Watch the stars and from them learn. To the Master's honor all must turn, Each in its track, without a sound, Forever tracing Newton's ground

— Albert Einstein

Astronomy

Dusting farms with waste concrete could boost yields and lock up CO2

New Scientist Space - Cosmology - Wed, 04/17/2024 - 8:41am
Ground-up concrete can remove carbon dioxide from the atmosphere in a similar way to ground-up rocks, according to a field study in Ireland
Categories: Astronomy

NASA’s Artemis Astronauts Will Help Grow Crops on the Moon—And Much More

Scientific American.com - Wed, 04/17/2024 - 8:00am

When astronauts return to the moon later this decade, they’ll bring along science experiments to study moonquakes, lunar water ice and extraterrestrial agriculture

Categories: Astronomy

ESA selects four new Earth Explorer mission ideas

ESO Top News - Wed, 04/17/2024 - 8:00am

As humans exert greater pressure on natural processes, understanding the intricate workings of our Earth system is increasingly vital for effective action on mitigation and adaption strategies. ESA’s Earth Explorer missions yield a wealth of astonishing findings, serving as the bedrock of scientific research in this field. Now, four new concepts have been selected to undergo assessment study, one of which is destined to be the twelfth in this family of world-leading satellite missions.

Categories: Astronomy

SETI chief says US has no evidence for alien technology. 'And we never have'

Space.com - Wed, 04/17/2024 - 7:59am
For the chief leader of the SETI Institute, established to search for and understand life beyond Earth, there's a need to step back and cuddle up to a cup of cosmic reality.
Categories: Astronomy

AI Can Transform the Classroom Just Like the Calculator

Scientific American.com - Wed, 04/17/2024 - 7:00am

AI can better education, not threaten it, if we learn some lessons from the adoption of the calculator into the classroom

Categories: Astronomy

The Evolution of a Big, Ugly Cry

Scientific American.com - Wed, 04/17/2024 - 7:00am

Uncontrollable sobbing is uniquely human, and it may be our emotions running out of our faces, a way to connect us with other people

Categories: Astronomy

Neither Plants nor Animals, These Ocean Organisms Protect Their Ecosystems against Heat Waves

Scientific American.com - Wed, 04/17/2024 - 6:45am

Mixotrophs, which have characteristics of both animals and plants, could help blunt the effects of marine heat waves on ocean ecosystems

Categories: Astronomy

SpaceX launches 23 Starlink satellites from Florida (photo, video)

Space.com - Wed, 04/17/2024 - 6:00am
SpaceX launched another batch of its Starlink internet satellites from Florida's Space Coast this evening (April 17), and landed its rocket on a ship at sea.
Categories: Astronomy

How a New AI Model Helps Volcanic History Rise from the Ashes

Scientific American.com - Wed, 04/17/2024 - 6:00am

Volcano detectives use artificial intelligence to sleuth out ancient secrets in Alaska. 

Categories: Astronomy

Overconfidence Can Blindside Science and Society Alike. Here's How Not to Get Fooled

Scientific American.com - Wed, 04/17/2024 - 5:00am

The tale of how the "backfire effect" ultimately, itself, backfired, and what scientists can learn from being wrong

Categories: Astronomy

Organic Chemistry: Why study it? What can it teach us about finding life beyond Earth?

Universe Today - Wed, 04/17/2024 - 2:28am

Universe Today has recently had the privilege of investigating a myriad of scientific disciplines, including impact cratersplanetary surfacesexoplanetsastrobiologysolar physicscometsplanetary atmospheresplanetary geophysicscosmochemistrymeteorites, radio astronomy, and extremophiles, and how these multidisciplinary fields can help both scientists and space fans better understand how they relate to potentially finding life beyond Earth, along with other exciting facets. Here, we will examine the incredible field of organic chemistry with Dr. Andro Rios, who is an Assistant Professor in Organic Chemistry at San José State University, regarding why scientists study organic chemistry, the benefits and challenges, finding life beyond Earth, and potential paths for upcoming students. So, why is it so important to study organic chemistry?

“Organic chemistry is a fascinating and powerful discipline that is directly connected to nearly everything we interact with on a daily basis,” Dr. Rios tells Universe Today. “This can range from what gives our favorite foods the flavors we love, to the medicines we take to help alleviate our pain. Organic chemistry is also the basis of describing the known chemistry that makes up the biology on this planet (called biochemistry) and can possibly provide the clues to what extraterrestrial life might be based on as well, should we find evidence of it in the upcoming years.”

