NASA News
NASA Selects Axiom Space for Fifth Private Mission to Space Station
NASA and Axiom Space have signed an order for the fifth private astronaut mission to the International Space Station, targeted to launch no earlier than January 2027 from the agency’s Kennedy Space Center in Florida.
“The award of our fifth private astronaut mission shows that commercial space is not a distant promise, but a present reality,” said NASA Administrator Jared Isaacman. “By expanding access and sharpening competition in low Earth orbit, these missions are building the capabilities NASA will rely on as we move outward to the Moon, Mars, and beyond. We look forward to building upon those capabilities with many private astronaut missions to come.”
Axiom Mission 5 is expected to spend up to 14 days aboard the space station. A specific launch date will depend on overall spacecraft traffic at the orbital outpost and other planning considerations.
“The International Space Station is a critical platform for enabling commercial industry in low Earth orbit,” said Dana Weigel, manager, International Space Station Program, NASA’s Johnson Space Center in Houston. “Private astronaut missions allow the station to be used as a proving ground for new markets and technologies while enabling science, research, and outreach to contribute to a growing space economy.”
Axiom Space will submit four proposed crew members to NASA and its international partners for review. Once approved and confirmed, they will train with NASA, international partners, and the launch provider for their mission.
“We are honored NASA awarded Axiom Space its fifth human spaceflight mission,” said Jonathan Cirtain, president and CEO, Axiom Space. “All four previous missions have expanded the global community of space explorers, diversifying scientific investigations in microgravity, and providing significant insight that is benefitting the development of our next-generation space station, Axiom Station. The award underscores Axiom Space’s commitment to redefining access to space, fostering international collaboration, and enabling research opportunities in low Earth orbit for the benefit of all.”
Axiom Space will purchase mission services from NASA, including crew consumables, cargo delivery, storage, and other in-orbit resources for daily use. NASA will purchase from Axiom Space the capability to return scientific samples that must be kept cold during transit back to Earth.
NASA made the selection from proposals received in response to its March 2025 NASA Research Announcement. The agency is finalizing the mission order for the sixth private astronaut mission to the space station and will share additional information once available.
Missions aboard the International Space Station, including private astronaut missions, contribute to advancing scientific knowledge and demonstrating new technologies for future human and robotic exploration flights as part of NASA’s Moon and Mars exploration approach, including lunar missions through NASA’s Artemis campaign.
Learn more about NASA’s commercial space strategy at:
https://www.nasa.gov/commercial-space
-end-
Jimi Russell
Headquarters, Washington
202-358-1600
james.j.russell@nasa.gov
Anna Schneider / Joseph Zakrzewski
Johnson Space Center, Houston
281-483-5111
anna.c.schneider@nasa.gov / joseph.a.zakrzewski@nasa.gov
NASA Aims to Advance Hypersonic Flight Testing with New Awards
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater) The NASA award to SpaceWorks Enterprises will focus on research using the company’s X-60 platform. SpaceWorksWhile NASA is working with U.S. aviation to explore commercial supersonic technologies, the agency is also looking forward to an even faster era of flight – one of vehicles that can fly hypersonic, or five times the speed of sound. And to further that vision, NASA has issued two awards for studies into vehicle concepts.
Some types of vehicles – such as rockets – achieve hypersonic speeds by carrying supplies of oxygen to allow their fuel to burn, instead of using the surrounding air. In contrast, NASA’s Hypersonic Technology Project works to advance “airbreathing,” reusable hypersonic aircraft, which take in air as they fly, allowing for much longer sustained cruising at hypersonic speeds.
Given commercial interest in finding applications for airbreathing hypersonic vehicles, the Hypersonic Technology Project is looking to find ways to make testing and development easier. Two contract awards the project made in August are aimed at helping to provide an affordable bridge between hypersonic ground and flight tests.
“With these awards, NASA will collaborate with the commercial hypersonics industry to identify new ways to evaluate technologies through flight tests while we address the challenges of reusable, routine, airbreathing, hypersonic flight,” said Dr. Nateri Madavan, director of NASA’s Advanced Air Vehicles Program.
The new awards went to SpaceWorks Enterprises, of Atlanta, Georgia, and Stratolaunch of Mojave, California, both of which will support a six-month NASA study exploring how current vehicles could be modified to meet the need for reusable, high-cadence, affordable flight-testing capabilities. SpaceWorks, which received $500,000, will focus on the X-60 platform. Stratolaunch, which received $1.2 million, will focus on its Talon-A platform.
Through these awards, NASA wants industry to help define the capabilities needed to achieve flight test requirements. The work will also potentially support a future NASA Making Advancements in Commercial Hypersonics (MACH) project focused on advancing commercial hypersonic vehicles through the development of infrastructure such as cost estimates and schedule requirements for a potential flight vehicle.
NASA advances U.S. hypersonic research through the Hypersonic Technology Project under the agency’s Advanced Air Vehicles Program. NASA intends for these projects to help lead the way in enabling revolutionary advancements in fundamental airbreathing hypersonic technologies.
Facebook logo @NASA@NASAaero@NASAes @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More 4 min read NASA Science Flights Venture to Improve Severe Winter Weather Warnings Article 4 days ago 4 min read NASA, GE Aerospace Hybrid Engine System Marks Successful Test Article 5 days ago 4 min read NASA Tests Technology Offering Potential Fuel Savings for Commercial Aviation Article 1 week ago Keep Exploring Discover More Topics From NASAMissions
Humans In Space
Solar System ExplorationEyes on the Solar System
Explore NASA’s History
Share Details Last Updated Jan 30, 2026 EditorLillian GipsonContactJim Bankejim.banke@nasa.gov Related TermsVisualizing Perseverance’s AI-Planned Drive on Mars
NASA/JPL-Caltech Photojournal Navigation Downloads Visualizing Perseverance’s AI-Planned Drive on Mars
PNG (326.26 KB)
PIA26646 Animation
MP4 (157.38 MB)
Description
This animation of NASA’s Perseverance was created with the Caspian visualization tool using data acquired during an 807-foot (246-meter) drive on the rim of Jezero Crater made by the rover on Dec. 10, 2025, the 1,709th Martian day, or sol, of the mission. The mission’s “drivers,” or rover planners, use the information to understand the Perseverance’s autonomous decision-making process during its drive by showing why it chose one specific path over other options.
This was one of two drives, the first being on Dec. 8, in which generative artificial intelligence provided the route planning. The AI analyzed high-resolution orbital imagery from the HiRISE (High Resolution Imaging Science Experiment) camera aboard NASA’s Mars Reconnaissance Orbiter and terrain-slope data from digital elevation models to identify critical terrain features — bedrock, outcrops, hazardous boulder fields, sand ripples, and the like. From that analysis, it generated a continuous path complete with waypoints, fixed locations where the rover takes up a new set of instructions.
The pale blue lines depict the track the rover’s wheels take. The black lines snaking out in front of the rover depict the different path options the rover is considering moment to moment. The white terrain Perseverance drives onto in the animation is a height map generated using data the rover collected during the drive. The pale blue circle that appears in front of the rover near the end of the animation is a waypoint.
NASA’s Jet Propulsion Laboratory, which is managed for the agency by Caltech, built and manages operations of the Perseverance rover.
For more about Perseverance: science.nasa.gov/mission/mars-2020-perseverance/
Keep Exploring Discover More Topics From Photojournal
Photojournal
Search Photojournal
Photojournal’s Latest Content
Feedback
NASA Honor Awards for Cold Atom Lab Team Members
Awarded for notable leadership accomplishments that have significantly influenced NASA’s mission. Sustained leadership and exceptionally high-impact leadership achievements demonstrate the individual’s effectiveness in advancing NASA’s goals and image in present and future terms.
Kamal Oudrhiri – For outstanding leadership of the Cold Atom Laboratory, NASA’s first quantum laboratory in space.
NASA EXCEPTIONAL SCIENTIFIC ACHIEVEMENT MEDALAwarded for exceptional scientific contributions toward achievement of NASA’s mission. This award is given for individual efforts that have resulted in a key scientific discovery or resulted in contribution(s) of fundamental importance in this field or significantly enhanced understanding of the field.
Jason Williams – For exceptional scientific achievements enabling and performing the first pathfinding experiments in quantum sensing of inertial forces with atom interferometry in space.
NASA EXCEPTIONAL PUBLIC ACHIEVEMENT MEDALAwarded for a significant specific achievement or substantial improvement in operations, efficiency, service, financial savings, science, or technology which contributes to the mission of NASA.
