose a hazard to Earth. The spacecraft is now at NASA’s Jet Propulsion Laboratory in Southern California for continued development. 

Explore the capabilities and scientific work enabled by the thermal testing conducted in Johnson’s Chamber A. 

These achievements were made possible by countless Johnson teams across the ARES Division and Engineering Directorate. 

First Houston AutoBoative Show Johnson Space Center employees present the Artemis Exhibit at the 2025 Houston AutoBoative Show at NRG Center.NASA/Robert Markowitz 

For the first time, NASA rolled out its Artemis exhibit at the Houston AutoBoative Show at NRG Center from Jan. 29 to Feb. 2. Johnson employees introduced vehicle enthusiasts to the technologies NASA and its commercial partners will use to explore more of the lunar surface than ever before.

The Artemis exhibit stood alongside some of the world’s most advanced cars and boats, offering visitors an up-close look at the future of human space exploration.

Attendees explored Artemis II and Artemis III mission road maps, practiced a simulated Orion docking with Gateway in lunar orbit, and tested their skills driving a virtual lunar rover simulator.

NASA showcased lunar rover concepts, highlighting vehicles under development to help Artemis astronauts travel farther across the Moon’s surface.

All three Lunar Terrain Vehicle (LTV) contractors, Astrolab, Intuitive Machines, and Lunar Outpost, completed their Preliminary Design Review milestones in June 2025, marking the end of Phase 1 feasibility study task orders that began in May 2024. NASA is preparing to award Phase 2 of the Lunar Terrain Vehicle Services contract with a demonstration mission task order that will result in the development, delivery, and demonstration of an LTV on the Moon  later this decade.

First Dual NBL Run for NASA’s Artemis III Lunar Spacesuit NASA astronauts Loral O’Hara (left) and Stan Love (right) pose during the first dual spacesuit run at NASA’s Neutral Buoyancy Laboratory in Houston on Sept. 24, 2025. The astronauts wore Axiom Space’s Artemis III lunar spacesuit, known as the Axiom Extravehicular Mobility Unit (AxEMU), during the final integrated underwater test, confirming the spacesuit and facility are ready to support Artemis training.NASA

NASA and Axiom Space teams held the first dual spacesuit run at NASA’s Neutral Buoyancy Laboratory with NASA astronauts Stan Love and Loral O’Hara. Both crewmembers wore Axiom Space’s lunar spacesuit, called the Axiom Extravehicular Mobility Unit (AxEMU), while performing simulated lunar surface operations underwater to test the spacesuit’s functionality and mobility. This was the final integration test in the pool, proving both the spacesuit and facility are ready to support NASA Artemis training. To date, the Axiom team has conducted over 700 hours of manned, pressurized testing of the Artemis III lunar spacesuit. Axiom Space is scheduled to complete the critical design review in 2026.

These efforts were made possible by teams across Johnson’s Joint Extravehicular Activity and Human Surface Mobility Test Team.

Watch how astronauts, engineers, and scientists are preparing for the next giant leap on the lunar surface.

OSIRIS-REx Team Honored for Asteroid Sample Return NASA’s OSIRIS-REx team poses inside a cleanroom at Johnson Space Center after successfully freeing fasteners on the TAGSAM (Touch-and-Go Sample Acquisition Mechanism) head, allowing access to samples collected from asteroid Bennu. NASA/Robert Markowitz

NASA’s OSIRIS-REx curation team earned an Agency Group Achievement Award for their dedication to acquiring, preserving, and distributing asteroid samples from Bennu—the agency’s first asteroid sample return mission.

“The curation team ensured we were ready to receive and safeguard the samples, prepare and allocate them, and make them available to the broader scientific community,” said Jemma Davidson, Astromaterials curator and branch chief of the Astromaterials Acquisition and Curation Office.

After years of preparation, the team overcame unforeseen technical challenges to recover and preserve more than 120 grams of asteroid material—now accessible to scientists worldwide for research into the origins of our solar system.

These achievements were made possible by Johnson teams across the ARES Division and the Exploration Architecture, Integration, and Science Directorate.

