"When beggars die, there are no comets seen;
The heavens themselves blaze forth the death of princes."

— William Shakespeare
Julius Cæsar

Astronomy

Regulus and the Dwarf Galaxy

APOD - 4 hours 26 min ago

Regulus and the Dwarf Galaxy


Categories: Astronomy, NASA

NGC 604: Giant Stellar Nursery

APOD - 4 hours 26 min ago

Located some 3 million light-years away in the arms of nearby spiral


Categories: Astronomy, NASA

<p><a href="https://apod.nasa.gov/apod

APOD - 4 hours 26 min ago

How did a star form this beautiful nebula?


Categories: Astronomy, NASA

<p><a href="https://apod.nasa.gov/apod

APOD - 4 hours 26 min ago

What created this giant X in the clouds?


Categories: Astronomy, NASA

<p><a href="https://apod.nasa.gov/apod

APOD - 4 hours 26 min ago

Yes, but can your volcano do this?


Categories: Astronomy, NASA

<p><a href="https://apod.nasa.gov/apod

APOD - 4 hours 26 min ago

Watch Juno zoom past Jupiter.


Categories: Astronomy, NASA

All Sky Moon Shadow

APOD - 4 hours 26 min ago

All Sky Moon Shadow


Categories: Astronomy, NASA

Russia vetoes UN resolution against nuclear weapons in space

Space.com - 5 hours 27 min ago
Russia's ambassador to the U.N. vetoed a resolution sponsored by the United States and Japan that called upon all nations to never deploy nuclear weapons in outer space.
Categories: Astronomy

Beavers are helping fight climate change, satellite data shows

Space.com - 5 hours 27 min ago
As global warming intensifies droughts, floods and wildfires around the world, scientists in western United States are turning to beavers to help reverse some of the damage.
Categories: Astronomy

Astronomers just discovered a comet that could be brighter than most stars when we see it next year. Or will it?

Space.com - 6 hours 26 min ago
Although it is still more than 18 months from its closest approach to Earth and the sun, comet Tsuchinshan-ATLAS already has social media buzzing, with optimistic articles being written about how it could be a spectacular sight.
Categories: Astronomy

This Week In Space podcast: Episode 108 — Starliner: Better Late Than Never?

Space.com - 7 hours 4 min ago
On Episode 108 of This Week In Space, Rod and Tariq talk about the long-awaited crew flight test of Boeing's Starliner commercial spacecraft.
Categories: Astronomy

Boeing's Starliner spacecraft will not fly private missions yet, officials say

Space.com - 8 hours 27 min ago
Boeing's Starliner spacecraft is about to make its first launch May 6 with NASA astronauts on board. Unlike SpaceX, however, Boeing has not yet announced any private missions.
Categories: Astronomy

SpaceX launching Falcon 9 rocket on record-tying 20th mission today

Space.com - 10 hours 27 min ago
A SpaceX Falcon 9 rocket will launch a European satellite-navigation mission today (April 27). It will be the record-tying 20th liftoff for this particular booster.
Categories: Astronomy

Astronomers Will Get Gravitational Wave Alerts Within 30 Seconds

Universe Today - Fri, 04/26/2024 - 8:38pm

Any event in the cosmos generates gravitational waves, the bigger the event, the more disturbance. Events where black holes and neutron stars collide can send out waves detectable here on Earth. It is possible that there can be an event in visible light when neutron stars collide so to take advantage of every opportunity an early warning is essential. The teams at LIGO-Virgo-KAGRA observatories are working on an alert system that will alert astronomers within 30 seconds fo a gravity wave event. If warning is early enough it may be possible to identify the source and watch the after glow. 

The very fabric of space-time can be thought of as a giant celestial ocean. Any movement within the ocean will generate waves. The same is true of movements and disturbances in space, causing a compression in one direction while stretching out in the perpendicular direction. Modern gravity wave detectors are usually L-shaped with beams shining down each arm of the building. The two beams are combined and the interference patterns are studied allowing the lengths of the two beams to be accurately calculated. Any change suggests the passage of a gravity wave. 

LIGO Observatory

A team of researchers at the University of Minnesota have run a study that endeavours to improve the detection of the waves. Not only do they hope to improve the detection itself but also to establish an alerting mechanism so that astronomers get a notification within 30 seconds after the event detection. 

The team used data from previous observations and created simulated gravity wave signal data so that they could test the system. But it is far more than just an alerting system. Once fully operational, it will be able to detect the shape of the signals, track how it evolves over time and even provide an estimate of the properties of the individual components that led to the waves. 