Ethan Elliott – For exceptional achievement in generating the first quantum gas mixtures in space and using them to demonstrate dual species matter-wave interferometry for quantum tests.
NASA EARLY CAREER ACHIEVEMENT MEDALThis prestigious NASA medal is awarded for significant performance during the first 10 years of an individual’s career in support of the NASA Mission. The contribution is significant, in that, for an employee who is at such an early phase of career, the contribution has substantially improved the discipline area.
Sarah Rees – For early career achievement in anomaly recovery and complex operation efforts in support of the Cold Atom Laboratory on the International Space Station.
Keep Exploring Discover More Topics From NASA
Cold Atom Laboratory
International Space Station
To view more images, visit the Space Station Gallery.
Jet Propulsion Laboratory
International Space Station Facts and Figures
International Space Station Facts International Space Station Size & Mass
Video: Perseverance Rover’s View of Crater Rim Drive
NASA/JPL-Caltech Photojournal Navigation Downloads Video: Perseverance Rover’s View of Crater Rim Drive
JPEG (659.02 KB)
PIA26647 Animation
MP4 (125.55 MB)
Description
This animation shows Perseverance’s point of view during drive of 807 feet (246 meters) along the rim of Jezero Crater on Dec. 10, 2025, the 1,709th Martian day, or sol, of the mission. Captured over two hours and 35 minutes, 53 Navigation Camera (Navcam) image pairs were combined with rover data on orientation, wheel speed, and steering angle, as well as data from Perseverance’s Inertial Measurement Unit, and placed into a 3D virtual environment. The result is this reconstruction with virtual frames inserted about every 4 inches (0.1 meters) of drive progress.
NASA’s Jet Propulsion Laboratory, which is managed for the agency by Caltech, built and manages operations of the Perseverance rover.
For more about Perseverance: science.nasa.gov/mission/mars-2020-perseverance/
Keep Exploring Discover More Topics From Photojournal
Photojournal
Search Photojournal
Photojournal’s Latest Content
Feedback
Mapping Perseverance’s Route With AI
NASA/JPL-Caltech/UofA Photojournal Navigation Downloads Mapping Perseverance’s Route With AI
PNG (1,003.24 KB)
Description
This annotated image from NASA’s HiRISE (High Resolution Imaging Science Experiment) camera aboard the agency’s Mars Reconnaissance Orbiter image depicts the AI-planned route and the actual route taken by NASA’s Perseverance Mars rover during its 807-foot (246-meter) drive on Dec. 10, 2025, the 1,709th Martian day, or sol, of the mission. The drive was the second of two demonstrations — the first being on Dec. 8 — showing that generative artificial intelligence could be incorporated in the rover’s route planning.
The magenta lines depict the path the rover’s wheels would take if it were to follow AI-processed waypoints, which are indicated with the magenta circles. (Waypoints are fixed locations where the rover takes up a new set of instructions.) The orange lines are based on data downlinked after the drive was complete and depict the actual path the rover took. The short, bold segments of the blue lines at the start of the route, in the upper right, show the portion of the drive that was determined by the mission’s rover drivers and based on imagery taken by the rover of the surface ahead. The surface areas in pale green boxes are called “keep-in zones.” Perseverance’s self-driving software is only allowed to pick routes inside those zones.
The graphic was generated using Hyperdrive, part of the software suite used to plan rover drives and manage the massive influx of engineering data from the Perseverance rover.
NASA’s Jet Propulsion Laboratory, which is managed for the agency by Caltech, built and manages operations of the Perseverance rover.
For more about Perseverance: science.nasa.gov/mission/mars-2020-perseverance/
The University of Arizona in Tucson, operates HiRISE, which was built by BAE Systems in Boulder, Colorado. JPL manages the Mars Reconnaissance Orbiter for SMD.
Keep Exploring Discover More Topics From Photojournal
Photojournal
Search Photojournal
Photojournal’s Latest Content
Feedback
NASA’s Commercial Satellite Data Acquisition Program Releases Archived and Tasked Multispectral Data from Satellogic
- CSDA
- Commercial Data
- CSDA Vendors
- Program Activities
- Pilot Research Projects
- FAQs
- News
3 min read
NASA’s Commercial Satellite Data Acquisition Program Releases Archived and Tasked Multispectral Data from Satellogic This image of an urban area outside of New Orleans, Louisiana, shows the high resolution available from Satellogic’s level 1D Orthorectified multispectral archive and tasked data product now available in the CSDA Program’s Satellite Data Explorer. Credit: CSDA“The mission of the CSDA Program is to identify, evaluate, and acquire data from commercial sources that support NASA’s Earth science research and application goals,” said CSDA Project Manager Dana Ostrenga. “The addition of this product from Satellogic to the SDX demonstrates the CSDA Program’s ongoing commitment to that mission, as well as to our objective of bringing high-quality, Earth observation data from NASA’s commercial partners to the Earth Science community.”
This Level 1D product, which is equivalent to a NASA-defined Level 1C data product, is derived from satellites in Satellogic’s NewSat constellation, each of which carries a multispectral camera offering four bands in visible (red, green, and blue) and near-infrared part of the electromagnetic spectrum. The product provides images covering 25,000 square kilometers (km2) of the Satellogic archive.
Researchers interested in accessing this data product in SDX can use their Earthdata Login for authentication and initiate data download requests. The product includes all associated metadata and documentation, and its use is governed by the United States government plus End User License Agreement (USG EULA)
About SDXThe SDX allows users to search, discover, and access a variety of Global Navigation Satellite System (GNSS), digital elevation model (DEM), synthetic aperture radar (SAR), multispectral, and precipitation radar data acquired through the CSDA program. It also provides streamlined data download, automated quota tracking, and a new coverage map that provides a high-level overview of the spatial coverage of the data discoverable through the SDX for any specified month and year. For a summary of the NASA commercial partner datasets available in SDX, visit the SDX website.
To order data from SDX, users must create an account with and be logged in to NASA Earthdata. (The initial attempt to use SDX will redirect users to Earthdata Login, where they will be prompted to enter their Earthdata credentials and accept the terms of the EULA.) Users must agree to the terms of the EULA before any data can be requested. Note: All data requests must be approved by CSDA data managers.
About the CSDA ProgramNASA’s Earth Science Division (ESD) established the CSDA Program to identify, evaluate, and acquire data from commercial providers that to support NASA’s Earth science research and applications. NASA recognizes the potential of commercial satellite constellations to advance Earth System Science and applications for societal benefit and believes commercially acquired data may also can augment the Earth observations acquired by NASA, and other U.S. government agencies, and NASA’s international partners.
All data from CSDA contract-awarded vendors are evaluated by the investigator-led CSDA project teams that assess the value of adding a vendor’s data to CSDA’s data holdings based on their quality and how they might benefit in the context of NASA Earth science research and applications. To learn more about the program, its commercial partners, data evaluation process, and more, visit the CSDA website.
Learning ResourcesFor more information on the CSDA Program’s SDX, see the SDX user guide.
Detailed information about the Level 1D products is available on the Satellogic website.
Share Details Last Updated Jan 30, 2026 Related Terms Explore More 3 min read Extreme January ColdFollowing a significant winter storm, frigid temperatures lingered in late January 2026 across a vast…
Article
15 hours ago
4 min read The West Faces Snow Drought
Very wet—but very warm—weather in the western U.S. has left many mountainous regions looking at…
Article
2 days ago
3 min read Students Across New England Contribute to Climate Science Through NASA’s GLOBE Green Down
In fall 2025, more than 50 educators and over 1,500 young people across Maine and…
Article
1 week ago
Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
NASA’s Perseverance Rover Completes First AI-Planned Drive on Mars
NASA/JPL-Caltech
The team for the six-wheeled scientist used a vision-capable AI to create a safe route over the Red Planet’s surface without the input of human route planners.
NASA’s Perseverance Mars rover has completed the first drives on another world that were planned by artificial intelligence. Executed on Dec. 8 and 10, and led by the agency’s Jet Propulsion Laboratory in Southern California, the demonstration used generative AI to create waypoints for Perseverance, a complex decision-making task typically performed manually by the mission’s human rover planners.
“This demonstration shows how far our capabilities have advanced and broadens how we will explore other worlds,” said NASA Administrator Jared Isaacman. “Autonomous technologies like this can help missions to operate more efficiently, respond to challenging terrain, and increase science return as distance from Earth grows. It’s a strong example of teams applying new technology carefully and responsibly in real operations.”
