Universe Today
When Space Junk Comes Home
When a chunk of SpaceX rocket debris crashed into a Polish warehouse this year, it exposed a troubling reality, that the international laws governing space accidents were written for a world where only governments launched rockets. Now, as private companies deploy thousands of satellites and debris rains down with increasing frequency, victims have no direct legal recourse and must rely on their governments to pursue claims on their behalf, that’s if those governments choose to act at all. A new analysis reveals how a Cold War era treaty struggles to protect ordinary people in the age of commercial spaceflight, and why some nations are now taking matters into their own hands.
This 1.4kg Soft Suit Simulates Earth's Gravity to Stop Muscle Loss in Space
Astronauts lose significant amounts of muscle mass during any prolonged stay in space. Despite spending 2-3 hours a day exercising in an attempt to keep the atrophy at bay, many still struggle with health problems caused by low gravity. A new paper and some further work done by Emanuele Pulvirenti of the University of Bristol’s Soft Robotics Lab and his colleagues, describe a new type of fabric-based exoskeleton that could potentially solve at least some of the musculoskeletal problems astronauts suffer from without dramatically affecting their movement.
The Impossible Black Holes That Shouldn't Exist
In 2023, gravitational wave detectors caught two black holes colliding 7 billion light years away, both spinning at nearly the speed of light and both existing in a mass range where black holes simply cannot form. The mystery baffled astronomers until researchers discovered what everyone else had missed, magnetic fields in the chaotic aftermath of a supernova can eject half a star's mass into space, creating black holes that defy the rules of physics.
What a Missing Signal Tells Us About Alien Worlds
When astronomers detected potential biosignatures in the atmosphere of exoplanet K2-18 b, it raised a critical question, ‘could this world's atmosphere even survive its host star's radiation?’ A new study using the Very Large Array searched for radio emissions from the K2-18 system and found something surprising, it was absolutely silent. That absence of radio signals reveals K2-18 is an unusually quiet star, suggesting the planet's atmosphere faces minimal erosion from stellar activity.
The Hidden Danger of Lunar Micrometeoroid Storms
NASA's plans for a permanent lunar base face the threat of up to 23,000 micrometeoroid impacts per year travelling at speeds of 70 kilometres per second. A new study quantifies this relentless bombardment for the first time, revealing that even microscopic particles carry enough energy to puncture equipment and even threaten astronaut safety. The research shows impact rates vary dramatically by location with the lunar south pole, NASA's chosen site for the first Artemis base, fortunately experiencing the lowest bombardment.
Google's Plan for Space-Based Computing
Google's Project Suncatcher is fascinating solution to AI's massive energy demands…. building data centres in space powered directly by the solar power. The company's new research explores the possibility of constellations of satellites equipped with processors flying in tight formation just hundreds of meters apart, connected by terabit per second laser links to distribute information. Early testing shows their chips are surprisingly radiation resistant, while falling launch costs could make space based computing economically viable by the mid 2030s. With a prototype mission planned for 2027, this could fundamentally change where our most powerful computing infrastructure is located.
Scientists Just Built A 1-Kilometer Resolution Digital Twin Of Earth
Weather forecasting is notoriously wonky - climate modeling even more so. But their slowing increasing ability to predict what the natural world will throw at us humans is largely thanks to two things - better models and increased computing power. Now, a new paper from researchers led by Daniel Klocke of the Max Planck Institute in Germany, and available in pre-print form on arXiv, describes what some in the climate modeling community have described as the “holy grail” of their field - an almost kilometer-scale resolution model that combines weather forecasting with climate modeling.
This New Robot Has A Clever Spin On Lunar Mining
Work continues on designs for robots that can help assist the first human explorers on the Moon in over half a century. One of the most important aspects of that future trip will be utilizing the resources available on the Moon’s surface, known as in-situ resource utilization (ISRU). This would give the explorers access to materials like water, structural metals, and propellant, but only if they can recover it from the rock and regolith that make up the Moon’s surface. A new paper from researchers mainly affiliated with Tohoku University describes the design and testing of a type of robot excavator that could one day assist lunar explorers in unlocking the world’s potential.
Taikonauts Enjoy BBQ Aboard the Chinese Space Station
Aboard China's space station, astronauts have begun using a new hot air oven delivered by Shenzhou XXI to prepare freshly baked dishes, including chicken wings and steaks, as shown in a recent video from orbit.
The oldest stars are planet killers
As stars age, they expand. That’s bad news for planets orbiting close to their stars, according to a new study published in the Monthly Notices of the Royal Astronomical Society this month. The study suggests that planets closest to their stars, especially those that orbit their stars in just 12 days or less, are at a higher risk of being sent to their doom by their aging suns.