After it is fully operational, the software would detect the wave for example from neutron star or black hole collisions. The former usually too faint to be able to detect unless its location is known precisely. It would generate an alert from the wave to help precisely pinpoint the location giving an opportunity for follow up study. 

Light bursts from the collision of two neutron stars. Credit: NASA’s Goddard Space Flight Center/CI Lab

There are still many outstanding questions surrounding neutron star and black hole formation not least of which is the exact mechanism that leads to the formation of gold and uranium. 

graThe LIGO (Laser Interferometer Gravitational-Wave Observatory) has just finished its latest run but the next is due in February 2025. Between recent observing runs, enhancements and improvements have been made to improve the capability of detecting signals. Eventually of course it comes down to the data and once the current run ends, the teams will get started. 

Source : Researchers advance detection of gravitational waves to study collisions of neutron stars and black holes

The post Astronomers Will Get Gravitational Wave Alerts Within 30 Seconds appeared first on Universe Today.

Categories: Astronomy

How the US is preparing for a potential bird flu pandemic

New Scientist Space - Cosmology - Fri, 04/26/2024 - 6:11pm
As the US grapples with an ongoing bird flu outbreak in dairy cattle, the country’s health agencies are ramping up surveillance efforts and working to develop a vaccine if needed
Categories: Astronomy

How the US is preparing for a potential bird flu pandemic

New Scientist Space - Space Headlines - Fri, 04/26/2024 - 6:11pm
As the US grapples with an ongoing bird flu outbreak in dairy cattle, the country’s health agencies are ramping up surveillance efforts and working to develop a vaccine if needed
Categories: Astronomy

Bowhead whales still harmed from whaling that ended a century ago

New Scientist Space - Cosmology - Fri, 04/26/2024 - 6:00pm
Commercial bowhead whaling ended in the early 20th century, but the industry’s lasting effects on the whales’ genetic diversity are leading to declines again
Categories: Astronomy

Bowhead whales still harmed from whaling that ended a century ago

New Scientist Space - Space Headlines - Fri, 04/26/2024 - 6:00pm
Commercial bowhead whaling ended in the early 20th century, but the industry’s lasting effects on the whales’ genetic diversity are leading to declines again
Categories: Astronomy

Next Generation Ion Engines Will Be Extremely Powerful

Universe Today - Fri, 04/26/2024 - 5:02pm

During the Space Race, scientists in both the United States and the Soviet Union investigated the concept of ion propulsion. Like many early Space Age proposals, the concept was originally explored by luminaries like Konstantin Tsiolkovsky and Hermann Oberth – two of the “forefathers of rocketry.” Since then, the technology has been validated repeatedly by missions like the Deep Space-1 (DS-1) technology demonstrator, the ESA’s Smart-1 lunar orbiter, JAXA’s Hayabusa and Hayabysa 2 satellites, and NASA’s Dawn mission.

Looking to the future of space exploration, researchers at the NASA Glenn Research Center (GRC) have been busy developing a next-generation ion engine that combines extreme fuel efficiency with high acceleration. These efforts have led to the NASA-H71M sub-kilowatt Hall-effect thruster, a small spacecraft electric propulsion (SSEP) system that will enable new types of planetary science missions. With the help of commercial partners like SpaceLogistics, this thruster will also be used to extend the lifetimes of spacecraft that are already in orbit.

Space exploration and commercial space have benefitted from the development of small spacecraft and small satellites. These missions are notable for being cost-effective since they require less propellant to launch, can be deployed in smarms, and take advantage of rideshares. Similarly, the proliferation of small satellite constellations in Low Earth Orbit (LEO) has made low-power Hall-effect thrusters the most common electric propulsion system in space today. These systems are noted for their fuel efficiency, allowing many years of orbital maneuvers, corrections, and collision avoidance.

Nevertheless, small spacecraft will need to be able to perform challenging propulsive maneuvers like achieving escape velocity, orbital capture, and other maneuvers that require significant acceleration (delta-v). The thrust required to perform these maneuvers – 8 km/s (~5 mps) of delta-v – is beyond the capability of current and commercially available propulsion technology. Moreover, low-cost commercial electric propulsion systems have limited lifetimes and typically process only about 10% of a small spacecraft’s propellant mass.

Similarly, secondary spacecraft are becoming more common thanks to rockets with excess capacity (enabling rideshare programs). Still, these are generally limited to scientific targets that align with the primary mission’s trajectory. Additionally, secondary missions typically have limited time to collect data during high-speed flybys. What is needed is an electric propulsion system that requires low power (sub-kilowatt) and has high-propellant throughout – meaning it is capable of using lots of propellant over its lifetime.