During the demonstration, the team leveraged a type of generative AI called vision-language models to analyze existing data from JPL’s surface mission dataset. The AI used the same imagery and data that human planners rely on to generate waypoints — fixed locations where the rover takes up a new set of instructions — so that Perseverance could safely navigate the challenging Martian terrain.
The initiative was led out of JPL’s Rover Operations Center (ROC) in collaboration with Anthropic, using the company’s Claude AI models.
This animation was created using data acquired during Perseverance’s Dec. 10, 2025, drive on Jezero Crater’s rim. Pale blue lines depict the track the rover’s wheels take. Black lines snaking out in front of the rover show the path options the rover is considering. The white terrain is a height map based on rover data. The blue circle that appears near the end of the animation is a waypoint.NASA/JPL-Caltech Progress for Mars, beyond
Mars is on average about 140 million miles (225 million kilometers) away from Earth. This vast distance creates a significant communication lag, making real-time remote operation — or “joy-sticking” — of a rover impossible. Instead, for the past 28 years, over several missions, rover routes have been planned and executed by human “drivers,” who analyze the terrain and status data to sketch a route using waypoints, which are usually spaced no more than 330 feet (100 meters) apart to avoid any potential hazards. Then they send the plans via NASA’s Deep Space Network to the rover, which executes them.
But for Perseverance’s drives on the 1,707 and 1,709 Martian days, or sols, of the mission, the team did something different: Generative AI provided the analysis of the high-resolution orbital imagery from the HiRISE (High Resolution Imaging Science Experiment) camera aboard NASA’s Mars Reconnaissance Orbiter and terrain-slope data from digital elevation models. After identifying critical terrain features — bedrock, outcrops, hazardous boulder fields, sand ripples, and the like — it generated a continuous path complete with waypoints.
To ensure the AI’s instructions were fully compatible with the rover’s flight software, the engineering team also processed the drive commands through JPL’s “digital twin” (virtual replica of the rover), verifying over 500,000 telemetry variables before sending commands to Mars.
On Dec. 8, with generative AI waypoints in its memory, Perseverance drove 689 feet (210 meters). Two days later, it drove 807 feet (246 meters).
“The fundamental elements of generative AI are showing a lot of promise in streamlining the pillars of autonomous navigation for off-planet driving: perception (seeing the rocks and ripples), localization (knowing where we are), and planning and control (deciding and executing the safest path),” said Vandi Verma, a space roboticist at JPL and a member of the Perseverance engineering team. “We are moving towards a day where generative AI and other smart tools will help our surface rovers handle kilometer-scale drives while minimizing operator workload, and flag interesting surface features for our science team by scouring huge volumes of rover images.”
“Imagine intelligent systems not only on the ground at Earth, but also in edge applications in our rovers, helicopters, drones, and other surface elements trained with the collective wisdom of our NASA engineers, scientists, and astronauts,” said Matt Wallace, manager of JPL’s Exploration Systems Office. “That is the game-changing technology we need to establish the infrastructure and systems required for a permanent human presence on the Moon and take the U.S. to Mars and beyond.”
This annotated orbital image depicts the AI-planned (depicted in magenta) and actual (orange) routes the Perseverance Mars rover took during its Dec. 10, 2025, drive at Jezero Crater. The drive was the second of two demonstrations showing that generative AI could be incorporated into rover route planning.NASA/JPL-Caltech/UofA More about PerseveranceManaged for NASA by Caltech, JPL is home to the Rover Operations Center (ROC). It also manages operations of the Perseverance rover on behalf of the agency’s Science Mission Directorate as part of NASA’s Mars Exploration Program portfolio.
For more information on the ROC, visit:
News Media Contacts
DC Agle
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-9011
agle@jpl.nasa.gov
Karen Fox / Molly Wasser
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
2026-008
Explore More 2 min read NASA Honor Awards for Cold Atom Lab Team MembersNASA OUTSTANDING PUBLIC LEADERSHIP MEDAL Awarded for notable leadership accomplishments that have significantly influenced NASA’s…
Article 1 day ago 6 min read NASA-ISRO Radar Mission Peers Through Clouds to See Mississippi River Delta Article 2 days ago 5 min read Networks Keeping NASA’s Artemis II Mission Connected Article 3 days ago Keep Exploring Discover More Topics From NASA Mars 2020: Perseverance RoverNASA’s Mars Perseverance rover seeks signs of ancient life and collects samples of rock and regolith for possible Earth return.
Perseverance Rover Location MapNASA’s Perseverance rover landed in Jezero Crater, an area with an ancient delta, on Feb. 18, 2021. Scroll and pan…
Mars ExplorationMars is the only planet we know of inhabited entirely by robots. Learn more about the Mars Missions.
Mars: FactsMars is one of the most explored bodies in our solar system, and it’s the only planet where we’ve sent…
What’s Up: February 2026 Skywatching Tips from NASA
NASA’s Artemis II mission has its first opportunity to launch to the moon, Orion the Hunter takes center stage, and a planetary parade marches across the night sky.
Skywatching Highlights- Feb: Artemis II launch window opens.
- Feb: Orion the Hunter ideal viewing
- Mid-Late Feb: Planetary Parade
The Moon could have human visitors for the first time since 1972, the constellation Orion will be clear to see, and a planetary parade will sparkle across the skies.
That’s What’s Up, this February.
The Moon could have some visitors soon!
NASA’s Artemis II mission will send astronauts to fly around the Moon. The first opportunities for launch are this February.
This mission will pave the way for Artemis III, which will be the first time we’ve sent humans to the lunar surface since the final Apollo mission, Apollo 17, in 1972.
So this month, look up to the Moon shining bright in the night sky and there might be somebody looking back down at you.
Can you spot Orion the Hunter in the night sky?
NASA/JPL-CaltechYou might be able to see the line of three stars that make up Orion’s Belt, but that belt is a part of a larger constellation called Orion, named for the hunter in Greek mythology.
Above Orion’s belt, the hunter’s right shoulder is actually Betelgeuse (or Alpha Orionis), one of the brightest stars in the night sky!
NASA/JPL-CaltechMost visible in the winter, February is one of the clearest times to see Orion in the sky.
From dusk through the night, look to the southern sky and try and spot the hunter for yourself.
A planetary parade will march across the sky this month!
NASA/JPL-CaltechMid-February, Saturn will drop down toward the horizon as Venus and Mercury climb upward in the sky, meeting together in the west to southwestern sky.
Jupiter will find itself high in the sky.
And even Uranus, found in the southern sky, and Neptune, found nearby Saturn, will join the parade—though you’ll need binoculars or a telescope to spot these two far-off planets.
The planets will be visible soon after sunset throughout the month of February, but they’ll be lined up best toward the end of the month.
So, go outside and see how many planets you can find!
Here are the phases of the Moon for February.
NASA/JPL-CaltechYou can stay up to date on all of NASA’s missions exploring the solar system and beyond at science.nasa.gov.
I’m Chelsea Gohd from NASA’s Jet Propulsion Laboratory, and that’s What’s Up for this month.
Keep Exploring Discover More Topics From NASA
What’s Up
Skywatching
Galaxies
Stars
Preparing for Artemis II: Training for a Mission Around the Moon
Four astronauts will soon travel beyond low Earth orbit and fly around the Moon on Artemis II, a mission that will test NASA’s systems and hardware for human exploration of deep space.
Since June 2023, NASA astronauts Reid Wiseman, Victor Glover, Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen have been preparing for their lunar journey. The approximately 10-day mission will test the SLS (Space Launch System) rocket and Orion spacecraft, named Integrity by the crew, while requiring the quartet to operate with greater autonomy and make critical decisions far from Earth.
Training for Artemis II is all risk mitigation. By preparing the astronauts and flight controllers for what they might encounter, we enable mission success.Artemis II Chief Training Officer
Jacki Mahaffey
Unlike missions to the International Space Station, Artemis II offers no nearby safe harbor and no option to be back on Earth within hours of a problem. Training reflects that reality. Crews are prepared not just to follow procedures, but to understand spacecraft systems well enough to adapt when conditions change.
Training began with mission fundamentals, including how Orion and SLS systems function individually and together. From there, the crew progressed through phases of training that moved from routine on-orbit operations to more complex mission segments such as ascent, entry, and landing. Each phase builds on the last as the crew moves closer to flight.
