Two possibilities exist: Either we are alone in the Universe or we are not.
Both are equally terrifying.

— Arthur C. Clarke

Astronomy

Curiosity has Reached an Ancient Debris Channel That Could Have Been Formed by Water

Universe Today - Mon, 04/01/2024 - 5:48pm

Like a pilgrim seeking wisdom, NASA’s MSL Curiosity has been working its way up Mt. Sharp, the dominant central feature in Gale Crater. Now, almost 12 years into its mission, the capable rover has reached an interesting feature that could tell them more about Mars and its watery history. It’s called the Gediz Vallis channel.

Gediz Vallis channel appears to have been carved by ancient water. But if that’s the case, it happened billions of years ago. The channel has since filled with rock.

Mt. Sharp’s upper regions are beyond Curiosity’s reach. It’s simply too difficult for the rover to get there. But Nature is playing nice with MSL Curiosity. Rocks have come tumbling down from the mountain, creating a ridge and filling up a channel. Those rocks are within reach, and they could hold clues to Mars’ watery past.

Mars’ ancient history, especially as it concerns surface liquid water, is a gigantic puzzle with lots of pieces. We know there are hydrated minerals on Mars that date back millions of years. We know there are sulphates, which are minerals left behind when water evaporates. We have orbiter images clearly showing river channels and deltas.

Gediz Vallis is a tiny part of Mars, but it could make an important contribution to our understanding of this once warm and wet world.

This image from 2019 shows a proposed route for MSL Curiosity. The rover is about to expire Gediz Vallis Channel. Image Credit: By NASA/JPL-Caltech/ESA/Univ. of Arizona/JHUAPL/MSSS/USGS Astrogeology Science Center – https://photojournal.jpl.nasa.gov/figures/PIA23179_fig1.jpg, Public Domain, https://commons.wikimedia.org/w/index.php?curid=78981590

Understanding Gediz Vallis and what it could tell us begins with Mt. Sharp. Mt. Sharp was built up over long periods of geological time by the deposit of sediments into layers. Over time, some of this material was eroded away, presenting us with what we see today. The Gediz Vallis channel formed after all that had happened.

Because the channel has steep walls, scientists say water had to carve it. Wind erosion is ruled out because it creates shallow, wide walls. Sometime after it formed, it was filled with rocky debris. That debris probably came from high up Mt. Sharp, beyond Curiosity’s reach. The rock will give the rover a look at the upper reaches of the mountain that it would otherwise never obtain.

This image shows the debris piles in the Gediz Vallis channel, as seen by MSL Curiosity. Image Credit: NASA/JPL-Caltech/UC Berkeley

Ashwin Vasavada is the Project scientist for NASA’s Curiosity rover at JPL. “If the channel or the debris pile were formed by liquid water, that’s really interesting,” he said in a press release. “It would mean that fairly late in the story of Mount Sharp – after a long dry period – water came back, and in a big way.”

This agrees with other evidence Curiosity found. Instead of disappearing once and for all, water seems to have come and gone in phases, confounding our attempts to understand Mars’ history.

Gediz Vallis Ridge is the hill-like slope at right in this MSL Curiosity image captured on August 19th, 2023. It took the rover three attempts over three years before it could reach the ridge. It spent 11 days at the ridge and is now working its way to Gediz Vallis Channel. The formation has scientists intrigued because of what it might tell them about the history of water on the Red Planet. Image Credit: NASA/JPL-Caltech

A year ago, the rover ascended the Gediz Vallis ridge, a sprawling debris pile that appears to grow out of the end of the channel, to get a closer look. Since the debris looks like it flows out of the channel, it indicates that both are results of the same geological process.

Even though MSL Curiosity is an engineering marvel, the rover will still need months to study the Gediz Vallis Channel. What it uncovers over the following months could give scientists a lot more detail about the history of Mars’ water.

Recently published research based partly on Curiosity’s data also shows that Mars had episodes of water and that it didn’t all disappear at once. That research showed that the bulk of Mt. Sharp was formed by waterborne sediments and that after that happened, another layer made of windborne sediments formed on top of it. But images of the windborne layer show that the sedimentary rock is deformed by the later presence of water.

This digital elevation model (DEM) provides some context for Curiosity’s journey. Image Credit: Hughes et al. 2022

How Gediz Vallis fits into Mars’ story is unclear. But getting a closer look will start to untangle the planet’s complex history. Was the channel carved by water? If Curiosity can confirm that, then it’s more evidence that Mars had surface water more recently than though. Did water carry the boulders and debris that filled it, or did dry avalanches?

Curiosity needs months to explore the region. Once researchers have had time to digest and interpret the rover’s data, we’ll get more answers.

The post Curiosity has Reached an Ancient Debris Channel That Could Have Been Formed by Water appeared first on Universe Today.

Categories: Astronomy

Where Are All These Rogue Planets Coming From?

