"Time and space are modes in which we think and not conditions in which we live."

— Albert Einstein

Feed aggregator

Meteorites Tighten Timeline for Giant Planets’ Movement through the Solar System

Sky & Telescope Magazine - Tue, 04/23/2024 - 10:54am

By linking a family of meteorites on Earth to their relatives in the asteroid belt, scientists have arrived at a new understanding of the giant planets' movement early in the solar system's history.

The post Meteorites Tighten Timeline for Giant Planets’ Movement through the Solar System appeared first on Sky & Telescope.

Categories: Astronomy

Should we tweak the atmosphere to counteract global warming?

New Scientist Space - Cosmology - Tue, 04/23/2024 - 10:43am
With severe climate impacts becoming more and more apparent, many scientists think we should explore ways to block out solar radiation, but doing so would be risky
Categories: Astronomy

Should we tweak the atmosphere to counteract global warming?

New Scientist Space - Space Headlines - Tue, 04/23/2024 - 10:43am
With severe climate impacts becoming more and more apparent, many scientists think we should explore ways to block out solar radiation, but doing so would be risky
Categories: Astronomy

Slovenia signs NASA's Artemis Accords for cooperative space exploration

Space.com - Tue, 04/23/2024 - 10:21am
Slovenia signed NASA's Artemis Accords on April 19, becoming the 39th country to affirm their cooperation in future space endeavors to the moon and beyond.
Categories: Astronomy

Ariane 6 flies OOV-Cube: Internet of (wild) Things

ESO Top News - Tue, 04/23/2024 - 10:16am

Europe’s newest rocket soon launches, taking with it many space missions each with a unique objective, destination and team at home, cheering them on. Whether launching new satellites to look back and study Earth, peer out to deep space or test important new technologies in orbit, Ariane 6’s first flight will showcase the versatility and flexibility of this impressive, heavy-lift launcher. Read on for all about OOV-Cube, then see who else is flying first.

Categories: Astronomy

Explore the Universe with the First E-Book from NASA’s Fermi

NASA - Breaking News - Tue, 04/23/2024 - 10:09am

4 min read

Explore the Universe with the First E-Book from NASA’s Fermi

To commemorate a milestone anniversary for NASA’s Fermi spacecraft, the mission team has published an e-book called “Our High-Energy Universe: 15 Years with the Fermi Gamma-ray Space Telescope.”

Readers can download the e-book in PDF and EPUB formats. The e-book is aimed at general audiences with an interest in space.

Cover for the e-book “Our High-Energy Universe: 15 Years with the Fermi Gamma-ray Space Telescope.” NASA

PDF

Apr 22, 2024

PDF (44.03 MB)



EPUB

Apr 22, 2024

EPUB+ZIP (804.49 MB)



Launched on June 11, 2008, Fermi detects gamma rays, the highest-energy form of light, from Earth’s atmosphere to far-flung galaxies and cosmic phenomena in between. Its research has uncovered details on topics ranging from solar flares to star formation and the mysteries at the center of our Milky Way.

Through images, fun facts, and launch-day memories, the e-book tells Fermi’s story from conceptualization to launch and recounts some of the mission’s groundbreaking discoveries. By delving into high-energy astrophysics topics like gamma-ray bursts and blazars, readers can explore Fermi’s universe and what questions remain open for investigation in its next chapter.

Fermi was originally called the Gamma-ray Large Area Space Telescope but was renamed after Italian physicist Enrico Fermi in August 2008.

“Enrico Fermi’s science has been important for understanding the sources that the Fermi telescope sees,” said Elizabeth Hays, the mission’s project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “The gamma-ray sky is powered by particle acceleration mechanisms he theorized about.”

The satellite has two gamma-ray detectors: the Large Area Telescope (LAT) and the Gamma-ray Burst Monitor (GBM). 

The LAT observes a fifth of the gamma-ray sky at any time, detecting high-energy light with energies ranging from 20 million to over 300 billion electron volts. (The energy of visible light is 2 to 3 electron volts.) The GBM views about 70% of the sky at a time at lower energies, searching for brief flashes of gamma-ray light.

The result of this carefully crafted duo is the most sensitive gamma-ray observatory in orbit, equipped to study the universe’s highest-energy phenomena near and far.

By peering through Fermi’s gamma-ray eyes, we can better understand our solar system. Within its first eight years of operation, Fermi detected gamma-ray emissions from 40 solar flares — bursts of energy from the Sun. Some even originated on the Sun’s far side, allowing scientists to analyze how charged particles fired by solar flares can arc from one side of the Sun to produce gamma rays on the other.