In parallel, astronauts trained in medical operations, exercise systems, spacesuits, and daily life aboard Orion. Together, these elements form a single, integrated mission timeline.
Observing the Moon Through the Lens The Artemis II crew practices lunar photography at NASA’s Johnson Space Center in Houston.NASA/Kelsey YoungA key part of Artemis II training includes lunar observation and photography. At NASA’s Johnson Space Center in Houston, astronauts studied the Moon’s far side, learning to identify crater shapes, surface textures, color variations, and reflectivity.
Although Artemis II will not land on the Moon, the crew will conduct detailed observations from lunar orbit to prepare for future Artemis missions.
Flight Training at Ellington Field Artemis II crew members Reid Wiseman and Christina Koch during T-38F flight training at Ellington Field.NASA/Josh ValcarcelIn addition to classroom instruction and simulations, the Artemis II crew trains in T-38 jet aircraft at Johnson’s Ellington Field. The T-38 exposes astronauts to high-workload, dynamic flight conditions that build spatial awareness and adaptability, skills that translate directly to decision-making under pressure in spaceflight.
Protecting Crew Health in Deep Space The Artemis II crew don their Orion Crew Survival System spacesuits for post landing emergency egress inside the Orion Mockup at Johnson’s Space Vehicle Mockup Facility.NASA/James BlairThe crew donned their Orion Crew Survival System spacesuits during training to support testing of Orion’s environmental control and life support systems. The suit provides pressure, oxygen, and thermal protection during launch, entry, and contingency scenarios while Orion’s life support systems manage cabin oxygen, water, temperature, and overall crew health throughout the mission.
Mastering Orion Systems and Simulations Artemis II Commander Reid Wiseman (front) and Pilot Victor Glover participate in an Artemis II entry simulation at Johnson Space Center.NASA/Bill StaffordInside the Orion Mission Simulator at Johnson, the crew rehearsed every phase of the mission, from routine operations to emergency response. Simulations are designed to teach astronauts how to diagnose failures, manage competing priorities, and make decisions with delayed communication from Earth.
Through this process, the quartet learned every aspect of the Orion crew module’s interior, including how to navigate onboard displays and execute the procedures used to fly and monitor the spacecraft.
Science Preparation and Geology Training Artemis II Mission Specialist Christina Koch stands in a windswept volcanic field during geology training in Iceland, where volcanic terrain serves as an analog for lunar landscapes. NASA/Robert MarkowitzWhile Artemis II astronauts will not land on the Moon, the geology fundamentals they develop during field training in remote environments are critical to meeting the mission’s science objectives.
During the mission, the crew will examine a targeted set of surface features, including craters and regolith, from orbit. Astronauts will document variations in color, reflectivity, and texture to help scientists interpret geologic history.
Preparing for Splashdown and Recovery The Artemis II astronauts during water survival recovery training at NASA’s Neutral Buoyancy Laboratory. NASA/Josh ValcarcelThe mission will conclude when the Artemis II mission splashes down.
The crew worked through splashdown and recovery operations at the agency’s Neutral Buoyancy Laboratory. They rehearsed how to exit the Orion spacecraft safely in different scenarios, stabilize the spacecraft, and board a raft – skills they will rely on after returning from their mission around the Moon.
The Crew is Go for Launch Artemis II crew members (left to right) Reid Wiseman, Victor Glover, Christina Koch, and Jeremy Hansen stand in the white room on the crew access arm of the mobile launcher at Launch Pad 39B at NASA’s Kennedy Space Center in Florida.NASA/Frank MichauxThe Artemis II crew also completed integrated ground systems tests at NASA’s Kennedy Space Center in Florida. These included suited tests, full mission rehearsals, and launch-day dry runs that walked astronauts through every step, from traveling to the launch pad to entering Orion at Launch Pad 39B.
As Artemis II moves closer to launch, the focus shifts from preparation to readiness as the crew enters the next era of exploration beyond low Earth orbit.
About the AuthorSumer Loggins Share Details Last Updated Jan 30, 2026 Related Terms Explore More 3 min read NASA Johnson Celebrates 25 Years in Space with Community Day Article 2 days ago 3 min read I Am Artemis: Doug Parkinson Article 2 days ago 5 min read Networks Keeping NASA’s Artemis II Mission Connected Article 3 days ago Keep Exploring Discover More Topics From NASAMissions
Humans in Space
Climate Change
Solar System
Goldstone’s DSS-15 Antenna and the Milky Way
Deep Space Station 15, one of the 112-foot antennas at the Goldstone Deep Space Communications Complex near Barstow, California, looks skyward, with the stars of the Milky Way overhead, in September 2025. Goldstone is part of NASA’s Deep Space Network (DSN), which operates three complexes around the globe that support communications with dozens of deep space missions.
The DSN is NASA’s international array of giant radio antennas that supports interplanetary spacecraft missions, plus a few that orbit Earth. The DSN also provides radar and radio astronomy observations that improve our understanding of the solar system and the larger universe.
Through Artemis, NASA is establishing an enduring presence in space and exploring more of the Moon than ever before. To achieve this, Artemis missions rely on both the Deep Space Network and the Near Space Network. These networks, with oversight by NASA’s SCaN (Space Communications and Navigation) Program office, use global infrastructure and relay satellites to ensure seamless communications and tracking as Orion launches, orbits Earth, travels to the Moon, and returns home.
Image credit: NASA/JPL-Caltech
Artemis II Recovery Training
Off the coast of California, NASA’s Artemis Landing and Recovery team and the Department of War that will work together to retrieve the Artemis II crew and Orion spacecraft following their return to Earth and splashdown in the Pacific Ocean are performing a final simulation of their activities, called a just-in-time training, at sea on Tuesday, Jan. 27, 2026. During the training, teams use the Crew Module Test Article, a full-scale mockup of the Orion spacecraft, to simulate as close as possible the conditions they can expect to encounter during splashdown of the Artemis II mission. NASA’s first crewed test flight in the Artemis campaign, the approximately 10-day Artemis II mission will send NASA astronauts Reid Wiseman, Victor Glover, and Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen around the Moon and farther than any humans have ever been from Earth.
Image credit: NASA/Kenny Allen
U.S.-India NISAR Satellite Images Mississippi River Delta Region
NASA/JPL-Caltech Photojournal Navigation Downloads U.S.-India NISAR Satellite Images Mississippi River Delta Region
PNG (80.09 MB)
PIA26620 Figure A
JPEG (440.47 MB)
Description
The NISAR (NASA-ISRO Synthetic Aperture Radar) Earth-observing satellite’s L-band synthetic aperture radar (SAR) instrument captured this image of the Mississippi River Delta region in southeastern Louisiana on Nov. 29, 2025.
The colors in the image represent varying types of cover, which tend to reflect microwaves from the radar differently. Portions of New Orleans appear green, a sign that the radar’s signals may be scattering from buildings that are oriented at different angles relative to the satellite’s orbit. Parts of the city appear magenta where streets that run parallel to the satellite’s flight track cause the signals to bounce strongly and brightly off buildings and back to the instrument.
The resolution of the image is fine enough to make clear, right of center, the Lake Pontchartrain Causeway — twin bridges that, at nearly 24 miles (39 kilometers) in length, make up the world’s longest continuous bridge over water.
The bright green areas to the west of the Mississippi River, which snakes from Baton Rouge in the upper left to New Orleans in the lower right, are healthy forests. There, tree canopies and other vegetation are causing NISAR’s microwaves to bounce in numerous directions before returning to the satellite. Meanwhile, the yellow-and-magenta-speckled hues of Maurepas Swamp, directly west of Lake Pontchartrain and the smaller Lake Maurepas, indicate that the tree populations in that wetland forest ecosystem have thinned.
On either bank of the Mississippi, the image shows parcels of varying shapes, sizes, and cover. Darker areas suggest fallow farm plots, while bright magenta indicates that tall plants, such as crops, may be present.
Figure AFigure A is a version of the same image with labels, locator inset, scale, or compass.
The L-band system uses a 9-inch (24-centimeter) wavelength that enables its signal to penetrate forest canopies and measure soil moisture as well as motion of ice surfaces and land down to fractions of an inch — the latter information being key to understanding how the land surface moves before, during, and after earthquakes, volcanic eruptions, and landslides.
The S-band radar, provided by the Indian Space Research Organisation’s Space Applications Centre, uses a 4-inch (10-centimeter) microwave signal that’s more sensitive to small vegetation, which makes it effective at monitoring certain types of agriculture and grassland ecosystems.