Universe Today - Mon, 04/01/2024 - 3:17pm

There’s a population of planets that drifts through space untethered to any stars. They’re called rogue planets or free-floating planets (FFPs.) Some FFPs form as loners, never having enjoyed the company of a star. But most are ejected from solar systems somehow, and there are different ways that can happen.

One researcher set out to try to understand the FFP population and how they came to be.

FFPs are also called isolated planetary-mass objects (iPMOs) in scientific literature, but regardless of what name’s being used, they’re the same thing. These planets wander through interstellar space on their own, divorced from any relationship with stars or other planets.

FFPs are mysterious because they’re extremely difficult to detect. But astronomers are getting better at it and are getting better tools for the task. In 2021, astronomers made a determined effort to detect them in Upper Scorpius and Ophiuchus and detected 70 of them, possibly many more.

This image shows the locations of 115 potential rogue planets, highlighted with red circles, recently discovered in 2021 by a team of astronomers in a region of the sky occupied by Upper Scorpius and Ophiucus. The exact number of rogue planets found by the team is between 70 and 170, depending on the age assumed for the study region. This image was created assuming an intermediate age, resulting in a number of planet candidates in between the two extremes of the study. Image Credit: ESO/N. Risinger (skysurvey.org)

In broad terms there are two ways FFPs can form. They can form like most planets do, in protoplanetary disks around young stars. These planets form by accretion of dust and gas. Or they can form like stars do by collapsing in a cloud of gas and dust unrelated to a star.

For planets that form around stars and are eventually kicked out, there are different ejection mechanisms. They can be ejected by interactions with their stars in a binary star system, they can be ejected by a stellar flyby, or they can be ejected by planet-planet scattering.

In an effort to understand the FFP population better, one researcher examined ejected FFPs. He simulated rogue planets that result from planet-planet interactions and those that come from binary star systems, where interactions with their binary stars eject them. Could there be a way to tell them apart and better understand how these objects come to be?

A new paper titled “On the properties of free-floating planets originating in circumbinary planetary systems” tackled the problem. The author is Gavin Coleman from the Department of Physics and Astronomy at Queen Mary University of London. The paper will be published in the Monthly Notices of the Royal Astronomical Society.

In his paper, Coleman points out that researchers have explored how FFPs form, but there’s more to do. “Numerous works have explored mechanisms to form such objects but have not yet provided predictions on their distributions that could differentiate between formation mechanisms,” he writes.

Coleman focuses on ejected stars rather than stars that formed as rogues. He avoids rogue planets that are a result of interactions with other planets because planet-planet scattering is not as significant as other types of ejections. “It is worth noting that planet-planet scattering around single stars cannot explain the large number of FFPs seen in observations,” Coleman explains.

This artist’s impression shows an example of a rogue planet with the Rho Ophiuchi cloud complex visible in the background. Rogue planets have masses comparable to those of the planets in our Solar System but do not orbit a star, instead roaming freely on their own. Image Credit: ESO/M. Kornmesser/S. Guisard

Coleman singles out binary star systems and their circumbinary planets in his work. Previous research shows that planets are naturally ejected from circumbinary systems. In his research, Coleman simulated binary star systems and how planets ejected from these systems behave. “We find significant differences between planets ejected through planet-planet interactions and those by the binary stars,” he writes.

Coleman based his simulations on a binary star system named TOI 1338. TOI 1338 has a known circumbinary planet called BEBOP-1. Using a known binary system with a confirmed circumbinary planet provides a solid basis for his simulations. It also allowed him to compare his results with other simulations based on BEBOP-1.

The simulation varied several parameters: the initial disc mass, the binary separation, the strength of the external environment, and the turbulence level in the disc. Those parameters strongly govern the planets that form. Other parameters used only a single value: the combined stellar mass, mass ratio and binary eccentricity. The combined stellar mass of TOI 1338 is about 1.3 solar masses, in line with the average in binary systems of about 1.5 solar masses.

Each simulation ran for 10 million years, long enough for the solar system to take shape.

Coleman found that circumbinary systems produce FFPs efficiently. In the simulations, each binary system ejects an average of between two to seven planets with greater than one Earth mass. For giant planets greater than 100 Earth masses, the number of ejected planets drops to 0.6 planets ejected per system.

This figure from the paper shows the masses of ejected planets. The blue line represents all planets, the red line represents planets with less than one Earth mass, and the yellow line represents huge planets with greater than 100 Earth masses. Image Credit: Coleman 2024.

The simulations also showed that most planets are ejected from their circumbinary disks between 0.4 to 4 million years after the beginning of the simulation. At this age, the circumbinary disk hasn’t been dissipated and blown away.

This figure shows the ejection time for planets of different masses. Most planets that become FFPs are ejected within the first one million years. Image Credit: Coleman 2024.

The most important result might concern the velocity dispersions of FFPs. “As the planets are ejected from the systems, they retain significant excess velocities, between 8–16 km?1. This is much larger than observed velocity dispersions of stars in local star-forming regions,” Coleman explains. So this means that the velocity dispersions of FFPs can be used to tell ejected ones from ones that formed as loners.