To meet this demand, engineers at NASA Glenn are taking many advanced high-power solar electric propulsion (SEP) elements developed over the past decade and are miniaturizing them. These elements were developed as part of NASA’s Moon to Mars mission architecture, with applications including the Power and Propulsion Element (PPE) of the Lunar Gateway. A SEP system was also part of the design for a Deep Space Transport (DST), the vehicle that will conduct the first crewed missions to Mars by 2040. The NASA-H71M system, however, is expected to have a major impact on small spacecraft, expanding mission profiles and durations.

According to NASA, missions using the NASA-H71M system could operate for 15,000 hours and process over 30% of the small spacecraft’s initial mass in propellant. This system could increase the reach of secondary spacecraft, allowing them to deviate from the primary mission’s trajectory and explore a wider range of scientific targets. By allowing spacecraft to decelerate and make orbital insertions, this technology could increase mission durations and the amount of time they have to study objects.

NASA-H71M Hall-effect thruster on the Glenn Research Center Vacuum Facility 8 thrust stand (left) and Dr. Jonathan Mackey tuning the thrust stand before closing and pumping down the test facility (right). Credit: NASA GRC

It’s also beyond the needs of most commercial LEO missions, and the associated costs are generally higher than what commercial missions call for. As such, NASA continues to seek partnerships with commercial developers working on small commercial spacecraft with more ambitious mission profiles. One such partner is SpaceLogistics, a wholly owned subsidiary of Northrop Grumman that provides in-orbit satellite servicing to geosynchronous satellite operators using its proprietary Mission Extension Vehicle (MEV).

This vehicle relies on Northrop Grumman NGHT-1X Hall-effect thrusters based on the NASA-H71M design. This propulsive capability will allow the MEV to reach satellites in Geosynchronous Earth Orbit (GEO), where it will dock with customer’s satellites, extending their lives for at least six years. Through a Space Act Agreement (SAA), Northrop Grumman is conducting long-duration wear tests (LDWT) at NASA Glenn’s Vacuum Facility 11. The first three MEP spacecraft are expected to launch in 2025 and extend the lives of three GEO communication satellites.

Further Reading: NASA

The post Next Generation Ion Engines Will Be Extremely Powerful appeared first on Universe Today.

Categories: Astronomy

Neutron Stars Could be Capturing Primordial Black Holes

Universe Today - Fri, 04/26/2024 - 4:48pm

The Milky Way has a missing pulsar problem in its core. Astronomers have tried to explain this for years. One of the more interesting ideas comes from a team of astronomers in Europe and invokes dark matter, neutron stars, and primordial black holes (PBHs).

Astronomer Roberto Caiozzo, of the International School for Advanced Studies in Trieste, Italy, led a group examining the missing pulsar problem. “We do not observe pulsars of any kind in this inner region (except for the magnetar PSR J1745-2900),” he wrote in an email. “This was thought to be due to technical limitations, but the observation of the magnetar seems to suggest otherwise.” That magnetar orbits Sagittarius A*, the black hole at the core of the Milky Way.

An x-ray map of the core of the Milky Way showing the position of the recently discovered magnetar orbiting the supermassive black hole Sgr A*. Courtesy Chandra and XMM-Newton.

The team examined other possible reasons why pulsars don’t appear in the core and looked closely at matnetar formation as well as disruptions of neutron stars. One intriguing idea they examined was the cannibalization of primordial black holes by neutron stars. The team explored the missing-pulsar problem by asking the question: could neutron star-primordial black hole cannibalism explain the lack of detected millisecond pulsars in the core of the Milky Way? Let’s look at the main players in this mystery to understand if this could happen.

Neutron Stars, Pulsars, and Little Black Holes, Oh My

Theory suggests that primordial black holes were created in the first seconds after the Big Bang. “PBHs are not known to exist,” Caiozzo points out, “but they seem to explain some important astrophysical phenomena.” He pointed at the idea that supermassive black holes seemed to exist at very early times in the Universe and suggested that they could have been the seeds for these monsters. If there are PHBs out there, the upcoming Nancy Grace Roman Telescope could help find them. Astronomers predict they could exist in a range of masses, ranging from the mass of a pin to around 100,000 the mass of the Sun. There could be an intermediate range of them in the middle, the so-called “asteroid-mass” PBHs. Astronomers suggest these last ones as dark matter candidates.

Primordial black holes, if they exist, could have formed by the collapse of overdense regions in the very early universe. Credit M. Kawasaki, T.T. Yanagida.