Launched in July 2025, NISAR is collecting data that will benefit humanity by helping researchers around the world better understand changes in our planet’s surface, including its ice sheets, glaciers, and sea ice. It also will capture changes in forest and wetland ecosystems and track movement and deformation of our planet’s crust by phenomena such as earthquakes, landslides, and volcanic activity. The global and rapid coverage from NISAR will provide unprecedented support for disaster response, producing data to assist in mitigating and assessing damage, with observations before and after catastrophic events available in short time frames.
Find more information about NISAR here: https://science.nasa.gov/mission/nisar/
Keep Exploring Discover More Topics From Photojournal
Photojournal
Search Photojournal
Photojournal’s Latest Content
Feedback
Webb Zooms into Helix Nebula
NASA’s James Webb Space Telescope has zoomed into the Helix Nebula to give an up-close view of the possible eventual fate of our own Sun and planetary system. In Webb’s high-resolution look, the structure of the gas being shed off by a dying star comes into full focus. The image reveals how stars recycle their material back into the cosmos, seeding future generations of stars and planets, as NASA explores the secrets of the universe and our place in it.
In the image from Webb’s NIRCam (Near-Infrared Camera), pillars that look like comets with extended tails trace the circumference of the inner region of an expanding shell of gas. Here, blistering winds of fast-moving hot gas from the dying star are crashing into slower moving colder shells of dust and gas that were shed earlier in its life, sculpting the nebula’s remarkable structure.
Dive deeper into the Helix Nebula with Webb.
Image credit: NASA, ESA, CSA, STScI; Image Processing: Alyssa Pagan (STScI)
Building Roman
NASA/Sophia Roberts Technicians have completed the construction of NASA’s Nancy Grace Roman Space Telescope.
The Roman observatory is slated to launch no later than May 2027, with the team aiming for as early as fall 2026. The mission will revolutionize our understanding of the universe with its deep, crisp, sweeping views of space.
More than a thousand technicians and engineers assembled Roman from millions of individual components. Many parts were built and tested simultaneously to save time. Now that the observatory is assembled, it will undergo a spate of testing prior to shipping to NASA’s Kennedy Space Center in Florida in summer 2026.
NASA’s freshly assembled Nancy Grace Roman Space Telescope will revolutionize our understanding of the universe with its deep, crisp, sweeping infrared views of space. The mission will transform virtually every branch of astronomy and bring us closer to understanding the mysteries of dark energy, dark matter, and how common planets like Earth are throughout our galaxy. Roman is on track for launch by May 2027, with teams working toward a launch as early as fall 2026. Credit: NASA’s Goddard Space Flight Center TelescopeThe Optical Telescope Assembly is the heart of the Roman observatory. It consists of a primary mirror, which was designed and built at L3Harris Technologies in Rochester, New York, plus nine additional mirrors and supporting structures and electronics.
The Roman team got a jumpstart by receiving the telescope’s primary mirror, which will collect and focus light from cosmic objects near and far, from another government agency and then modifying it to meet NASA’s needs. Using this mirror, Roman will capture stunning space vistas with a field of view at least 100 times larger than Hubble’s.
Roman will peer through dust and across vast stretches of space and time to study the universe using infrared light, which human eyes can’t see. The amount of detail these observations will reveal is directly related to the size of the telescope’s mirror, since a larger surface gathers more light and measures finer features. Roman’s primary mirror is 7.9 feet (2.4 meters) across, the same size as the Hubble Space Telescope’s main mirror but less than one-fourth the weight (410 pounds, or 186 kilograms) thanks to major improvements in technology.
“The telescope will be the foundation of all of the science Roman will do, so its design and performance are among the largest factors in the mission’s survey capability.”Josh Abel
lead Optical Telescope Assembly systems engineer at NASA Goddard
NASA/Chris Gunn”> The Roman team modified the inherited mirror’s shape and surface to meet the mission’s science objectives. The mirror sports a layer of silver less than 400 nanometers thick — about 200 times thinner than a human hair. The silver coating was specifically chosen for Roman because of how well it reflects near-infrared light. Roman’s mirror is so finely polished that the average bump on its surface is only 1.2 nanometers tall — more than twice as smooth as the mission requires. If the mirror were scaled to be Earth’s size, these bumps would be just a quarter of an inch high.NASA/Chris Gunn NASA/Chris Gunn”> Roman’s secondary mirror, photographed here, is 22 inches across. It’s a critical part of the forward structure assembly, which also includes the support structure.
NASA/Chris Gunn NASA/Chris Gunn”> An optical technician lays on a diving board suspended between NASA’s Nancy Grace Roman Space Telescope’s primary and secondary mirrors. The photo is a projected reflection through the telescope’s optical path. The technician shines a beam of light through the optical system toward the future location of the Wide Field Instrument, showing how light from cosmic sources will travel through the telescope once the mission launches.
NASA/Chris Gunn NASA/Chris Gunn”> Optical engineer Bente Eegholm inspects the surface of Roman’s primary mirror.
NASA/Chris Gunn
The primary mirror, in concert with other optics, will send light to Roman’s two science instruments: the Wide Field Instrument and Coronagraph Instrument. When light enters Roman’s 2.4-meter aperture, it will be reflected and focused by the curved primary mirror and then reflected and focused once more by the secondary mirror. Then, light from different parts of the sky splits off toward each instrument, so Roman will be able to use both at once.
The telescope was delivered Nov. 7, 2024, to the largest clean room at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
Upon arrival at NASA’s Goddard Space Flight Center, Roman’s Optical Telescope Assembly was lifted out of the shipping fixture and placed with other mission hardware in Goddard’s largest clean room. Then, it was installed onto Roman’s Instrument Carrier, a structure that will keep the telescope and Roman’s two instruments optically aligned.Credit: NASA/Chris Gunn Detectors
Meanwhile, technicians at Goddard and Teledyne Scientific & Imaging were developing the detector array. This device will convert starlight into electrical signals, which will then be decoded into 288-megapixel images of large patches of the sky. The combination of Roman’s fine resolution and enormous images has never been possible on a space-based telescope before.
Roman uses state-of-the-art sensors that build on the legacy of the infrared detectors in NASA’s Hubble and Webb instruments. Roman’s focal plane, however, is much larger to capture a much larger field of view.Greg Mosby
research astrophysicist at NASA Goddard
The detectors, each the size of a saltine cracker, have 16 million tiny pixels apiece, providing the mission with exquisite image resolution. Eighteen were incorporated into the focal plane array for Roman’s camera, and another six are reserved as flight-qualified spares.
Detector Array Detector Array
NASA/Chris Gunn
NASA/Chris Gunn Detector ArrayDetector Array
NASA/Chris Gunn NASA/Chris Gunn
Detector Array
Detector Array
Roman’s Detectors
Mosaic Plate AssemblyCurtainToggle2-Up
Image Details
Most telescopes are designed to focus incoming light toward a central point, so their view is sharpest in the middle. By tweaking the curvatures and tilts of three mirrors, Roman focuses light instead onto a ring around the center. The detectors in Roman’s Wide Field Instrument are laid out in an arch shape to sit along part of that ring. This design helps Roman capture a much wider area with equally sharp imaging. And since the observatory’s Coronagraph is placed on another part of the ring, both instruments can operate simultaneously while benefiting from the telescope’s best resolution. Credit: NASA/Chris Gunn
Principal technician Billy Keim installs a cover plate over the detectors for NASA’s Nancy Grace Roman Space Telescope.
Credit: NASA/Chris Gunn
Once complete and tested, the detector array was inserted into the mission’s primary instrument: a sophisticated camera called the Wide Field Instrument, which was assembled and tested at Goddard and BAE Systems, Inc.
Wide Field InstrumentThe Wide Field Instrument, or WFI, is an infrared camera that will give Roman the same angular resolution as Hubble but with a field of view at least 100 times larger. Its sweeping cosmic surveys will help scientists discover new and uniquely detailed information about planets beyond our solar system, untangle mysteries like dark energy, and map how matter is structured and distributed throughout the cosmos. The mission’s broad, crisp view will produce an extraordinary resource for a wide range of additional investigations.
Using this instrument, each Roman image will capture a patch of the sky bigger than the apparent size of a full moon. The mission will gather data hundreds of times faster than Hubble, adding up to 20,000 terabytes (20 petabytes) over the course of its five-year primary mission.