In studying our Milky Way, Fermi found two lobes of high-energy gamma rays — called the Fermi Bubbles — extending above and below the galaxy’s center. Each bubble stands 25,000 light-years tall. Astronomers think the bubbles formed following an ancient burst of activity from the Milky Way’s central supermassive black hole.

Fermi helps scientists understand black holes in other galaxies, too.

“As a black hole forms, either from the death of a massive star or the collision of two neutron stars, it creates a brief flash of light called a gamma-ray burst,” said Judith Racusin, Fermi’s deputy project scientist at Goddard. “Fermi detects about one burst a day and has helped revolutionize our understanding of these phenomena.”

Even after 15 years of accomplishments, however, many mysteries remain for Fermi to tackle. One of the telescope’s ongoing objectives is to study the composition of dark matter — the mysterious substance that makes up about 25% of the universe.

Because dark matter doesn’t reflect, absorb, or emit light, scientists remain unsure of its composition. One popular theory suggests, though, that dark matter particles create gamma rays when they interact. If Fermi can spot this high-energy signature, it might help scientists learn more about dark matter’s makeup.

If there’s one thing Fermi has taught us, it’s to expect the unexpected. Gamma-ray research has yielded unprecedented breakthroughs in our understanding of the Milky Way’s central black hole, our flaring Sun, and merging neutron stars. As much as we anticipate the next gamma-ray revelation, only time will tell what exactly Fermi has in store.

Fermi is an astrophysics and particle physics partnership managed by Goddard. Fermi was developed in collaboration with the U.S. Department of Energy, with important contributions from academic institutions and partners in France, Germany, Italy, Japan, Sweden, and the United States.

By Jenna Ahart
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Media Contact:
Claire Andreoli
301-286-1940
claire.andreoli@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Share

Details

Last Updated

Apr 23, 2024

Editor Jeanette Kazmierczak Location Goddard Space Flight Center

Related Terms
Categories: NASA

Solar eclipse 2024: Live updates

Space.com - Tue, 04/23/2024 - 10:05am
Stay up-to-date with the latest news on the upcoming solar eclipses, including the annular solar eclipse on Oct. 2, 2024.
Categories: Astronomy

Hubble Celebrates 34th Anniversary with a Look at the Little Dumbbell Nebula

NASA - Breaking News - Tue, 04/23/2024 - 10:00am

5 min read

Hubble Celebrates 34th Anniversary with a Look at the Little Dumbbell Nebula

In celebration of the 34th anniversary of the launch of NASA’s legendary Hubble Space Telescope on April 24, astronomers took a snapshot of the Little Dumbbell Nebula (also known as Messier 76, M76, or NGC 650/651) located 3,400 light-years away in the northern circumpolar constellation Perseus. The photogenic nebula is a favorite target of amateur astronomers.

In celebration of the 34th anniversary of the launch of NASA’s legendary Hubble Space Telescope, astronomers took a snapshot of the Little Dumbbell Nebula, also known as Messier 76, or M76, located 3,400 light-years away in the northern circumpolar constellation Perseus. The name ‘Little Dumbbell’ comes from its shape that is a two-lobed structure of colorful, mottled, glowing gases resembling a balloon that’s been pinched around a middle waist. Like an inflating balloon, the lobes are expanding into space from a dying star seen as a white dot in the center. Blistering ultraviolet radiation from the super-hot star is causing the gases to glow. The red color is from nitrogen, and blue is from oxygen. NASA, ESA, STScI
Download this image (3MB)


Download this image (33MB)

M76 is classified as a planetary nebula, an expanding shell of glowing gases that were ejected from a dying red giant star. The star eventually collapses to an ultra-dense and hot white dwarf. A planetary nebula is unrelated to planets, but have that name because astronomers in the 1700s using low-power telescopes thought this type of object resembled a planet.

M76 is composed of a ring, seen edge-on as the central bar structure, and two lobes on either opening of the ring. Before the star burned out, it ejected the ring of gas and dust. The ring was probably sculpted by the effects of the star that once had a binary companion star. This sloughed off material created a thick disk of dust and gas along the plane of the companion’s orbit. The hypothetical companion star isn’t seen in the Hubble image, and so it could have been later swallowed by the central star. The disk would be forensic evidence for that stellar cannibalism.

The primary star is collapsing to form a white dwarf. It is one of the hottest stellar remnants known at a scorching 250,000 degrees Fahrenheit, 24 times our Sun’s surface temperature. 
The sizzling white dwarf can be seen as a pinpoint in the center of the nebula. A star visible in projection beneath it is not part of the nebula.