While its name implies a scientific field of complicated science, the field of organic chemistry essentially involves the study of organic compounds, also known as carbon-based life, which comprises all known lifeforms on the Earth. This involves studying the various properties, classifications, and reactions that comprise carbon-based life, which helps scientists understand their structural formulas and behaviors. This, in turn, enables overlap with other disciplines, including the aforementioned biochemistry, but also includes materials science, polymer chemistry, and medicinal chemistry, as well. Therefore, given its broad range of scientific potential, what are some of the benefits and challenges of studying organic chemistry?

“Organic chemistry has played a vital role in transforming the human experience on this planet by improving our health and longevity,” Dr. Rios tells Universe Today. “All of us, or nearly all of us, have known either family members, friends or even ourselves who have fallen severely ill or battled some chronic disease. The development of new medicines, both directly and indirectly through the tools of organic chemistry to fight these ailments has been one of the most beneficial contributions of this field to society.”

Dr. Rios continues, “Learning organic chemistry in the classroom often presents a challenge because it seems so different from the general chemistry courses that most students have learned to that point. The reason for this is because organic chemistry introduces new terminology, and its focus is heavily tied to the 3-dimensional structure and composition of molecules that is not considered in general chemistry courses. The good news is that organic chemistry provides the perfect bridge from general chemistry to biochemistry/molecular biology which also often focuses on the structures and shapes of molecules (biomolecules).”

The field of organic chemistry was unofficially born in 1807 by the Swedish chemist, Jöns Jacob Berzelius, after he coined the term when describing the origins of living, biological compounds discovered throughout nature. However, this theory was disproven in 1828 by the German scientist, Friedrich Wöhler, who discovered that organic matter could be created within a laboratory setting. It took another 33 years until the German chemist, Friedrich August Kekulé von Stradonitz, officially defined organic chemistry in 1861 as a subfield of chemistry involving carbon compounds. Fast forward more than 160 years later to the present day, and the applications of organic chemistry has expanded beyond the realm of the living and can be found in almost every scientific, industrial, commercial, and medical field throughout the world, including genetics, pharmaceuticals, food, and transportation.

As noted, the very basis of organic chemistry involves the study of carbon-based life, which is the primary characteristic of life on our small, blue world. The reason is because the structure of carbon can form millions of compounds due to their valence electrons that allow it to bond with other elements, specifically hydrogen and oxygen, but can also bond with phosphorus, nitrogen, and sulfur (commonly referred to as CHNOPS).

While carbon-based life is the most common form of life on Earth, the potential for silicon-based life has grabbed the attention of scientists throughout the world due to their similar bonding characteristics as carbon. However, certain attributes, including how it shares electrons (known as electropositivity), prevent it from being able to form lifelike attributes. Therefore, if carbon-based life is currently the primary characteristic of all life on Earth, what can organic chemistry teach us about finding life beyond Earth?

“Life on Earth is highly selective in its utility of organic compounds, both big and small, which is an outcome of biological evolution on this planet,” Dr. Rios tells Universe Today. “But over the years detailed studies on the properties (reactivity, function, preservation, etc) of these molecules and polymers have revealed to us that there is nothing inherently ‘special’ about those biochemicals compared to those that aren’t associated with life (called abiotic chemistry).”

Dr. Rios continues, “What we have learned, however, is that there are trends, or patterns in the selectivity of molecules used by life that might be helpful in informing us not only how life emerged on this planet, but in the search for life elsewhere. This suggests that when we go looking for life in other worlds, we shouldn’t necessarily expect to find the same biochemical make-up we see in our terrestrial biology. Rather, we should be keeping a lookout for any patterns or trends in the chemical make-up of alien environments that are distinct from what we might consider typical abiotic chemistry.”

As noted, the science of organic chemistry is responsible for myriad of applications throughout the world, which are accomplished through the creation of new compounds. One of the most well-known applications for organic chemistry is the pharmaceutical industry and the development of new drugs and treatments, including aspirin which is one of the most well-known drugs throughout the world. Additionally, organic chemistry is responsible for everyday products, including biofuels, biodegradable plastics, agriculture, and environmental purposes. Therefore, with the wide range of applications for organic chemistry, including the potential to find life beyond Earth, what is the most exciting aspect of organic chemistry that Dr. Rios has studied during his career?