NASA/Chris Gunn”> This photo shows Roman’s Wide Field Instrument arriving at the big clean room at NASA’s Goddard Space Flight Center. About the size of a commercial refrigerator, this instrument will help astronomers explore the universe’s evolution and the characteristics of worlds outside our solar system. Unlocking these cosmic mysteries and more will offer a better understanding of the nature of the universe and our place within it.NASA/Chris Gunn NASA/Chris Gunn”> Technicians install Roman’s Wide Field Instrument in the biggest clean room at NASA’s Goddard Space Flight Center in Greenbelt, Md. This marked the final step to complete the Roman payload, which also includes a Coronagraph instrument and the Optical Telescope Assembly.
NASA/Chris Gunn Ball Aerospace”> After completing final integration, Ball Aerospace technicians transport the Nancy Grace Roman Space Telescope’s Wide Field Instrument (WFI) into Ball’s largest thermal vacuum chamber to begin environmental testing at a Ball facility in Boulder, Colorado.
Ball Aerospace
Technicians from both BAE and Goddard put the WFI together in a clean room in Boulder, Colorado. Then the team completed full environmental testing in space-like conditions and delivered the WFI to Goddard in summer 2024. It was joined to other observatory systems the following winter.
Coronagraph InstrumentTechnicians at NASA’s Jet Propulsion Laboratory built the Coronagraph Instrument. The Coronagraph will demonstrate new technologies for directly imaging planets around other stars. It will block the glare from distant stars and make it easier for scientists to see the faint light from planets in orbit around them. The Coronagraph aims to photograph worlds and dusty disks around nearby stars in visible light to help us see giant worlds that are older, colder, and in closer orbits than the hot, young super-Jupiters direct imaging has mainly revealed so far.
The coronagraph team will conduct a series of pre-planned observations for three months spread across the mission’s first year-and-a-half of operations, after which the mission may conduct additional observations based on scientific community input.
Following testing JPL, the Coronagraph was delivered to Goddard in May 2024. It was integrated onto Roman’s Instrument Carrier, a piece of infrastructure that will hold the mission’s instruments, in October 2024. Then the instrument carrier was joined to the spacecraft in December 2024.
NASA/Sydney Rohde”> The Roman Coronagraph was integrated with the Instrument Carrier in a clean room at NASA’s Goddard Space Flight Center in Greenbelt, Md., in October 2024.NASA/Sydney Rohde NASA/JPL-Caltech”> April 9, 2025The Roman Coronagraph was peppered with radio waves to test its response to stray electrical signals. The test was performed inside a chamber lined with foam padding that absorbs the radio waves to prevent them from bouncing off the walls. Credit: NASA/JPL-Caltech.
NASA/JPL-Caltech PIA26273 NASA/JPL-Caltech”> This photo features the optical bench for Roman’s Coronagraph Instrument. Light from the telescope will be directed to the optical bench and pass through series of lenses, filters, and other components that ultimately suppress light from a star while allowing the light from orbiting planets to pass through. Mirrors redirect the light and keep it contained within the optical bench. In this image, the bench was partly assembled at the start of the instrument’s integration and testing period. The large black circles are surrogate components that were standing in for the actual instrument hardware.
NASA/JPL-Caltech
By 2025, all of Roman’s components were complete and undergoing testing as subsystems. Technicians installed test versions of the Solar Array Sun Shield panels onto the Outer Barrel Assembly — a part of the observatory that will protect and shade the primary mirror — inside Goddard’s largest clean room in preparation for testing.
The team covered Roman’s telescope section in a protective tent and pushed it out of the clean room using pressurized air to float it like a hovercraft. Then they lifted it onto a shaker table for vibration testing to simulate launch stress. Then, technicians moved the components into the Space Environment Simulator chamber for a month of testing at low pressure and different temperatures, mimicking space-like conditions.
Solar PanelsRoman’s Solar Array Sun Shield is made up of six panels, each covered in solar cells. The two central panels will remain fixed to the Outer Barrel Assembly while the other four will deploy once Roman is in space, swinging up to align with the center panels.
The panels will spend the entirety of the mission facing the Sun to provide a steady supply of power to the observatory’s electronics. This orientation will also shade much of the observatory and help keep the instruments cool, which is critical for an infrared observatory. Since infrared light is detectable as heat, excess warmth from the spacecraft’s own components would saturate the detectors and effectively blind the telescope.
NASA/Sydney Rohde”> In this photo, technicians install solar panels onto the outer portion of the Roman observatory. Roman’s inner portion is in the background just left of center.NASA/Sydney Rohde Credit: NASA/Sydney Rohde”> The Roman solar panels are covered in a total of 3,902 solar cells that will convert sunlight directly into electricity much like plants convert sunlight to chemical energy. When tiny bits of light, called photons, strike the cells, some of their energy transfers to electrons within the material. This jolt excites the electrons, which start moving more or jump to higher energy levels. In a solar cell, excited electrons create electricity by breaking free and moving through a circuit, sort of like water flowing through a pipe. The panels are designed to channel that energy to power the observatory.
Credit: NASA/Sydney Rohde
Technicians installed Roman’s solar panels in June of 2025, followed by the Lower Instrument Sun Shield — a smaller set of panels that will play a critical role in keeping Roman’s instruments cool and stable. Technicians practiced deploying the solar panels and Deployable Aperture Cover — a visor-like sunshade.
By fall 2025, the observatory was in two major segments. The inner portion included the telescope, instrument carrier, two instruments, and spacecraft bus while the outer portion consisted of the outer barrel assembly, deployable aperture cover, and solar panels. The outer portion passed a shake test and an intense sound blast while the inner portion underwent a 65-day thermal vacuum test.
On November 25, 2025, technicians joined the two segments together and the observatory was complete.
To view this video please enable JavaScript, and consider upgrading to a web browser that
supports HTML5 video
Julie Mcenery
Roman senior project scientist at NASA Goddard
Now, Roman will undergo testing as a full observatory. Roman will move to the launch site at NASA’s Kennedy Space Center in Florida for launch preparations in summer 2026. Roman is slated to launch by May 2027, but the team is on track for launch as early as fall 2026. Follow along on the journey to launch at nasa.gov/roman.
Downloads
gltf-binary File (3D Model) 28.28 MB
Explore more Roman observatory photos: About the Author Ashley BalzerAshley is the lead science writer for NASA’s Nancy Grace Roman Space Telescope.
Share Details Last Updated Jan 29, 2026 Editor jmbrill Contact jmbrill jennifer.m.brill@nasa.gov Location NASA Goddard Space Flight Center Related Terms Explore More 8 min read NASA Completes Nancy Grace Roman Space Telescope ConstructionNASA’s next big eye on the cosmos is now fully assembled. On Nov. 25, technicians…
Article
2 months ago
6 min read NASA’s Roman Mission Shares Detailed Plans to Scour Skies
NASA’s Nancy Grace Roman Space Telescope team shared Thursday the designs for the three core…
Article
9 months ago
6 min read New Simulated Universe Previews Panoramas From NASA’s Roman Telescope
Astronomers have released a set of more than a million simulated images showcasing the cosmos…
Article
1 year ago
Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
The West Faces Snow Drought
- Earth
- Earth Observatory
- Image of the Day
- EO Explorer
- Topics
- More Content
- About
Networks Keeping NASA’s Artemis II Mission Connected
NASA’s Artemis II mission will transport four astronauts around the Moon, bringing the agency one step closer to sending the first astronauts to Mars. Throughout Artemis II, astronaut voice, images, video, and vital mission data must traverse thousands of miles, carried on signals from NASA’s communications systems.
Through Artemis, NASA is establishing an enduring presence in space and exploring more of the Moon than ever before. To achieve this, Artemis missions rely on both the Near Space Network and the Deep Space Network. These networks, with oversight by NASA’s SCaN (Space Communications and Navigation) Program office, use global infrastructure and relay satellites to ensure seamless communications and tracking as Orion launches, orbits Earth, travels to the Moon, and returns home.
“Robust space communications aren’t optional; they’re the essential link that unites the crew and the exploration team on Earth to ensure safety and mission success, as I learned firsthand living and working aboard the International Space Station,” said Ken Bowersox, associate administrator for NASA’s Space Operations Mission Directorate at the agency’s headquarters in Washington. “From real-time conversations with mission controllers, to the data that drives critical decisions and research, and even calls home — space communications keep astronauts connected to mission managers, technical experts, loved ones, and everyone on Earth who wants to share in the excitement of our exploration missions. As we push farther into deep space, reliable communications links will enable more challenging missions and maximize the benefit for all of us on Earth.”