Pinched off by the disk, two lobes of hot gas are escaping from the top and bottom of the “belt,” along the star’s rotation axis that is perpendicular to the disk. They are being propelled by the hurricane-like outflow of material from the dying star, tearing across space at two million miles per hour. That’s fast enough to travel from Earth to the Moon in a little over seven minutes! This torrential “stellar wind” is plowing into cooler, slower-moving gas that was ejected at an earlier stage in the star’s life, when it was a red giant. Ferocious ultraviolet radiation from the super-hot star is causing the gases to glow. The red color is from nitrogen, and blue is from oxygen.


Given our solar system is 4.6 billion years old, the entire nebula is a flash in the pan by cosmological timekeeping. It will vanish in about 15,000 years. 




Hubble’s Star Trekking

Since its launch in 1990 Hubble has made 1.6 million observations of over 53,000 astronomical objects. To date, the Mikulski Archive for Space Telescopes at the Space Telescope Science Institute in Baltimore, Maryland holds 184 terabytes of processed data that is science-ready for astronomers around the world to use for research and analysis. Since 1990, 44,000 science papers have been published from Hubble observations. The space telescope is the most scientifically productive space astrophysics mission in NASA history. The demand for using Hubble is so high it is currently oversubscribed by a factor of six-to-one.

Most of Hubble’s discoveries were not anticipated before launch, such as supermassive black holes, the atmospheres of exoplanets, gravitational lensing by dark matter, the presence of dark energy, and the abundance of planet formation among stars.

Hubble will continue research in those domains and capitalize on its unique ultraviolet-light capability on such topics as solar system phenomena, supernovae outbursts, composition of exoplanet atmospheres, and dynamic emission from galaxies. And Hubble investigations continue to benefit from its long baseline of observations of solar system objects, stellar variable phenomena and other exotic astrophysics of the cosmos.

NASA’s James Webb Space Telescope was designed to be meant to be complementary to Hubble, and not a substitute. Future Hubble research also will take advantage of the opportunity for synergies with Webb, which observes the universe in infrared light. The combined wavelength coverage of the two space telescopes expands on groundbreaking research in such areas as protostellar disks, exoplanet composition, unusual supernovae, cores of galaxies and chemistry of the distant universe.

Hubble’s Senior Project Scientist Dr. Jennifer Wiseman takes us on a tour of this stunning new image, describes the telescope’s current health, and summarizes some of Hubble’s contributions to astronomy during its 34-year career.
Credit: NASA’s Goddard Space Flight Center; Lead Producer: Paul Morris

The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, Colorado, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, Maryland, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.

Media Contact:

Claire Andreoli
NASA’s Goddard Space Flight CenterGreenbelt, MD
claire.andreoli@nasa.gov

Ray Villard
Space Telescope Science Institute, Baltimore, MD

Share

Details

Last Updated

Apr 23, 2024

Editor Andrea Gianopoulos

Related Terms Keep Exploring Discover More Topics From NASA

Hubble Space Telescope

Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


Stars Stories


Galaxies Stories


Earth Stories

Categories: NASA

ESA graduates the 'Hoppers': Europeans, Australian pass astronaut basic training

Space.com - Tue, 04/23/2024 - 10:00am
The "Hoppers" — five European astronauts and the first astronaut from the Australian Space Agency — are now ready to "hop" into their first flight assignments, having completed basic training.
Categories: Astronomy

An Epitaph for Daniel Dennett, Philosopher of Consciousness

Scientific American.com - Tue, 04/23/2024 - 10:00am

Is consciousness nothing more than an illusion? That idea defined the work of Daniel Dennett (1942–2024)

Categories: Astronomy

Hubble celebrates 34th anniversary

ESO Top News - Tue, 04/23/2024 - 10:00am

In celebration of the 34th anniversary of the launch of the legendary NASA/ESA Hubble Space Telescope on 24 April, astronomers took a snapshot of the Little Dumbbell Nebula (also known as Messier 76, M76, or NGC 650/651) located 3400 light-years away in the northern circumpolar constellation Perseus. The photogenic nebula is a favourite target of amateur astronomers.

Categories: Astronomy

Pushing the Limits of Sub-Kilowatt Electric Propulsion Technology to Enable Planetary Exploration and Commercial Mission Concepts

NASA - Breaking News - Tue, 04/23/2024 - 9:52am
6 Min Read Pushing the Limits of Sub-Kilowatt Electric Propulsion Technology to Enable Planetary Exploration and Commercial Mission Concepts

Northrop Grumman NGHT-1X engineering model Hall-effect thruster operating in Glenn Research Center Vacuum Facility 8. The design of the NGHT-1X is based on the NASA-H71M Hall-effect thruster.