“For me, it was when I was in graduate school when I made the realization that I could apply the knowledge and tools of organic chemistry that I was studying in the lab, to questions that were relevant to astrobiology,” Dr. Rios tells Universe Today. “I am particularly interested in questions surrounding prebiotic chemistry, chemical evolution and the origin of life. The primary area that captivates my interest within the origin of life field is metabolic chemistry —exploring the origins of metabolism. This field, known as protometabolic chemistry, has been gaining momentum in recent years. Our community has been uncovering that small prebiotic molecules have the ability, under a wide range of conditions, to initiate simple reaction networks that can lead to more complex molecules over time. These results are exciting because they are potentially helping us understand the origin of one of biology’s most complex processes.”

The individuals who study organic chemistry are aptly called organic chemists who spend time designing and creating new organic compounds for a variety of purposes. This frequently involves examining the myriad of structural drawings of organic compounds and learning how each one functions individually and adding or subtracting new elements to create new compounds. Like most scientific disciplines that Universe Today has examined throughout this series, organic chemistry is successful through the constant collaboration with other fields with the goal of gaining greater insight into life and the world around us, including beyond Earth. Therefore, what advice would Dr. Rios give to upcoming students who wish to pursue studying organic chemistry?

Dr. Rios tells Universe Today, “Organic chemistry is a discipline that fundamentally interacts with so many other fields of STEM; biology, medicine, synthetic biology, bioengineering, chemical engineering, ecology, etc. Taking the time to devote a portion of your education in learning the language of this discipline will be one of the most important intellectual investments you will make in your STEM related career.”

How will organic chemistry help us better understand our place in the cosmos in the coming years and decades? Only time will tell, and this is why we science!

As always, keep doing science & keep looking up!

The post Organic Chemistry: Why study it? What can it teach us about finding life beyond Earth? appeared first on Universe Today.

Categories: Astronomy

Colonies of single-celled creatures could explain how embryos evolved

New Scientist Space - Cosmology - Wed, 04/17/2024 - 2:00am
We know little about how embryonic development in animals evolved from single-celled ancestors, but simple organisms with a multicellular life stage offer intriguing clues
Categories: Astronomy

Colonies of single-celled creatures could explain how embryos evolved

New Scientist Space - Space Headlines - Wed, 04/17/2024 - 2:00am
We know little about how embryonic development in animals evolved from single-celled ancestors, but simple organisms with a multicellular life stage offer intriguing clues
Categories: Astronomy

Jupiter Meets Uranus in Twilight; Supernova Erupts in Nearby Spiral Galaxy

Sky & Telescope Magazine - Wed, 04/17/2024 - 1:08am

Jupiter aligns with distant Uranus before it exits the evening sky as a bright supernova flares in the southern galaxy NGC 3621.

The post Jupiter Meets Uranus in Twilight; Supernova Erupts in Nearby Spiral Galaxy appeared first on Sky & Telescope.

Categories: Astronomy

Eclipse in Seven

APOD - Wed, 04/17/2024 - 12:00am

Start at the upper left above and you can follow the progress of


Categories: Astronomy, NASA

<p><a href="https://apod.nasa.gov/apod

APOD - Wed, 04/17/2024 - 12:00am

What wonders appear when the Moon blocks the Sun?


Categories: Astronomy, NASA

Sleeping bumblebees can survive underwater for a week

New Scientist Space - Cosmology - Tue, 04/16/2024 - 8:01pm
A serendipitous lab accident revealed that hibernating bumblebee queens can make it through days of flooding, revealing that they are less vulnerable to extreme weather than previously thought
Categories: Astronomy

Sleeping bumblebees can survive underwater for a week

New Scientist Space - Space Headlines - Tue, 04/16/2024 - 8:01pm
A serendipitous lab accident revealed that hibernating bumblebee queens can make it through days of flooding, revealing that they are less vulnerable to extreme weather than previously thought
Categories: Astronomy

What's left of the 2024 solar eclipse lives in our hearts

Space.com - Tue, 04/16/2024 - 6:00pm
The 2024 solar eclipse, as seen from Indianapolis, connected strangers across a famous racetrack.
Categories: Astronomy

Uranus and Neptune aren't made of what we thought, new study hints

Space.com - Tue, 04/16/2024 - 5:00pm
A study suggests the ice giants Uranus and Neptune aren't quite as watery as previously thought. They may also contain huge amounts of frozen methane, potentially solving the puzzle of how they formed.
Categories: Astronomy