"From real-time conversations with mission controllers, to the data that drives critical decisions, research, and even calls home, space communications keep astronauts connected."Ken Bowersox
Associate Administrator for NASA's Space Operations Mission Directorate
Specialists will operate its networks in tandem to enable data exchange between spacecraft and mission controllers on Earth. NASA’s Mission Control Center at the agency’s Johnson Space Center in Houston will track the Space Launch System rocket, Interim Cryogenic Propulsion Stage, and Orion spacecraft through coordinated handoffs between the networks’ multiple assets on Earth and in space for the duration of the mission.
Using ground stations around the globe and a fleet of relay satellites, the Near Space Network will provide communications and navigation services during multiple stages of the Artemis II mission operations. The network, managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland, has a long legacy of supporting human spaceflight missions near Earth.
After Orion’s translunar injection burn, which will set the spacecraft on its planned orbit around the Moon, primary communications support will transition to the Deep Space Network, managed by NASA’s Jet Propulsion Laboratory in Southern California. The network’s international array of giant radio antennas, located in California, Spain, and Australia, provides a near-continuous connection to Orion and its crew.
The Artemis II mission will use SCaN’s networks to send vital data down to mission controllers on Earth. This includes astronaut communications, mission health and safety information, images, video, and more.NASA / Dave Ryan“Reliable communications are the lifeline of human spaceflight,” said Kevin Coggins, deputy associate administrator for the SCaN Program at NASA Headquarters. “Our networks help make missions like Artemis II possible and set the stage for even more ambitious space exploration in the years ahead. These achievements are driven not only by NASA’s infrastructure but also by strong collaboration with our commercial partners, who play a critical role in advancing the capabilities and resilience of space communications.”
The DSN Now tool displays real-time data in the Charles Elachi Mission Control Center at NASA’s Jet Propulsion Laboratory during the Artemis I launch on November 16, 2022.NASA/JPL-Caltech/Ryan LannomIn addition to traditional radio network support, the spacecraft will host the Orion Artemis II Optical Communications System, a laser communications terminal that will transmit real science and crew data over laser links. Demonstrations like the recent Deep Space Optical Communications payload have proven laser communications systems can send more than 100 times more data than comparable radio networks, even millions of miles away from Earth. While laser communications will not be on Artemis III, the Orion Artemis II Optical Communications System could pave the way for future laser communications systems at the Moon and Mars.
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
An artist's visualization concept of the O2O laser communications terminal sending data over infrared light links. NASA / Dave RyanThe Orion Artemis II Optical Communications System payload is only one piece of NASA’s larger mission to improve lunar and deep space communications. Orion will experience a planned communications blackout lasting approximately 41 minutes. The blackout will occur as the spacecraft passes behind the Moon, blocking radio frequency signals to and from Earth. Similar blackouts occurred during the Apollo-era missions and are expected when using an Earth-based network infrastructure. When Orion reemerges from behind the Moon, the Deep Space Network will quickly reacquire Orion’s signal and restore communications with mission control. These planned blackouts remain an aspect of all missions operating on or around the Moon’s far side.
Each Artemis mission will build upon existing capabilities, including data processing and handling. For the Artemis II flight test, data from Orion will be compressed after it reaches Earth to manage the large amount of information. Data compression will reduce image and video quality and give priority to crew communications and mission data.
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
An artist's concept of the lunar relay supporting future missions on the Moon. NASA / Dave RyanLooking ahead, NASA’s Lunar Communications Relay and Navigation Systems project is collaborating with industry to eliminate blackouts and support precise navigation by placing relay satellites around the Moon. This network of orbiting satellites will deliver persistent, high-bandwidth communications and navigation services for astronauts, landers, and orbiters on and around the lunar surface. In 2024, NASA selected Intuitive Machines to develop the first set of lunar relays for demonstration during the Artemis III lunar surface mission.
From liftoff to splashdown, NASA’s evolving networks will serve as the crew’s link home, ensuring that humanity’s return to the Moon stays connected every step of the way.
About the AuthorKatherine SchauerKatherine Schauer is a writer for the Space Communications and Navigation (SCaN) Program office and covers emerging technologies, commercialization efforts, exploration activities, and more.
Share Details Last Updated Jan 29, 2026 EditorGoddard Digital TeamContactJimi Russelljames.j.russell@nasa.govLocationGoddard Space Flight Center Related Terms Keep Exploring Discover More Topics From NASAArtemis
Communicating with Missions
Near Space Network
Deep Space Network
NASA Telescopes Spot Surprisingly Mature Cluster in Early Universe
A new discovery captures the cosmic moment when a galaxy cluster – among the largest structures in the universe – started to assemble only about a billion years after the big bang, one or two billion years earlier than previously thought. This result, made using NASA’s Chandra X-ray Observatory and James Webb Space Telescope, will lead astronomers to rethink when and how the largest structures in the universe formed. The findings are described in a paper published [Wednesday] in the journal Nature.
The object, known as JADES-ID1 for its location in the “JWST Advanced Deep Extragalactic Survey” (JADES) has a mass about 20 trillion times that of the Sun. Astronomers classify JADES-ID1 as a “protocluster” because it is currently undergoing an early, violent phase of formation and will one day turn into a galaxy cluster. However, JADES-ID1 is found at a much larger distance – corresponding to a much earlier time in the universe – than astronomers expected for such systems, providing a new mystery of how it could form so quickly.
“This may be the most distant confirmed protocluster ever seen,” said Akos Bogdan of the Center for Astrophysics | Harvard & Smithsonian (CfA) who led the study. “JADES-ID1 is giving us new evidence that the universe was in a huge hurry to grow up.”
Galaxy clusters contain hundreds or even thousands of individual galaxies immersed in enormous pools of superheated gas, along with large amounts of unseen dark matter. Astronomers use galaxy clusters to measure the expansion of the universe and the roles of dark energy and dark matter, among other important cosmic studies.
“It’s very important to actually see when and how galaxy clusters grow,” said co-author Gerrit Schellenberger, also of CfA. “It’s like watching an assembly line make a car, rather than just trying to figure out how a car works by looking at the finished product.”
The Chandra and Webb data reveal that JADES-ID1 contains the two properties that confirm the presence of a protocluster: a large number of galaxies held together by gravity (Webb sees at least 66 potential members) that are also sitting in a huge cloud of hot gas (detected by Chandra). As a galaxy cluster forms, gas falls inward and is heated by shock waves, reaching temperatures of millions of degrees and glowing in X-rays.
What makes JADES-ID1 exceptional is the remarkably early time when it appears in cosmic history. Most models of the universe predict that there likely would not be enough time and a large enough density of galaxies for a protocluster of this size to form only a billion years after the big bang. The previous record holder for a protocluster with X-ray emission is seen much later, about three billion years after the big bang.
“We thought we’d find a protocluster like this two or three billion years after the big bang – not just one billion,” said co-author Qiong Li from the University of Manchester in the UK. “Before, astronomers found surprisingly large galaxies and black holes not long after the big bang, and now we’re finding that clusters of galaxies can also grow rapidly.”
After billions of years JADES-ID1 should evolve from a protocluster into a massive galaxy cluster like those we see much closer to Earth.
To find JADES-ID1, astronomers combined deep observations from both Chandra and Webb. By design, the JADES field overlaps with the Chandra Deep Field South, the site of the deepest X-ray observation ever conducted. This field is thus one of the few in the entire sky where a discovery such as this could be made. In an earlier study, a team of researchers led by Li and Conselice found five other proto-cluster candidates in the JADES field, but only in JADES-ID1 are the galaxies embedded in hot gas. Only JADES-ID1 possesses enough mass for an X-ray signal from hot gas to be expected.
“Discoveries like this are made when two powerful telescopes like Chandra and Webb stare at the same patch of sky at the limit of their observing capabilities,” said co-author Christopher Conselice, also from the University of Manchester. “A challenge for us now is to understand how this protocluster was able to form so quickly.”
NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
To learn more about Chandra, visit:
https://science.nasa.gov/chandra
Read more from NASA’s Chandra X-ray Observatory
Learn more about the Chandra X-ray Observatory and its mission here:
Visual DescriptionThis composite image features what may be the most distant protocluster ever found; a region of space where a large number of young galaxies are being held together by gravity and hot gas. The image is presented twice, once with, and once without, annotations.