NASA has developed an advanced propulsion technology to facilitate future planetary exploration missions using small spacecraft. Not only will this technology enable new types of planetary science missions, one of NASA’s commercial partners is already preparing to use it for another purpose—to extend the lifetimes of spacecraft that are already in orbit. Identifying the opportunity for industry to use this new technology not only advances NASA’s goal of technology commercialization, it could potentially create a path for NASA to acquire this important technology from industry for use in future planetary missions.

The New Technology

Planetary science missions using small spacecraft will be required to perform challenging propulsive maneuvers—such as achieving planetary escape velocities, orbit capture, and more—that require a velocity change (delta-v) capability well in excess of typical commercial needs and the current state-of-the-art. Therefore, the #1 enabling technology for these small spacecraft missions is an electric propulsion system that can execute these high-delta-v maneuvers. The propulsion system must operate using low power (sub-kilowatt) and have high-propellant throughput (i.e., the capability to use a high total mass of propellant over its lifetime) to enable the impulse required to execute these maneuvers.

After many years of research and development, researchers at NASA Glenn Research Center (GRC) have created a small spacecraft electric propulsion system to meet these needs—the NASA-H71M sub-kilowatt Hall-effect thruster. In addition, the successful commercialization of this new thruster will soon provide at least one such solution to enable the next generation of small spacecraft science missions requiring up to an amazing 8 km/s of delta-v. This technical feat was accomplished by the miniaturization of many advanced high-power solar electric propulsion technologies developed over the last decade for applications such as the Power and Propulsion Element of Gateway, humanity’s first space station around the Moon.

Left: NASA-H71M Hall-effect thruster on the Glenn Research Center Vacuum Facility 8 thrust stand. Right: Dr. Jonathan Mackey tuning the thrust stand prior to closing and pumping down the test facility. Benefits of This Technology for Planetary Exploration

Small spacecraft using the NASA-H71M electric propulsion technology will be able to independently maneuver from low-Earth orbit (LEO) to the Moon or even from a geosynchronous transfer orbit (GTO) to Mars. This capability is especially remarkable because commercial launch opportunities to LEO and GTO have become routine, and the excess launch capacity of such missions is often sold at low cost to deploy secondary spacecraft. The ability to conduct missions that originate from these near-Earth orbits can greatly increase the cadence and lower the cost of lunar and Mars science missions.

This propulsion capability will also increase the reach of secondary spacecraft, which have been historically limited to scientific targets that align with the primary mission’s launch trajectory. This new technology will enable secondary missions to substantially deviate from the primary mission’s trajectory, which will facilitate exploration of a wider range of scientific targets.

In addition, these secondary spacecraft science missions would typically have only a short period of time to collect data during a high-speed flyby of a distant body. This greater propulsive capability will allow deceleration and orbital insertion at planetoids for long-term scientific study.

Furthermore, small spacecraft outfitted with such significant propulsive capability will be better equipped to manage late-stage changes to the primary mission’s launch trajectory. Such changes are frequently a top risk for small spacecraft science missions with limited onboard propulsive capability that depend on the initial launch trajectory to reach their science target.

Commercial Applications

The megaconstellations of small spacecraft now forming in low-Earth orbits have made low-power Hall-effect thrusters the most abundant electric propulsion system used in space today. These systems use propellant very efficiently, which allows for orbit insertion, de-orbiting, and many years of collision avoidance and re-phasing. However, the cost-conscious design of these commercial electric propulsion systems has inevitably limited their lifetime capability to typically less than a few thousand hours of operation and these systems can only process about 10% or less of a small spacecraft’s initial mass in propellant.

By contrast, planetary science missions benefiting from the NASA-H71M electric propulsion system technology could operate for 15,000 hours and process over 30% of the small spacecraft’s initial mass in propellant. This game-changing capability is well beyond the needs of most commercial LEO missions and comes at a cost premium that makes commercialization for such applications unlikely. Therefore, NASA sought and continues to seek partnerships with companies developing innovative commercial small spacecraft mission concepts with unusually large propellant throughput requirements.

One partner that will soon use the licensed NASA electric propulsion technology in a commercial small spacecraft application is SpaceLogistics, a wholly owned subsidiary of Northrop Grumman. The Mission Extension Pod (MEP) satellite servicing vehicle is equipped with a pair of Northrop Grumman NGHT-1X Hall-effect thrusters, whose design is based on the NASA-H71M. The small spacecraft’s large propulsive capability will allow it to reach geosynchronous Earth orbit (GEO) where it will be mounted on a far larger satellite.  Once installed, the MEP will serve as a “propulsion jet pack” to extend the life of its host spacecraft for at least six years.