Axiom Mission 4 Marks International Firsts in Space Station Mission  The official crew portrait of the Axiom Mission-4 private astronaut mission to the International Space Station. From left are, Pilot Shubhanshu Shukla from India, Commander Peggy Whitson from the U.S., and Mission Specialists Sławosz Uzanański-Wiśniewksi from Poland and Tibor Kapu from Hungary.Axiom Space

The Axiom Mission 4 crew successfully returned to Earth after an 18-day mission aboard the space station, conducting more than 60 experiments and educational outreach activities. Launched aboard a SpaceX Dragon spacecraft on June 25, the crew docked with the orbiting laboratory the following day to begin a packed schedule of science and outreach. 

The mission marked the first space station flight for India, Poland, and Hungary. Led by former NASA astronaut and Axiom Space director of human spaceflight Peggy Whitson, the crew included ISRO (Indian Space Research Organization) astronaut Shubhanshu Shukla, ESA (European Space Agency) project astronaut Sławosz Uznański-Wiśniewski of Poland, and Hungarian to Orbit (HUNOR) astronaut Tibor Kapu. 

These achievements were made possible by Johnson’s dedicated teams across the International Space Station Program, Commercial Low Earth Orbit Development Program, and Flight Operations Directorate. 

Johnson-Built Mars Hardware on Display at the Smithsonian  At left is NASA’s Perseverance Mars rover, with a circle indicating the location of the calibration target for the rover’s SHERLOC instrument. At right is a close-up of the calibration target. Along the bottom row are five swatches of spacesuit materials that scientists are studying as they de-grade.NASA/Malin Space Science Systems Scanning Habitable Environments with Raman & Luminescence for Organics & Chemicals (SHERLOC) calibration target built at NASA’s Johnson Space Center is on display in the Smithsonian National Air and Space Museum’s Futures in Space gallery in Washington, D.C. NASA/Smithsonian National Air and Space Museum

A piece of NASA Johnson Space Center’s Mars legacy has landed at the Smithsonian National Air and Space Museum in Washington, D.C. 

Nearly 10 years in the making, the Scanning Habitable Environments with Raman & Luminescence for Organics & Chemicals (SHERLOC) calibration target—built by Johnson’s ARES Division with partners at NASA’s Jet Propulsion Laboratory and Amentum—now has a permanent place in the museum’s Futures in Space gallery.  

The palm-sized device is displayed beside an R2-D2 replica, connecting the wonder of space travel with the inspiration of seeing real flight hardware up close. 

The calibration target, still in use aboard NASA’s Perseverance rover after more than four years of operations in Jezero Crater, Mars, helps keep SHERLOC’s laser, cameras, and spectrometers precisely tuned as it searches for ancient signs of life on Mars. Mounted on the rover’s front, the target carries 10 known samples so engineers can check SHERLOC’s performance during routine operations. 

Trevor Graff, an ARES scientist who conceived the idea and led the team that designed and built SHERLOC’s calibration device, said the project highlights the unique role of geology in space exploration. “What excites me most is the practical application of geology—where science enables exploration and exploration enables science,” he said.  

SHERLOC itself sits on the rover’s seven-foot robotic arm and combines a laser, camera, and chemical analyzers to look for signs that water once altered the Martian surface, potentially revealing evidence of past microscopic life. Several calibration targets are made from spacesuit material samples, allowing Johnson scientists to study how fabrics endure the harsh Martian environment to protect future explorers. 

Explore More 4 min read NASA’s Wideband Technology Demo Proves Space Missions are Free to Roam

Just like your cellphone stays connected by roaming between networks, NASA’s Polylingual Experimental Terminal, or…

Article 3 days ago
2 min read NASA’s Two-in-One Satellite Propulsion Demo Begins In-Space Test Article 5 days ago 6 min read NASA’s Push Toward Commercial Space Communications Gains Momentum  Article 5 days ago
Categories: NASA

NASA’s Wideband Technology Demo Proves Space Missions are Free to Roam

NASA News - Fri, 12/19/2025 - 2:57pm
4 Min Read NASA’s Wideband Technology Demo Proves Space Missions are Free to Roam An artist's concept of the Polylingual Experimental Terminal transmitting data in space. Credits: NASA/Morgan Johnson

Just like your cellphone stays connected by roaming between networks, NASA’s Polylingual Experimental Terminal, or PExT, technology demonstration is proving space missions can do the same by switching seamlessly between government and commercial communications networks.