The image includes scores of glowing dots and specks of light, in white and golden hues, set against the blackness of space. This layer of the composite visual is from a deep infrared imaging project undertaken by the James Webb Space Telescope. The specks range from relatively large oval galaxies with discernible spiral arms, and glowing balls with gleaming diffraction spikes, to minuscule pinpoints of distant light. Several of those pinpoints have been circled in the annotated image, as they are part of the distant protocluster.
Layered onto the center of this image is a neon blue cloud. This cloud represents hot X-ray gas discovered by Chandra in the deepest X-ray observation ever conducted. In the annotated image, a thin white square surrounds the blue cloud. This represents Chandra’s field of observation. The X-rays from the distant protocluster located within this box are included in the composite image.
The protocluster, dubbed JADES-1, has a mass of about 20 trillion suns. It is located some 12.7 billion light-years from Earth, or just a billion years after the big bang. The discovery of a protocluster of this size, at this epoch in the early universe, will lead scientists to re-examine their ideas for how galaxy clusters first appeared in the universe.
News Media ContactMegan Watzke
Chandra X-ray Center
Cambridge, Mass.
617-496-7998
mwatzke@cfa.harvard.edu
Joel Wallace
Marshall Space Flight Center, Huntsville, Alabama
256-544-0034
joel.w.wallace@nasa.gov
Space Telescope
Hubble Space TelescopeSince its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.
James Webb Space TelescopeWebb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Spitzer Space TelescopeSpitzer uses an ultra-sensitive infrared telescope to study asteroids, comets, planets and distant galaxies.
Chandra, Webb Catch Twinkling Lights
Data from Chandra adds red, green, and blue twinkling lights in this Dec. 22, 2025, image of Pismis 24 from NASA’s James Webb Space Telescope. Pismis 24 is a young cluster of stars in the core of the nearby Lobster Nebula, approximately 5,500 light-years from Earth in the constellation Scorpius. Home to a vibrant stellar nursery and one of the closest sites of massive star birth, Pismis 24 provides rare insight into large and massive stars. This region is one of the best places to explore the properties of hot young stars and how they evolve.
Image credit: Credit: X-ray: NASA/CXC/Penn State/G. Garmire; Infrared: NASA, ESA, CSA, and STScI; Image Processing: NASA/CXC/SAO/L. Frattare and NSA/ESA/CSA/STScI/A. Pagan
NASA Webb Pushes Boundaries of Observable Universe Closer to Big Bang
- Webb
- News
- Overview
- Science
- Observatory
- Multimedia
- Team
- More
NASA’s James Webb Space Telescope has topped itself once again, delivering on its promise to push the boundaries of the observable universe closer to cosmic dawn with the confirmation of a bright galaxy that existed 280 million years after the big bang. By now Webb has established that it will eventually surpass virtually every benchmark it sets in these early years, but the newly confirmed galaxy, MoM-z14, holds intriguing clues to the universe’s historical timeline and just how different a place the early universe was than astronomers expected.
“With Webb, we are able to see farther than humans ever have before, and it looks nothing like what we predicted, which is both challenging and exciting,” said Rohan Naidu of the Massachusetts Institute of Technology’s (MIT) Kavli Institute for Astrophysics and Space Research, lead author of a paper on galaxy MoM-z14 published in the Open Journal of Astrophysics.
Due to the expansion of the universe that is driven by dark energy, discussion of physical distances and “years ago” becomes tricky when looking this far. Using Webb’s NIRSpec (Near-Infrared Spectrograph) instrument, astronomers confirmed that MoM-z14 has a cosmological redshift of 14.44, meaning that its light has been travelling through (expanding) space, being stretched and “shifted” to longer, redder wavelengths, for about 13.5 of the universe’s estimated 13.8 billion years of existence.
“We can estimate the distance of galaxies from images, but it’s really important to follow up and confirm with more detailed spectroscopy so that we know exactly what we are seeing, and when,” said Pascal Oesch of the University of Geneva, co-principal investigator of the survey.
Image: COSMOS Field MoM-z14 Galaxy (NIRCam Image) NASA’s James Webb Space Telescope shows galaxy MoM-z14 as it appeared in the distant past, only 280 million years after the universe began in the big bang. Image: NASA, ESA, CSA, STScI, Rohan Naidu (MIT); Image Processing: Joseph DePasquale (STScI) Intriguing FeaturesMoM-z14 is one of a growing group of surprisingly bright galaxies in the early universe – 100 times more than theoretical studies predicted before the launch of Webb, according to the research team.
“There is a growing chasm between theory and observation related to the early universe, which presents compelling questions to be explored going forward,” said Jacob Shen, a postdoctoral researcher at MIT and a member of the research team.
One place researchers and theorists can look for answers is the oldest population of stars in the Milky Way galaxy. A small percentage of these stars have shown high amounts of nitrogen, which is also showing up in some of Webb’s observations of early galaxies, including MoM-z14.
“We can take a page from archeology and look at these ancient stars in our own galaxy like fossils from the early universe, except in astronomy we are lucky enough to have Webb seeing so far that we also have direct information about galaxies during that time. It turns out we are seeing some of the same features, like this unusual nitrogen enrichment,” said Naidu.
With galaxy MoM-z14 existing only 280 million years after the big bang, there was not enough time for generations of stars to produce such high amounts of nitrogen in the way that astronomers would expect. One theory the researchers note is that the dense environment of the early universe resulted in supermassive stars capable of producing more nitrogen than any stars observed in the local universe.
The galaxy MoM-z14 also shows signs of clearing out the thick, primordial hydrogen fog of the early universe in the space around itself. One of the reasons Webb was originally built was to define the timeline for this “clearing” period of cosmic history, which astronomers call reionization. This is when early stars produced light of high enough energy to break through the dense hydrogen gas of the early universe and begin travelling through space, eventually making its way to Webb, and us. Galaxy MoM-z14 provides another clue for mapping out the timeline of reionization, work that was not possible until Webb lifted the veil on this era of the universe.
Legacy of Discovery ContinuesEven before Webb’s launch, there were hints that something very unanticipated happened in the early universe, when NASA’s Hubble Space Telescope discovered the bright galaxy GN-z11 400 million years after the big bang. Webb confirmed the galaxy’s distance — at the time the most distant ever. From there Webb has continued to push back farther and farther in space and time, finding more surprisingly bright galaxies like GN-z11.
As Webb continues to uncover more of these unexpectedly luminous galaxies, it’s clear that the first few were not a fluke. Astronomers are eagerly anticipating that NASA’s upcoming Nancy Grace Roman Space Telescope, with its combination of high-resolution infrared imaging and extremely wide field of view, will boost the sample of these bright, compact, chemically enriched early galaxies into the thousands.
“To figure out what is going on in the early universe, we really need more information —more detailed observations with Webb, and more galaxies to see where the common features are, which Roman will be able to provide,” said Yijia Li, a graduate student at the Pennsylvania State University and a member of the research team. “It’s an incredibly exciting time, with Webb revealing the early universe like never before and showing us how much there still is to discover.”
The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
To learn more about Webb, visit:
Downloads & Related InformationThe following sections contain links to download this article’s images and videos in all available resolutions followed by related information links, media contacts, and if available, research paper and Spanish translation links.
Related Images & Videos COSMOS Field MoM-z14 Galaxy (NIRCam Image)NASA’s James Webb Space Telescope shows galaxy MoM-z14 as it appeared in the distant past, only 280 million years after the universe began in the big bang.
COSMOS Field MoM-z14 Galaxy (NIRCam Compass Image)NASA’s James Webb Space Telescope shows galaxy MoM-z14 as it appeared in the distant past, only 280 million years after the universe began in the big bang.
Related LinksRead more: Webb Science: Galaxies Through Time
Explore more: ViewSpace Seeing Farther: Hubble Ultra Deep Field
Video: JADES: GOODS South Fly-Through Visualization
Video: Ultra Deep Field: Looking Out into Space, Looking Back into Time
Explore more: ViewSpace Gathering Light: Hubble Ultra Deep Field
Share Details Last Updated Jan 28, 2026 LocationNASA Goddard Space Flight Center Contact MediaLaura Betz
NASA’s Goddard Space Flight Center
Greenbelt, Maryland
laura.e.betz@nasa.gov
Leah Ramsay
Space Telescope Science Institute
Baltimore, Maryland
Christine Pulliam
Space Telescope Science Institute
Baltimore, Maryland
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Galaxies
Galaxies Stories
Universe