Northrop Grumman is currently conducting a long duration wear test (LDWT) of the NGHT-1X in GRC’s Vacuum Facility 11 to demonstrate its full lifetime operational capability. The LDWT is funded by Northrop Grumman through a fully reimbursable Space Act Agreement. The first MEP spacecraft are expected to launch in 2025, where they will extend the life of three GEO communication satellites.

Collaborating with U.S. industry to find small spacecraft applications with propulsive requirements similar to future NASA planetary science missions not only supports U.S. industry in remaining a global leader in commercial space systems but creates new commercial opportunities for NASA to acquire these important technologies as planetary missions require them.

Northrop Grumman NGHT-1X engineering model Hall-effect thruster operating in Glenn Research Center Vacuum Facility 8. The design of the NGHT-1X is based on the NASA-H71M Hall-effect thruster. Credit: Northrop Grumman

NASA continues to mature the H71M electric propulsion technologies to expand the range of data and documentation available to U.S. industry for the purpose of developing similarly advanced and highly capable low-power electric propulsion devices.

Project Lead

Dr. Gabriel F. Benavides, NASA Glenn Research Center (GRC)

Sponsoring Organizations

Planetary Science Division – Planetary Exploration Science Technology Office (PESTO); Space Operations Mission Directorate – Commercial Space Capabilities Office (CSCO); Space Technology Mission Directorate – Game Changing Development (GCD) program; Space Technology Mission Directorate – Small Spacecraft Technology (SST) program

Share

Details

Last Updated

Apr 23, 2024

Related Terms Explore More

5 min read Why is Methane Seeping on Mars? NASA Scientists Have New Ideas

Article


23 hours ago

3 min read NASA’s Dragonfly Rotorcraft Mission to Saturn’s Moon Titan Confirmed

Article


7 days ago

3 min read Making Ultra-fast Electron Measurements in Multiple Directions to Reveal the Secrets of the Aurora

The energetic electrons that drive the aurora borealis (the northern lights) have a rich and…



Article


2 weeks ago

Categories: NASA

Watch the Full Pink Moon 2024 bloom in the night sky tonight

Space.com - Tue, 04/23/2024 - 9:00am
The Full Pink Moon of April 2024 steals the show tonight as it crosses the nighttime sky from dusk until dawn.
Categories: Astronomy

Sky & Telescope Joins the Northeast Astronomy Forum

Sky & Telescope Magazine - Tue, 04/23/2024 - 9:00am

Sky & Telescope met with readers old and new at the annual Northeast Astronomy Forum.

The post Sky & Telescope Joins the Northeast Astronomy Forum appeared first on Sky & Telescope.

Categories: Astronomy

Watch Rocket Lab launch new NASA solar sail tech to orbit today

Space.com - Tue, 04/23/2024 - 8:00am
Rocket Lab will launch a South Korean Earth-observation satellite and new NASA solar-sailing tech this evening (April 23), and you can watch it live.
Categories: Astronomy

Glucose monitors may misclassify people as being at risk of diabetes

New Scientist Space - Space Headlines - Tue, 04/23/2024 - 8:00am
Our blood sugar levels vary a lot from day to day, so results from continuous glucose monitors need to be interpreted with caution
Categories: Astronomy

Glucose monitors may misclassify people as being at risk of diabetes

New Scientist Space - Cosmology - Tue, 04/23/2024 - 8:00am
Our blood sugar levels vary a lot from day to day, so results from continuous glucose monitors need to be interpreted with caution
Categories: Astronomy

SpaceX launching 23 Starlink satellites from Florida this evening

Space.com - Tue, 04/23/2024 - 8:00am
A SpaceX Falcon 9 rocket will send 23 more of the company's Starlink internet satellites skyward today (April 23), if all goes according to plan.
Categories: Astronomy

Is There a Human Hiding behind That Robot or AI? A Brief History of Automatons That Were Actually People

Scientific American.com - Tue, 04/23/2024 - 7:00am

When human labor is hidden under the veneer of a robot or AI tool, that’s “fauxtomation”

Categories: Astronomy

How Ugandan Tobacco Farmers Inadvertently Spread Bat-Borne Viruses

Scientific American.com - Tue, 04/23/2024 - 6:45am

By cutting trees in response to international demand for tobacco, farmers induced wildlife to start eating virus-laden bat guano

Categories: Astronomy