The Case for Insects on the Space Menu
Insects have been travelling to space since 1947, but now they might become dinner for astronauts on missions to the Moon and Mars. A new European Space Agency study explores whether crickets and mealworms could provide sustainable protein for future space explorers, with research showing many species handle microgravity surprisingly well, even completing entire life cycles in orbit. Is it possible that these tiny creatures could become essential for humanity's expansion beyond Earth.
When Black Holes Merge
Two black hole collisions detected just a month apart last autumn are challenging our understanding of how they form. One merger features a black hole spinning backwards against its orbit while the other involves one of the fastest rotating black holes ever detected. These unusual properties suggest both are “second generation" black holes, products of earlier collisions formed in violent stellar environments. The precision measurements have also tested Einstein's general relativity changing not only our understanding of black holes but also our understanding of the cosmos.
Never Mind Rogue Planets. Their Rogue Moons Could Support Life
When massive stars explode as supernovae, the powerful blast can send planets off into space where they drift as rogue or free-floating planets. But what happens to their moons? Can their natural satellites stay bound to these planets, and could tidal heating be a viable source of energy to fuel life on these moons?
The Archeologist's Guide To Colonizing Other Worlds
Models help scientists understand everything from the particles that make up the universe to massive superstructures of galaxies at the beginning of time. But sometimes they model more mundane, though perhaps even more complex, features - including the course of human civilization. A new paper by Thomas Leppard of the International Archaeological Research Institute and his co-authors, all of whom are also archeologists, propose applying a model of how humans expanded to the different islands across the Pacific Ocean during their early migration to what glean insights into how humanity should manage our colonization of space.
Cosmic Dust Bunnies - Why the Universe Might Be Fluffier Than We Thought
Space dust provides more than just awe-inspiring pictures like the Pillars of Creation. It can provide the necessary materials to build everything from planets to asteroids. But what it actually looks like, especially in terms of its “porosity” (i.e. how many holes it has) has been an area of debate for astrochemists for decades. A new paper from Alexey Potapov of Friedrich Schiller University Jena and his co-authors suggest that the dust that makes up so much of the universe might be “spongier” than originally thought.
Why the Milky Way’s Dark Heart Might Be Shaped Like a Box
Back in 2009, astronomers using the Fermi Gamma-ray Space Telescope noticed that there was a lot more gamma-ray light coming from the center of the Milky Way than might otherwise be expected given the objects there. Since then, two theories have appeared to explain this Galactic Center Excess (GCE) as it’s become known. One theory posits that the extra gamma rays are created by thousands of unseen milli-second pulsars (MSPs) in the Galactic center, while the other suggests that dark matter annihilating itself could also be the source. A new paper from Moortis Muru and hisco-authors at the Leibniz Institute for Astrophysics Potsdam (AIP) hasn’t necessarily solved the conundrum, but does level the playing field between the two theories again.
Dwarf Galaxies May Hold the Answers to the Debate on Dark Matter
An international team of researchers, led by the Leibniz Institute for Astrophysics Potsdam (AIP), has shed light on a decades-long debate about why galaxies rotate faster than expected, and whether this behaviour is caused by unseen dark matter or a breakdown of gravity on cosmic scales.
The ExoMars Orbiter Captures Dark Streaks on the Slopes of Mars Caused by a Meteorite Impact
The ESA's ExoMars Trace Gas Orbiter (TGO) recently captured images of streaks formed from a dust avalanche on the slopes of Apollinaris Mons the night before Christmas in 2023. A new study reveals that these types streaks are largely the result of seasonal factors, rather than meteoroid impacts.
Euclid Has 8 Extra Years of Fuel. A Scientist Has A Brilliant Plan To Use It.
It’s almost become expected that many space telescopes and probes can have “extended missions”. Both Voyagers are still sending data back 40+ years after their 5-year primary mission ended. But figuring out what to do with those spacecraft after their primary mission takes some negotiation. One such craft that will reach its end-of-mission in 2030 is Euclid, which is currently on a mission to map the “dark universe” of dark energy and dark matter. According to a new paper from Luigi “Rolly” Bedin of the Astronomical Institute of Padova, which is available in pre-print form on arXiv, for its second act we could turn Euclid into the most powerful astrometric telescope ever made.
China's Tianwen-1 Orbiter Spots 3I/ATLAS
Using its high-resolution camera, China's Tianwen-1 orbiter has successfully observed the interstellar object 3I/ATLAS at a distance of about 30 million kilometers, according to the China National Space Administration (CNSA).