NASA missions rely on critical data to navigate, monitor spacecraft health, and transmit scientific information back to Earth, and this game-changing technology could provide multiple benefits to government and commercial missions by enabling more reliable communications with fewer data interruptions.

“This mission has reshaped what’s possible for NASA and the U.S. satellite communications industry,” said Kevin Coggins, deputy associate administrator for the agency’s SCaN (Space Communications and Navigation) Program at NASA Headquarters in Washington. “PExT demonstrated that interoperability between government and commercial networks is possible near-Earth, and we’re not stopping there. The success of our commercial space partnerships is clear, and we’ll continue to carry that momentum forward as we expand these capabilities to the Moon and Mars.”

This mission has reshaped what’s possible for NASA and the U.S. satellite communications industry.

Kevin Coggins

Deputy Associate Administrator for SCaN

Wideband technology enables data exchange across a broad range of frequencies, helping bridge government and commercial networks as NASA advances commercialization of space communications. By providing interoperability between government and commercial assets, this technology unlocks new advantages not currently available to agency missions.

As commercial providers continue to advance their technology and add new capabilities to their networks, missions equipped with wideband terminals can integrate these enhancements even after launch and during active operations. The technology also supports NASA’s network integrity by allowing missions to seamlessly switch back and forth between providers if one network faces critical disruptions that would otherwise interfere with timely communications.

An artist’s concept of the BARD mission in space. NASA/Dave Ryan

“Today, we take seamless cellphone roaming for granted, but in the early days of mobile phones, our devices only worked on one network,” said Greg Heckler, SCaN’s capability development lead at NASA Headquarters. “Our spaceflight missions faced similar limitations—until now. These revolutionary tests prove wideband terminals can connect spacecraft to multiple networks, a huge benefit for early adopter missions transitioning to commercial services in the 2030s.”

On July 23, the communications demo launched into low Earth orbit aboard the York Space Systems’ BARD mission. Designed by Johns Hopkins Applied Physics Laboratory, the compact wideband terminal communicates over a broad range of the Ka-band frequency, which is commonly used by NASA missions and commercial providers. After completing a series of tests that proved the BARD spacecraft and the demonstration payload were functioning as expected, testing kicked off with NASA’s TDRS (Tracking and Data Relay Satellite) fleet and commercial satellite networks operated by SES Space & Defense and Viasat.

During each demonstration, the terminal completed critical space communications and navigation operations, ranging from real-time spacecraft tracking and mission commands to high-rate data delivery. By showcasing end-to-end services between the BARD spacecraft, multiple commercial satellites, and mission control on Earth, the wideband terminal showed future NASA missions could become interoperable with government and commercial infrastructure.

An artist’s concept of the Polylingual Experimental Terminal transmitting data in space.NASA/Morgan Johnson

Due to the flexibility of wideband technology and the innovative nature of this mission, NASA recently extended the Polylingual Experiment Terminal demonstration for an additional 12 months of testing. Extended mission operations will include new direct-to-Earth tests with the Swedish Space Corporation, scheduled to begin in early 2026.

This technology demonstration will continue testing spaceflight communications capabilities through April 2027. By 2031, NASA plans to purchase satellite relay services for science missions in low Earth orbit from one or more U.S. companies.

To learn more about this wideband technology demonstration visit:

PExT – NASA

The Polylingual Experimental Terminal technology demonstration is funded and managed by NASA’s SCaN Program within the Space Operations Mission Directorate at NASA Headquarters in Washington. York Space Systems provided the host spacecraft. Johns Hopkins Applied Physics Laboratory developed the demonstration payload. Commercial satellite relay demonstrations were conducted in partnership with SES Space & Defense and Viasat.

An artist’s concept of the BARD mission in space. NASA/Dave Ryan Share Details Last Updated Dec 19, 2025 Related Terms Keep Exploring Discover More Topics From NASA

Communicating with Missions

PExT

Wideband Technology

Commercializing Space Communications

Categories: NASA