The velocity dispersions provide another window into the FFP population. Coleman’s simulations show that the velocity dispersion of FFPs ejected through interactions with binary stars is about three times larger than the dispersion from planets ejected by planet-planet scattering.

This figure shows the excess velocity of the ejected FPP population in the simulations. The colour-coded bar on the right shows the amount of excess velocity. The x-axis shows the pericentre distance because it “gives an approximate location for the final interaction that led to the ejection of the planet,” according to the author. Image Credit: Coleman 2024.

Coleman also found that the level of turbulence in the disk affects planet ejection. The weaker the turbulence is, the more planets are ejected. Turbulence also affects the mass of ejected planets: weaker turbulence ejects less massive planets, where about 96% of ejected planets are less than 100 Earth masses.

This figure from the research shows how the number of ejected planets depends on turbulence in the system. Lower turbulence (blue) ejects more planets than intermediate (red) or strong (yellow) turbulence. The x-axis shows the number of planets ejected per system, and the y-axis shows the cumulative distribution function. Image Credit: Coleman, 2024.

Taken together, the simulations provide a way to observe the FFP population and to determine their origins. “Differences in the distributions of FFP masses, their frequencies, and excess velocities can all indicate whether single stars or circumbinary systems are the fundamental birthplace of FFPs,” Coleman writes in his conclusion.

But the author also acknowledges the drawbacks in his simulations and clarifies what the sims don’t tell us.

“However, whilst this work contains numerous simulations and explores a broad parameter space, it does not constitute a full population of forming circumbinary systems,” Coleman writes in his conclusion. According to Coleman, it’s not feasible with current technology to derive a full population of these systems.

“Should such a population be performed in future work, then comparisons between that population and observed populations would give even more valuable insight into the formation of these intriguing objects,” he explains.

There’s still a lot astronomers don’t know about binary systems and how they form and eject planets. For one thing, models of planet formation are constantly being revised and updated with new information.

We also don’t have a strong idea of how many FFPs there are. Some researchers think there could be trillions of them. The upcoming Nancy Grace Roman space telescope will use gravitational lensing to take a census of exoplanets, including a sample of FFPs with masses as small as Mars’.

In future work, Coleman intends to determine if there are chemical composition differences between FFPs. That would constrain the types of stars they form around and where in their protoplanetary disks they formed. That would require spectroscopic studies of FFPs.

But for now, at least, Coleman has developed an incrementally better way to understand FFPs. Using this data, astronomers can begin to discern where individual FFPs came from and to better understand the population at large.

The post Where Are All These Rogue Planets Coming From? appeared first on Universe Today.

Categories: Astronomy

April Fool’s on the arXiv, 2024 edition

Sky & Telescope Magazine - Mon, 04/01/2024 - 1:13pm

On this April 1st, astronomers reveal fascinating discoveries inspired by astrology, pasta, Star Wars, and flamingos.

The post April Fool’s on the arXiv, 2024 edition appeared first on Sky & Telescope.

Categories: Astronomy

Safety First!

NASA Image of the Day - Mon, 04/01/2024 - 1:05pm
Safety is important, no matter where you're viewing the eclipse. NASA astronauts aboard the International Space Station show off their eclipse glasses, which allow safe viewing of the Sun during a solar eclipse.
Categories: Astronomy, NASA

Does My Child Have a Speech Delay?

Scientific American.com - Mon, 04/01/2024 - 9:00am

It’s hard to know whether a toddler needs help with early speech. Here are some tips and guidelines

Categories: Astronomy

Chatbots Struggle to Answer Medical Questions in Widely Spoken Languages

Scientific American.com - Mon, 04/01/2024 - 8:00am

Two popular chatbots showed some difficulty in providing medical information when asked in Spanish, Hindi or Mandarin

Categories: Astronomy

Men Succumb to Anesthesia More Easily than Women

Scientific American.com - Mon, 04/01/2024 - 7:30am

Findings in animals and humans emphasize the perils of not including female participants in research on the effects of anesthesia

Categories: Astronomy

Landfills Leak More Planet-Baking Methane Than We Thought

Scientific American.com - Mon, 04/01/2024 - 7:00am

U.S. landfills emit methane at levels at least 40 percent higher than previously reported to the Environmental Protection Agency, often in concentrated plumes

Categories: Astronomy

How to Watch the Total Solar Eclipse Online

Scientific American.com - Mon, 04/01/2024 - 6:30am

Celebrate the April 8 total solar eclipse all weekend long and on the day of the event with these livestreams from NASA, the NSF, Scientific American, and more

Categories: Astronomy

Inside the Race to Protect Artists from Artificial Intelligence

Scientific American.com - Mon, 04/01/2024 - 6:00am

AI-generated art is creating new ethical issues—and competition—for digital artists. Nightshade and Glaze are two tools helping creators fight back.

Categories: Astronomy