Dark matter makes up about 27 percent of the Universe, but beyond suggesting that PBH could be part of the dark matter content, astronomers still don’t know exactly what it is. There does seem to be a large amount of it in the core of our galaxy. However, it hasn’t been directly observed, so its presence is inferred. Is it bound up in those midrange PBHs? No one knows.

The third player in this missing pulsar mystery is neutron stars. They’re huge, quivering balls of neutrons left over after the death of a supergiant star of between 10 and 25 solar masses. Neutron stars start out very hot (in the range of ten million K) and cool down over time. They start out spinning very fast and they do generate magnetic fields. Some emit beams of radiation (usually in radio frequencies) and as they spin, those beams appear as “pulses” of emission. That earned them the nickname “pulsar”. Neutron stars with extremely powerful magnetic fields are termed “magnetars”.

Pulsars are fast-spinning neutron stars that emit narrow, sweeping beams of radio waves. A new study identifies the origin of those radio waves. NASA’s Goddard Space Flight Center The Missing Pulsar Problem

Astronomers have searched the core of the Milky Way for pulsars without much success. Survey after survey detected no radio pulsars within the inner 25 parsecs of the Galaxy’s core. Why is that? Caizzo and his co-authors suggested in their paper that magnetar formation and other disruptions of neutron stars that affect pulsar formation don’t exactly explain the absence of these objects in the galactic core. “Efficient magnetar formation could explain this (due to their shorter lifetime),” he said, “But there is no theoretical reason to expect this. Another possibility is that the pulsars are somehow disrupted in other ways.”

Usually, disruption happens in binary star systems where one star is more massive than the other and it explodes as a supernova. The other star may or may not explode. Something may kick it out of the system altogether. The surviving neutron star becomes a “disrupted” pulsar. They aren’t as easily observed, which could explain the lack of radio detections.

If the companion isn’t kicked out and later swells up, its matter gets sucked away by the neutron star. That spins up the neutron star and affects the magnetic field. If the second star remains in the system, it later explodes and becomes a neutron star. The result is a binary neutron star. This disruption may help explain why the galactic core seems to be devoid of pulsars.

Using Primordial Black Hole Capture to Explain Missing Pulsars

Caizzo’s team decided to use two-dimensional models of millisecond pulsars—that is, pulsars spinning extremely fast—as a way to investigate the possibility of primordial black hole capture in the galactic core. The process works like this: a millisecond pulsar interacts in some way with a primordial black hole that has less than one stellar mass. Eventually, the neutron star (which has a strong enough gravitational pull to attract the PBH) captures the black hole. Once that happens, the PBH sinks to the core of the neutron star. Inside the core, the black hole begins to accrete matter from the neutron star. Eventually, all that’s left is a black hole with about the same mass as the original neutron star. If this occurs, that could help explain the lack of pulsars in the inner parsecs of the Milky Way.

Could this happen? The team investigated the possible rates of capture of PBHs by neutron stars. They also calculated the likelihood that a given neutron star would collapse and assessed the disruption rate of pulsars in the galactic core. If not all the disrupted pulsars are or were part of binary systems, then that leaves neutron star capture of PBHs as another way to explain the lack of pulsars in the core. But, does it happen in reality?

Missing Pulsar Tension Continues

It turns out that such cannibalism cannot explain the missing pulsar problem, according to Caizzo. “We found that in our current model PBHs are not able to disrupt these objects but this is only considering our simplified model of 2 body interactions,” he said. It doesn’t rule out the existence of PHBs, only that in specific instances, such capture isn’t happening.

So, what’s left to examine? If there are PHBs in the cores and they’re merging, no one’s seen them yet. But, the center of the Galaxy is a busy place. A lot of bodies crowd the central parsecs. You have to calculate the effects of all those objects interacting in such a small space. That “many-body dynamics” problem has to account for other interactions, as well as the dynamics and capture of PBHs.

Astronomers looking to use PBH-neutron star mergers to explain the lack of pulsar observations in the core of the Galaxy will need to better understand both the proposed observations and the larger populations of pulsars. The team suggests that future observations of old neutron stars close to Sgr A* could be very useful. They’d help set stronger limits on the number of PBHs in the core. In addition, it would be useful to get an idea of the masses of these PBHs, since those on the lower end (asteroid-mass types) could interact very differently.

For More Information

Revisiting Primordial Black Hole Capture by Neutron Stars
Searching for Pulsars in the Galactic Centre at 3 and 2 mm

The post Neutron Stars Could be Capturing Primordial Black Holes appeared first on Universe Today.

Categories: Astronomy